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SEMI-IMPLICIT METHODS BASED ON INFLOW IMPLICIT AND
OUTFLOW EXPLICIT TIME DISCRETIZATION OF ADVECTION

PETER FROLKOVIČ∗

Abstract. We introduce several numerical methods for the solution of advection equation using
semi-implicit time discretization in which the inflow fluxes are discretized implicitly and the outflow
fluxes explicitly. We derive the so called κ-scheme and show it is 2nd order accurate and uncon-
ditionally stable in 1D and 2D case for tensor grids with a special choice of κ giving 3rd order accurate
scheme for constant speed in 1D. Moreover, we present a 2nd order accurate and unconditionally
stable Corner Transport scheme in 2D case for tensor grids that is 3rd order accurate for constant
velocity. We discuss several improved properties of these schemes when compared to analogous fully
explicit and fully implicit schemes.
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1. Introduction. Linear advection equation is an important part of many math-
ematical models with interesting applications, therefore many textbooks are dealing
with its numerical solution in details [15, 8, 12]. One of the most used class of numer-
ical methods are so called κ-schemes based on fully explicit time discretization. An
attractive variant of κ-scheme is the QUICKEST scheme that is formally third order
accurate for 1D advection with constant speed [6].

In many situations the fully explicit schemes are considered inappropriate due to
their restrictive stability condition on the choice of time discretization step. The first
contribution of this paper is an introduction of fully implicit κ-schemes in 1D with
a derivation of their accuracy and less restrictive stability condition. However, the
main motivation here is, firstly, to construct semi-implicit κ-schemes that are based
on so called IIOE (Inflow Implicit / Outflow Explicit) time discretization [9, 10] and,
secondly, to compare them with fully explicit and fully implicit schemes.

The main results of this paper are conclusions about several improved properties
of semi-implicit IIOE schemes. In 1D case they are unconditionally stable for arbi-
trary choice of parameter κ including one particular choice which gives the 3rd order
accurate method for constant speed. Furthermore, for 2D case with tensor grids,
the 2nd order accuracy and unconditional stability is preserved also for the simplest
dimension by dimension application of IIOE κ-schemes that is not the case for fully
explicit and fully implicit schemes. Finally, we present in 2D a 2nd order accurate
and unconditionally stable semi-implicit scheme that is 3rd order accurate for constant
velocity by using an approach of so called Corner Transport scheme [7, 1, 8]. The
derived schemes confirm improved properties also for chosen numerical experiments.

The topic is divided into four sections. The Section 2 describes the fully explicit,
fully implicit and semi-implicit IIOE κ-schemes for 1D case together with their prop-
erties. The Section 3 derives IIOE schemes for 2D case on tensor grids. Finally,
the Section 4 presents numerical experiments that illustrate the properties of IIOE
schemes for several 2D examples.
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2. One dimensional case. The one dimensional form of advection equation
can be written as

∂tu(x, t) + V (x)∂xu(x, t) = 0 , u(x, 0) = u0(x) , x ∈ Ω.(2.1)

We consider Ω = (−1, 1), h = 2/M with M given, xi = −1+ih and xi+1/2 = xi+h/2,
i = −1, 0, . . . ,M + 1. Furthermore let τ > 0 be a given time step and tn = nτ ,
tn+1/2 = tn + 0.5τ , n = 0, 1, . . . , N with N chosen. We use standard indexing for
discrete values like Vi = V (xi), Vi+1/2 = V (xi+1/2) and so on.

Our aim is to find approximate values uni ≈ u(xi, t
n). The values u0i are deter-

mined from initial function u0(x). The values un0 and/or unM shall be determined
from Dirichlet boundary conditions if V0 ≥ 0 and/or if VM ≤ 0. For the case
of outflow boundaries, the auxiliary values (or variables) un−1 = 2un0 − un1 and/or
unM+1 = 2unM − unM−1 are introduced to be used later in numerical schemes to deter-
mine un0 and/or unM .

Our general numerical scheme to solve (2.1) is given by

un+1
i +

τVi+1/2

h

(
u
n+1/2
i+1/2 − u

n+1/2
i

)
−
τVi−1/2

h

(
u
n+1/2
i−1/2 − u

n+1/2
i

)
= uni .(2.2)

The scheme (2.2) can be formally viewed as a finite volume discretization of (2.1)
using V ∂xu = ∂x(V u)− u∂xV , see e.g. [3, 9, 10] for more details.

