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SMOOTHNESS INDICATORS FOR WENO SCHEME USING
UNDIVIDED DIFFERENCES∗

TAMER H. M. A. KASEM† AND FRANÇOIS G. SCHMITT‡

Abstract. The weighted essentially non-oscillatory method (WENO) has been used widely in
numerical solutions during the last two decades. This method relies on Smoothness Indicators (SI) to
produce smooth solutions near discontinuities. It was concluded before that evaluating SI based on
undivided differences (UD) is inefficient, and the L2 norm of the interpolation polynomials was used
instead. In the current study the idea of using UD is revisited with the key feature of careful selection
of the stencil. Improvement in terms of the accuracy and the number of arithmetic operations is
illustrated by numerical simulations.
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1. Introduction. Systems of hyperbolic partial differential equations are used
to model various phenomena including compressible gas flow, shallow water flow, and
traffic waves [1]. The existence of discontinuities complicates the task of solving them
numerically. High order numerical methods may produce spurious oscillations near
discontinuities due to Gibbs phenomenon [2]. Although this problem is avoided upon
using low order numerical methods, the resulting solutions suffer from extra diffusion.
About two decades ago, the fifth order accurate, weighted essentially non-oscillatory
method (WENO) was developed [3, 4]. WENO provides high order numerical solu-
tions while avoiding spurious oscillations. An extensive description of WENO algo-
rithm and its applications is provided by [2]. WENO relies on Smoothness Indicators
(SI) to produce smooth solutions near discontinuities. A stencil which induces spu-
rious oscillations is detected (hence avoided) based on its SI. The first version of
WENO [3] used undivided differences (UD) to estimate SI. This was a natural choice
due to the close relation between UD and the presence of discontinuities. However
an improved version (WENO-JS) was introduced shortly [4]. It was proved that UD
formula of [3] reduced the formal accuracy from 5th to 4th order. Instead SI were
calculated in [4] using the L2 norm of the interpolation polynomials. The L2 SI
formulas have been dominant during the last two decades. Major improvements for
WENO which were developed later [5, 6], adopted the L2 SI formulas.
In order to detect discontinuities (edges) for signals and image processing applications,
Archibald et al. [7] clarified the direct relation between UD and discontinuities. In
the current work a new formula for SI based on UD is introduced, based on the
theory developed by [7]. The new method is termed as WENO-edge. The key dif-
ference between WENO-edge and the version of [3] is the stencil used to calculate
UD. In addition the 5th order accuracy of WENO-edge is proved theoretically and
verified numerically. Finally the advantages of WENO-edge compared to WENO-JS
are clarified.
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2. Methodology. A brief review of WENO is presented. The numerical algo-
rithm for solving a scalar hyperbolic equation will be given. However extending the
algorithm to hyperbolic systems is straightforward. The interested reader can refer
to [2] for more details. Considering the scalar hyperbolic equation:

(2.1) ∂u/∂t+ ∂f(u)/∂x = 0.

Here u is a scalar dependent variable, governed by the non-linear flux f(u), with
variation in the space and time variables x and t, respectively. The space derivative
term ∂f(u)/∂x can be approximated using up-winded or down-winded stencils. Only
the details of the up-wind algorithm will be presented. The downwind algorithm can
be deduced trivially. The task of calculation of ∂f(u)/∂x is shifted to finding the flux

function f̂(ζ). This function is defined implicitly as:

(2.2) f (u(x)) =
1

∆x

∫ x+∆x/2

x−∆x/2

f̂(ζ)dζ.

f̂(ζ) can be used to write ∂f(u)/∂x

(2.3)
∂f(u)

∂x
=
f̂(x+ ∆x/2)− f̂(x−∆x/2)

∆x
.

A third order approximation for f̂(x − ∆x/2) is termed as the numerical flux

f̂ki−1/2. The index k takes the values 0, 1 and 2, depending on the subinterval used to

evaluate f̂ki−1/2. f(u) is interpolated using a Lagrange polynomial at the nodes of the

subinterval Sk = {xi−3+k, xi−2+k, xi−1+k}, and f̂ki−1/2 is equated to the derivative of
this polynomial. A third order approximation of the space derivative is written as:

(2.4)
∂f(u)

∂x

∣∣∣∣
i

=
f̂ki+1/2 − f̂

k
i−1/2

∆x
+O(∆x3).