To obtain any particular scheme of the form (2.2) we will specify an approximation

of the differences (u
n+1/2
i±1/2 − u

n+1/2
i ) in (2.2). We consider here only approximations

that depend at most on three consecutive values from (u∗i−2, u
∗
i−1, u

∗
i , u
∗
i+1, u

∗
i+2) where

∗ = n or ∗ = n+1. If such approximations are defined using strictly the known values
for ∗ = n, the scheme is called fully explicit. If the approximations are based purely
on unknown values for ∗ = n+ 1, we speak about fully implicit schemes. Our aim is to
derive a semi-implicit scheme when in general the differences in (2.2) are approximated
either explicitly or implicitly depending on the sign of Vi±1/2.

In all schemes discussed in this section we use the following approximation of
gradients ∂xu

∗
i ≈ ∂xu(xi, t

∗)

h ∂xu
∗
i = 0.5(1− κi)(u∗i − u∗i−1) + 0.5(1 + κi)(u

∗
i+1 − u∗i ) ,(2.3)

where the parameter κi is free to choose with a natural choice being κi ∈ [−1, 1].
Such scheme is called “κ-scheme” in [14, 15] for fully explicit case. In what follows
we introduce fully explicit, fully implicit and semi-implicit variants of κ-schemes.

To derive a fully explicit variant of (2.2) one can use finite Taylor series approx-

imations as in [8, 12, 5]. Particularly, expressing u
n+1/2
i = uni + 0.5τ∂tu

n
i and using

∂tu = −V ∂xu one gets

u
n+1/2
i = uni − 0.5τVi∂xu

n
i .(2.4)

Applying similar treatment for u
n+1/2
i+1/2 one arrives to the approximations

u
n+1/2
i+1/2 =

{
uni + 0.5(h− τVi)∂xuni Vi+1/2 > 0

uni+1 − 0.5(h+ τVi+1)∂xu
n
i+1 Vi+1/2 < 0

,(2.5)

where also the upwind principle has been used.
The scheme (2.2) together with (2.3) - (2.5) will be called the fully explicit κ-

scheme. This scheme gives in the case of constant velocity V the well-known particular
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variants [15, 8], namely Lax-Wendroff for κi ≡ κ = sign(V ), Beam-Warming for
κ = −sign(V ), and Fromm scheme for κ = 0.

Next we comment on the accuracy and stability conditions of fully explicit κ-
scheme.

One can show that the scheme (2.2) - (2.5) is formally second order accurate for
arbitrary value of κi in (2.3) and for variable smooth velocity V if Vi−1/2Vi+1/2 ≥ 0.
We do not comment here the cases Vi−1/2Vi+1/2 < 0 that we propose to treat by a
first order accurate discretization as in e.g. [3].

The accuracy of numerical scheme can be proved by putting the values u(xi±k, t
∗),

k = −2,−1 . . . , 2 of the exact solution of (2.1) into the numerical scheme, expressing
these values by Taylor series with respect to u(xi, t

n), and replacing ∂tu(xi, t
n) and

∂ttu(xi, t
n) by space derivatives using the relations (obtained from ∂tu = −V ∂xu)

∂ttu = −V ∂txu , ∂txu = −V ∂xxu− V ′∂xu .(2.6)

One can show that the nonzero terms in the Taylor series start with hptq where
p+q ≥ 2, so the method is second order accurate. Note that also the values V (xi±1/2)
and V (xi±1) shall be replaced by Taylor series with respect to V (xi). This Taylor
series analysis was done by the author using software package Mathematica [16], the
code is available by request. Note that analogous analysis is realized for all schemes
in this paper.

It is interesting to note that the result on accuracy order is valid even without
upwind principle, i.e. a replacement of (2.5) by a definition based on downwind
principle would give the same accuracy results. As we discuss later, the correct
upwind choice is required due to stability condition.

Concerning some practical suggestions which value of κi to choose in (2.3), the
constant value 0 is often preferred which gives for several examples (but not for all) the
smallest so called “phase error” [15, 8], see also some analogous numerical experiments
later. Note that a variable choice of κi with respect to i is used e.g. as a part of so
called limiter procedure [8] to reduce non-physical oscillations in numerical solutions.

An interesting option is the so called QUICKEST scheme [6] with a variable choice

κi = sign(Vi)
h− 2τ |Vi|

3h
,(2.7)

that gives the 3rd order accurate scheme in the case of constant velocity. We search
for analogous suggestions later in the case of fully implicit and semi-implicit schemes.