Although f̂ki+1/2 and f̂ki−1/2 are O(x3), their difference produces a term O(x4)

[2, 6]. Three choices for f̂ki−1/2 are possible based on the value of k, i.e. the chosen
stencil:

(2.5) f̂ki−1/2 =


f̂0
i−1/2 = 1

3fi−3 − 7
6fi−2 + 11

6 fi−1

f̂1
i−1/2 = − 1

6fi−2 + 5
6fi−1 + 1

3fi

f̂2
i−1/2 = − 1

6fi−2 + 5
6fi−1 + 1

3fi

The three available stencils are combined to get a fifth order accurate approxi-
mation for the flux, using the following constants [2, 4].

(2.6) d0 = 0.1, d1 = 0.6, d2 = 0.3.

The fifth order accurate numerical flux f̄i−1/2 can be calculated as:
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(2.7) f̄i−1/2 =

k=2∑
k=0

dkf̂
k
i−1/2.

In order to avoid spurious oscillations near high gradients, (2.7) is modified as:

(2.8) f̃i−1/2 =

k=2∑
k=0

ωkf̂
k
i−1/2.

The weights ωk should be higher for stencils that yield smooth solutions and vice
versa. If all stencils yield smooth solutions ωk and f̃i−1/2 should converge to dk and
f̄i−1/2, respectively. ”Smoothness indicators” βk are used to calculate ωk. Calculation
algorithms for βk will be detailed on the next section. Let us assume for the moment
that βk are given. In this case the weights are calculated as:

(2.9) αk =
dk

(ε+ βk)
2 .

(2.10) ωk =
αk∑s=2
s=0 αs

.

Here ε is a very small arbitrary parameter (assigned to 10−8) introduced to avoid
division by zero, αk is an intermediate weight used to calculate ωk. (2.10) is adopted

to enforce the condition
∑k=2

k=0 ωk = 1.

3. Smoothness Indicators. The L2 norm was used to calculate βk in [4] using
the following formula:

(3.1) βJS
k =

2∑
m=1

∫ xi+1/2

xi−1/2

∆x2m−1 (qmk )
2
dx.

Here qmk is the mth derivative of the polynomial used to evaluate f̂ki−1/2. The

superscript JS is used in βJS
k since the formula was introduced by Jiang and Shu [4].

It can be proved that βJS
k is equal to:

(3.2) βJS
k =


βJS

0 = 13
12 (fi−3 − 2fi−2 + fi−1)

2
+ 1

4 (fi−3 − 4fi−2 + 3fi−1)
2

βJS
1 = 13

12 (fi−2 − 2fi−1 + fi)
2

+ 1
4 (fi−2 − fi)2

βJS
2 = 13

12 (fi−1 − 2fi + fi+1)
2

+ 1
4 (3fi−1 − 4fi + fi+1)

2

The numerical results based on (3.1) are satisfactory. However the motivation of
this choice is vague. It will be shown shortly, that better results can be obtained using
the undivided differences (UD). The undivided differences of order n = 1, 2 evaluated
about the point i− 1/2, termed as [f ]ni−1/2 are defined as:

(3.3) [f ]1i−1/2 = fi − fi−1
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Fig. 3.1. Undivided differences used to estimate smoothness indicators.

(3.4) [f ]2i−1/2 =

{
[f ]2−i−1/2 = [f ]1i−1/2 − [f ]1i−3/2

[f ]2
+

i−1/2 = [f ]1i+1/2 − [f ]1i−1/2

Although [f ]1i−1/2 is uniquely defined, two alternatives exist for [f ]2i−1/2; left bi-

ased [f ]2−i−1/2, and right biased [f ]2+
i−1/2. It should be noted that [f ]2−i−1/2 = fi−2fi−1+

fi−2 and [f ]2+
i−1/2 = fi+1 − 2fi + fi−1. Referring to Fig. 3.1 the following parameters

are defined using first order UDs: a = [f ]1i−3/2, b = [f ]1i+1/2, c = [f ]1i−5/2, S
1
2 = S1

1 =

[f ]1i−1/2, and second order UDs: d = [f ]2−i−3/2, S
2
1 = [f ]2−i−1/2, S

2
2 = [f ]2+

i−1/2. Special

symbols (Sn
k ) are assigned to nth order UD evaluated using substencil k, about i−1/2.

In [3] βLOC
k was calculated using the summation of averages of square values of all

the same order UDs in sub-stencil k as:

(3.5) βLOC
k =


βLOC

0 = 1
2 (a2 + c2) + d2

βLOC
1 = 1

2 (a2 +
(
S1

1

)2
) +

(
S2

1

)2
βLOC

2 = 1
2 (b2 +

(
S1

2

)2
) +

(
S2

2

)2
Jiang and Shu [4] compared βLOC

k and βJS
k . They proved that βLOC

k reduced
the formal accuracy from 5th to 4th order and concluded βJS

k is better. UD are
introduced here again with a key modification; βk is based on UD evaluated about
the point i−1/2, since this is the point at which f̃i−1/2 is computed. The UD denoted
by a, b and c, are used indirectly (via S2

k) due to their indirect influence on i − 1/2.
Using three up-winded stencils, Sn

k can be evaluated as (Fig. 3.1):

(3.6) S1
k =

 S1
0 = festi − fi−1

S1
1 = fi − fi−1

S1
2 = fi − fi−1
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Fig. 3.2. Behavior of S1
1 and S2

1 in the neighborhood of large gradients.

(3.7) S2
k =

 S2
0 = festi − 2fi−1 + fi−2

S2
1 = fi − 2fi−1 + fi−2

S2
2 = fi+1 − 2fi + fi−1

The point of interest (i − 1/2) is totally outside the leftmost substencil (k = 0).
To deal with this situation an estimate of fi (termed as festi ) based on extrapolation
is used:

(3.8) festi = fi−3 − 3fi−2 + 3fi−1.

Using (3.8), we can rewrite (3.6) and (3.7):

(3.9) S1
k =

 S1
0 = fi−3 − 3fi−2 + 2fi−1

S1
1 = fi − fi−1

S1
2 = fi − fi−1

(3.10) S2
k =

 S2
0 = fi−3 − 2fi−2 + fi−1

S2
1 = fi − 2fi−1 + fi−2

S2
2 = fi+1 − 2fi + fi−1

Archibald et al. [7] estimated jumps in f in the interval [i − 1, i] using UD. A

jump (edge) in f is termed as f i−1/2. They arrived at two conclusions (Fig. 3.2).

• S1
k ≈ [f ]i−1/2. However S1

k is proportional to the local gradient at i-1/2
whether an edge exists or not.

• S2
k is a more accurate estimate for [f ]i−1/2. However S2

k produces fictitious
oscillations in the neighborhood of steep gradients whether an edge exists or
not.
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To make benefit from both S1
k and S2

k, Archibald et al. [7] calculated f i−1/2

according to

(3.11) f i−1/2 = minmod(S1
k, S

2
k).

Archibald et al. [7] illustrated and proved that the minmod filter returns the

closer estimate of f i−1/2 among S1
k and S2

k and excludes the other. Unlike [7] we

are interested in f̃i−1/2 instead of f i−1/2. The sensitivity of S2
k to neighbour high

gradients (present in S2
k) should never be excluded. In addition the magnitude of

local gradient at i− 1/2 (present in S1
k) is always important. Instead of the minmod

filter, the following formula is introduced for βk:

(3.12) βedge
k = abs(S1

k) + abs(S2
k).

The superscript edge is used in βedge
k since the idea is based on the edge detection

algorithm presented by Archibald et al. [7]. The abs function is used since the sign
of S1,2

k is irrelevant.
Other forms of (3.12) are possible. For example βk = W1[abs(S1

k)]h+W2[abs(S2
k)]h,

where h > 0 is a suitable exponent, and W1,2 are suitable weights. However, numer-
ical experiments illustrated that (3.12) yields good results. In order to clarify the
analogy with βJS

k , (3.12) is expanded and rewritten as:

(3.13) βedge
k =


βedge

0 = abs(fi−3 − 3fi−2 + 2fi−1) + abs(fi−3 − 2fi−2 + fi−1)

βedge
1 = abs(fi − fi−1) + abs(fi − 2fi−1 + fi−2)

βedge
2 = abs(fi − fi−1) + abs(fi+1 − 2fi + fi−1)

Calculating βedge
k consumes less computer time than the original βJS

k . The arith-
metic operations for βJS

k includes four extra multiplications (squaring brackets and
multiplication by 13/12 and 1/4 factors). On the other hand, the abs operation needed

by βedge
k consumes negligible time.

3.1. Formal Order of accuracy. The following necessary and sufficient condi-
tions to retain the 5th order accuracy were provided and derived by [6]:

(3.14) 3ω+
0 − 3ω−0 − ω

+
1 + ω−1 + ω+

2 − ω
−
2 = O(∆x3).

(3.15) ωk − dk = O(∆x2).

Here the superscripts (+) or (-) on ωk indicate their use in f̃i+1/2 or f̃i−1/2, re-

spectively. (3.14) and (3.15) are checked by substituting βedge
k in (2.9), then Taylor

series expansion is used. Performing this task manually requires huge time. The
results are obtained using the free symbolic manipulator SAGE available online
(https://cloud.sagemath.com).