Additionally to the accuracy also a stability of numerical schemes must be studied.
We investigate for the case of constant velocity Vi ≡ V the so called von Neumann
stability analysis, see e.g. [13, 15, 8]. Although a stability condition can be derived for
some schemes using analytical methods [13, 15], we present here briefly an approach
proposed and used in [1] where such condition is derived numerically. The advantage
of such approach is that it can be applied to any numerical scheme studied in this
paper. As we use it in the form published elsewhere, we reduce our description to a
minimum and refer to literature for more practical details [1, 11].

To derive a stability condition of numerical scheme, one introduces a grid function
εni = ε(xi, t

n) defined by

ε(x, t) = exp(−λt) exp(ıx) , x ∈ R , t ≥ 0 ,(2.8)

where ı is the imaginary number, and the parameter λ shall be found. The values εni
are supposed to fulfill the numerical scheme. Using trivial relations

εni±j = exp(±ıj∆x)εni , εn+1
i = Sεni , S := exp(−λτ) ,(2.9)
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where S denotes the so called amplification factor, the stability condition of numerical
scheme is derived by requiring that |S| ≤ 1 [13, 1, 15, 8, 11].

We derive now such condition in the case of constant and positive velocity V (the
case V < 0 can be studied analogously) for the scheme (2.2) -(2.5) that takes the form

un+1
i = uni +

C

4

(
(−1 + κ+ C(1− κ))uni−2 + (5− 3κ+ C(−1 + 3κ))uni−1 +

(−3 + 3κ− C(1 + 3κ))uni + (−1− κ+ C(1 + κ))uni+1

)
.(2.10)

where the nondimensional parameter C := τ |V |/h is the so called Courant number.
We replace in (2.10) uni with εni etc., divide (2.10) by εni 6= 0, and use (2.9) to

obtain

S = 1 +
C

4
((−1 + κ+ C(1− κ)) exp(−2ı∆x) + (5− 3κ+ C(−1 + 3κ)) exp(−ı∆x) +

(−3 + 3κ− C(1 + 3κ)) + (−1− κ+ C(1 + κ)) exp(ı∆x)) .(2.11)

Investigating the value |S| in (2.11) numerically for a representative set of values
C, κ, and ∆x ∈ (−π, π), the stability condition

κ ∈ [−1, 1] and C ∈ [0, 1](2.12)

is obtained. Note that it is in the agreement with available analogous theoretical
results for fully explicit κ-scheme in e.g. [15].

We are now interested if a second order accurate fully implicit variant of (2.2)
analogous to (2.4) - (2.5) can be derived with less restrictive stability condition. It is
now rather straightforward to derive such fully implicit scheme, one has to use

u
n+1/2
i = un+1

i + 0.5τVi∂xu
n+1
i(2.13)

u
n+1/2
i+1/2 =

{
un+1
i + 0.5 (h+ τVi) ∂xu

n+1
i Vi+1/2 > 0

un+1
i+1 − 0.5 (h− τVi+1) ∂xu

n+1
i+1 Vi+1/2 < 0

.(2.14)

Note that (2.13) - (2.14) differ not only by the time index n + 1 to related formulas
(2.4) - (2.5) of fully explicit κ-scheme. Using Taylor series analysis one can show that
(2.2) with (2.3) and (2.13) - (2.14) is second order accurate for arbitrary κi in the
case of variable velocity if Vi−1/2Vi+1/2 ≥ 0. The choice

κi = sign(Vi)
h+ 2τ |Vi|

3h
(2.15)

gives formally the third order accurate scheme for a constant velocity case.
Concerning the stability condition for the case of constant velocity Vi ≡ V > 0,

one can show that for κi ≡ κ ≤ 0 the fully implicit κ-scheme is unconditionally
stable for arbitrary positive Courant number C . This can be seen as an advantage
when compared to fully explicit κ-schemes. The price to pay is that a system of
linear algebraic equations has to be solved in each time step. In the case of time
independent velocity as in (2.1) the matrix of such system does not change in time
and has in general a 4-diagonal form if V (x) does not change its sign for x ∈ [−1, 1].