(3.16) 3ω+
0 − 3ω−0 − ω

+
1 + ω−1 + ω+

2 − ω
−
2 = −3

5

f ′′i−1/2f
′′′
i−1/2(

f ′i−1/2

)2 ∆x3 +H.O.T.
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(3.17) ωk − dk =


ω0 − d0 = 21

50

f ′′′i−1/2

f ′
i−1/2

(
∆x2

)
+H.O.T

ω1 − d1 = 6
50

f ′′′i−1/2

f ′
i−1/2

(
∆x2

)
+H.O.T

ω2 − d2 = − 27
50

f ′′′i−1/2

f ′
i−1/2

(
∆x2

)
+H.O.T

It is clear that βedge
k satisfies all the formal accuracy conditions.

4. Results and discussion. In order to illustrate the advantage of the new
scheme, numerical solutions of WENO will be presented. The solutions based on
(3.1) will be termed as WENO-JS . The results based on (3.12) will be termed as
WENO-edge. For all cases explicit 3rd order TVD time integration is adopted [2].

4.1. Passive convection. In this section, WENO-JS and WENO-edge are ap-
plied to the linear advection equation ∂u/∂t = −∂u/∂x. The signal propagation
speed is a positive constant equal to 1, implying that information always comes from
the left. Consequently the up-winded algorithm is adopted. A more general problem
is discussed in §4.2. For a linear advection problem the exact solution is available
in terms of the initial condition u(x, t = 0) = F (x). The exact solution is given as
uexact = F (x− t).

4.1.1. Smooth sine. The algorithms are applied to transport of a smooth con-
tinuous function. The initial condition is given by u(x, t = 0) = sin(πx). The
equation is solved until the final time t = 2 on the space interval x ∈ [−1, 1], with
periodic space boundary conditions. Various grids are adopted to investigate conver-
gence. The number of grid points N is assigned N = 10× 2i where i takes the integer
values between 0 and 6. Since the time integration method produces O(∆t3) errors,
the numerical time step is equated to ∆t = 2(∆x5/3) in order that the overall error
of the scheme is a measure of the spatial convergence only [6, 5]. For each grid the
L1 norm of the error is calculated as [8]:

(4.1) L1(N) =

∑N
i=1 abs

(
uexacti − uWENO

i

)
N

,

The order of the numerical error (p) can be estimated using L1(N) computed from
two consecutive grids. This is done based on the assumption L1 = aN−p. The ratio
between consecutive grids is assigned to 2.0 in the current work. Hence the order is
estimated as

(4.2) p = log2

(
L1(N)

L1(2N)

)
.

The results are shown in table 4.1. Both versions (WENO-edge and WENO-JS)
produce 5th order accurate solutions as expected. However the error of WENO-edge
is considerably smaller than that of WENO-JS. In fact the error of WENO-edge is at
least 15% lower than WENO-JS. The computation times in milli seconds are shown
on the same table (Intel Core i3 M330 2.13GHz processor, 3.67 GB memory). It
should be noted that the measured times varied randomly by ±15ms for each run.
This random variation may be attributed to the various operating system tasks. In
addition the developed codes have not been optimized for speed. However the results
show that the WENO-edge is faster (at least not slower) than WENO-JS.
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Table 4.1
L1 norm, estimated order of discretization error p and computation time for a smooth initial

condition u(x, t = 0) = sin(πx). Values are shown for various grids.

N
WENO JS WENO edge

Error L1 p
computation

time ms
Error L1 p

computation
time ms

10 3.67E-02 - 16 2.72E-02 - 15

20 1.80E-03 4.348927 16 1.44E-03 4.236559 0

40 5.64E-05 4.998263 16 4.96E-05 4.86288 15

80 1.78E-06 4.987103 46 1.57E-06 4.979707 47

160 5.59E-08 4.992303 187 4.93E-08 4.99632 172

320 1.75E-09 4.995802 1138 1.54E-09 5.000627 1061

640 5.52E-11 4.988147 6692 4.79E-11 5.005998 6630

0

0.5

1

-1 -0.5 0 0.5 1

u

x

exact WENO-edge WENO-JS

0

0.5

1

0.35 0.45 0.55 0.65-0.8 -0.7 -0.6

Fig. 4.1. Numerical and exact solutions of the passive convection problem (∆x = 1/50) at
t = 8. Magnified plots of the triangular and semi-ellipse waves are shown on the same figure.

4.1.2. Discontinuous waves. WENO-JS and WENO-edge are applied to trans-
port of discontinuous functions extracted from [5]. The advection equation is solved
until the final time t = 8 on the interval x ∈ [−1, 1], with periodic space boundary
conditions. The numerical time step is assigned to ∆t = 8(∆x5/3). The initial condi-
tion consists of; a Gaussian function, square wave, triangular wave and a semi ellipse.
Simulation results are shown in Fig. 4.1 for grid spacing ∆x = 1/50. For this rela-
tively coarse mesh the advantage of WENO-edge is clear. To clarify the improvement
a finer mesh is adopted; ∆x = 1/200 in Fig. 4.2. The solution is magnified near the
edges of the square and the Gaussian waves to clarify the advantage of WENO-edge.
Convergence is further clarified by calculating errors for various grids (table 4.2). The
rate of convergence drops to be close to first order. This is common among high order
methods in the presence of discontinuities [6]. The error of WENO-edge is at least
15% lower than WENO-JS for this case also.

4.2. Euler system. The results of WENO-edge and WENO-JS are presented for
Euler non-linear system of equations, which describes one-dimensional compressible
flow. Euler Equations can be written in the following compact form:

(4.3)
∂U

∂t
+
∂F(U)

∂x
= 0

Where the vectors U and F(U) are the vectors of conserved variables and flux,
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0

0.5

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u

x

exact WENO-edge WENO-JS

-0.712 -0.702 -0.692
0.95

0.97

0.99

-0.41 -0.36 -0.31 -0.26 -0.21

Fig. 4.2. Numerical and exact solutions of the passive convection problem (∆x = 1/200) at t = 8.

Table 4.2
Error L1 norm and the estimated order of error p for a non-smooth initial condition (final time

t = 2). Values are shown for various grids.

N
WENO JS WENO edge

Error L1 p Error L1 p
80 9.29E-02 - 7.73E-02 -
160 3.71E-02 1.322884 3.12E-02 1.307421
320 1.81E-02 1.034656 1.53E-02 1.029718
640 9.12E-03 0.989733 7.78E-03 0.976826

respectively. They are defined as

(4.4) U = [ρ ρuE]
T

= [U1 U2 U3]
T

(4.5) F(U) =
[
ρu ρu2 + P (E + P )u

]T
= [F1 F2 F3]

T

Here ρ is the fluid density, E = ρ(CvT +u2/2) is the total energy defined in terms
of the temperature T , the specific heat capacity Cv, and the velocity u. In addition
the pressure P appears in the flux of ρu and E. The procedure of applying WENO to
systems of hyperbolic equations is fully described in [2]. Briefly, the Jacobian of the
flux is used to transform the coupled system of (4.3) to a diagonal uncoupled form.
The uncoupled system is obtained by a characteristic transformation using the eigen
vectors of the Jacobian. Lax-Friedrichs flux-splitting is applied to account for signals
coming from left and right directions.

Riemann Problems are useful for the development and testing of numerical algo-
rithms for the one-dimensional Euler equations [9]. Initially, two different states of
the flow exist. For x < 0.5, the flow variables ρ1, u1, P1 are imposed, while ρ4, u4, P4

are imposed for x > 0.5. A Riemann problem contains the fundamental physical and
mathematical character of Euler equations, in spite of its simple initial condition [10].

The following initial condition is specified:(ρ1, u1, P1) = (1.0, 0, 1.0),(ρ4, u4, P4) =
(0.125, 0, 0.1). This problem is often termed as Sod’s problem in the literature [4].
The values of grid spacing and time step are assigned to ∆x = 0.1 and ∆t = 0.012,
respectively. The exact solution (left rarefaction, a contact discontinuity and a right
shock) is detailed in [9, 10]. The numerical and exact solutions for the density are
shown in Fig. 4.3 at the instant t = 1.2. To illustrate improvement, the plot is
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Fig. 4.3. Sod problem numerical and exact density solutions at t = 1.2.

magnified at two corners near the sharp gradient of the contact discontinuity. The
results of WENO-edge are closer than WENO-JS to the exact solution as shown.

5. Conclusions. A new algorithm based on undivided differences (UD) for com-
puting smoothness indicators used in WENO method is presented. The novel idea
of computing the UD about the flux point is introduced. The new smoothness in-
dicator formulas (βedge

k ) consume fewer arithmetic operations. The fifth order accu-

racy of βedge
k is verified theoretically and numerically. They also yield better results,

compared to the original formula based on the L2 norms of the derivatives (βk
JS).

Improvement was illustrated for scalar advection of smooth and sharp waves and a
Riemann problem of compressible flow. One possible extension of the current work is
implementing the improvements described in [5, 6] using βedge

k instead of βJS
k .
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