Furthermore, the choices κ > 0 give more restrictive stability condition. For
instance the value κ = 1/3 gives a stable scheme for C ∈ [0, 2], the third order
accurate scheme (2.15) is stable only for C ∈ [0, 0.5]. The choice κ = 1 gives unstable
numerical scheme for C ∈ [0, 1].
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Finally, we present the semi-implicit scheme based on IIOE time discretization
(Inflow Implicit and Outflow Explicit). Following [9, 10, 4] we use in (2.2) with (2.3)

u
n+1/2
i−1/2 − u

n+1/2
i =

{
un+1
i−1 − u

n+1
i + 0.5h∂xu

n+1
i−1 Vi−1/2 > 0

−0.5h∂xu
n
i Vi−1/2 < 0

,(2.16)

u
n+1/2
i+1/2 − u

n+1/2
i =

{
0.5h∂xu

n
i Vi+1/2 > 0

un+1
i+1 − u

n+1
i − 0.5h∂xu

n+1
i+1 Vi+1/2 < 0

.(2.17)

Note that (2.16) - (2.17) is derived by different and simpler approach than (2.4) - (2.5)
or (2.13) - (2.14), e.g. it does not contain the parameters τ and Vi±1. Concerning
the accuracy one can show that the scheme is second order accurate for arbitrary
κi and for variable velocity if Vi−1/2Vi+1/2 ≥ 0. It is important to note (see also a
related discussion in 2D case later) that such analysis exploits only the first relation
in (2.6), and not the second one. This is possible due to the fact that the IIOE scheme
contains “mixed” discrete values like un+1

i−1 that helps to cancel the mixed derivative
∂txu

n
i in Taylor series analysis that is not possible for e.g. fully explicit scheme. An

implementation of this analysis in Mathematica is available by request. Finally the
choice

κi = sign(Vi)
h− τ |Vi|

3h
(2.18)

gives in the case of constant velocity the third order accurate scheme. Note that to
prove it, the both relations in (2.6) are exploited that will be important in 2D case.

The most important results is concerning the stability condition of semi-implicit
scheme. It can be shown that the κ-scheme of IIOE form for constant velocity is
unconditionally stable for arbitrary Courant number and arbitrary κi. We see this
as an advantage with respect to fully implicit κ-scheme. Moreover, the matrix of
resulting system of linear algebraic equations has a more convenient 3-diagonal form
with off-diagonals strictly either below or up to the main diagonal (if V (x) does not
change its sign), so the system can be solved in one step using a forward or backward
substitution.

We note that the accuracy and stability conditions remain valid for a simpler
finite difference form of all presented schemes when the values Vi−1/2 and Vi+1/2 in
(2.2), (2.5), (2.14), and (2.16) - (2.17) are replaced by Vi.

3. Two-dimensional case. The representative advection equation takes form

∂tu(x, y, t) + ~V (x, y) · ∇u(x, y, t) = 0 , u(x, y, 0) = u0(x, y)(3.1)

that shall be accompanied by appropriate boundary conditions.
We consider here numerical methods only for a structured tensor grid having a

uniform space discretization step h and a uniform time discretization step τ . The com-
putational domain is a square Ω = (−1, 1)2 and the notations from one-dimensional
case are extended as usual.

Firstly, the following approximation of gradients (∂xu
∗
ij , ∂yu

∗
ij) ≈ ∇u(xi, yj , t

∗) is
used,

h ∂xu
∗
ij = 0.5(1− κxij)(u∗ij − u∗i−1 j) + 0.5(1 + κxij)(u

∗
i+1 j − u∗ij) ,(3.2)

h ∂yu
∗
ij = 0.5(1− κyij)(u

∗
ij − u∗i j−1) + 0.5(1 + κyij)(u

∗
i j+1 − u∗ij) ,

where the parameters κxij and κyij are free to choose, e.g. κxij ∈ [−1, 1] and κyij ∈ [−1, 1].
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Let ~V = (V,W ). We present the numerical scheme obtained by the dimension by
dimension extension of 1D case that takes the form

un+1
ij +

τVi+1/2 j

h

(
u
n+1/2
i+1/2 j − u

n+1/2
ij

)
−
τVi−1/2 j

h

(
u
n+1/2
i−1/2 j − u

n+1/2
ij

)
+(3.3)

+
τWi j+1/2

h

(
u
n+1/2
i j+1/2 − u

n+1/2
ij

)
−
τWi j−1/2

h

(
u
n+1/2
i j−1/2 − u

n+1/2
ij

)
= unij ,

where in the 1st line of (3.3) the index j is fixed and the one-dimensional definitions
of previous Section with respect to i shall be used, and analogously for the 2nd line.

We discuss now particular schemes of the form (3.3) and their order of accuracy.
From [1, 8] one can easily show that a fully explicit variant of (3.3) can not be in
general second order accurate even for constant velocity (V,W ). The reason is a
missing possibility to cancel the mixed derivative ∂xyu(xi, t

n) in Taylor series analysis
that occur due to (analogously to 1D case given by (2.6))

∂ttu = −V ∂txu−W∂tyu ,(3.4)

∂txu = −V ∂xxu−W∂xyu , ∂tyu = −V ∂xyu−W∂yyu .(3.5)

To obtain a second order accurate fully explicit scheme, the so called Corner
Transport scheme is proposed in [7, 8] that exploits at least one diagonal value of

numerical solution, e.g. the value uni−1 j−1 is used if a constant velocity ~V is such that
V > 0 and W > 0. We will use this idea to obtain a third order accurate Corner
Transport IIOE scheme later.

Next we present for clarity the dimension by dimension extension of the IIOE
κ-scheme of the form (3.2) - (3.3) that is given by

u
n+1/2
i−1/2 j − u

n+1/2
ij =

{
un+1
i−1 j − u

n+1
ij + 0.5h∂xu

n+1
i−1 j Vi−1/2 j > 0

−0.5h∂xu
n
ij Vi−1/2 j < 0

,(3.6)

u
n+1/2
i+1/2 j − u

n+1/2
ij =

{
0.5h∂xu

n
ij Vi+1/2 j > 0

un+1
i+1 j − u

n+1
ij − 0.5h∂xu

n+1
i+1 j Vi+1/2 j < 0

,(3.7)

u
n+1/2
i j−1/2 − u

n+1/2
ij =

{
un+1
i j−1 − u

n+1
ij + 0.5h∂yu

n+1
i j−1 Wi j−1/2 > 0

−0.5h∂yu
n
ij Wi j−1/2 < 0

,(3.8)

u
n+1/2
i j+1/2 − u

n+1/2
ij =

{
0.5h∂yu

n
ij Wi j+1/2 > 0

un+1
i j+1 − u

n+1
ij − 0.5h∂yu

n+1
i j+1 Wi j+1/2 < 0

.(3.9)

One can show that the scheme (3.3) with (3.6) - (3.9) is second order accurate for
variable velocity and for arbitrary κxij and κyij in (3.2). Such result can be obtained
due to the fact that, opposite to fully explicit scheme, the relation (3.5) is not used in
Taylor series analysis. This property has been proved using the software Mathematica
and confirmed also in numerical experiments as given in the next Section. More
detailed publication of these results is in a preparation.

Moreover, the scheme (3.3) - (3.9) is unconditionally stable for constant velocity
vector and for arbitrary values of κxij and κyij that was proved also using Mathematica.

The scheme (3.3) - (3.9) can be further simplified without loosing all listed prop-
erties by replacing all values Vi±1/2 j with Vij and the values Wi j±1/2 with Wij in
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(3.3) and (3.6) - (3.9). Such simplification can be seen as a finite difference form of
IIOE κ-scheme.

Unfortunately, there exists no special choice of κ parameters to obtain the third
order accuracy for the case of constant velocity vector. The reason is, analogously to
1D case, that the relation (3.5) must be used for such accuracy results, and the mixed
derivative ∂xyu can not be canceled in the Taylor series analysis. It is an interesting
question if the approach of Corner Transport scheme can be used with IIOE time
discretization to obtain a numerical scheme with the desired property in 2D case.

The answer is positive and in what follows we present such scheme in the finite
difference form that was derived using software Mathematica. It is derived directly
from Taylor series analysis and it does not take the form (3.3). We denote

C =
τVij
h

, D =
τWij

h
, C+ = max{C, 0} , C− = min{C, 0} .

The Corner Transport IIOE scheme can be written as follows,

(12 + 8|C|+ C2 + 8|D|+D2 + 2|CD|)un+1
ij +(3.10)

+ C+(2un+1
i−2 j − 10un+1

i−1 j + C+(un+1
i−2 j − 2un+1

i−1 j)) +

+ D+(2un+1
i j−2 − 10un+1

i j−1 +D+(un+1
i j−2 − 2un+1

i j−1)) +

− C−(2un+1
i+2 j − 10un+1

i+1 j − C
−(un+1

i+2 j − 2un+1
i+1 j)) +

− D−(2un+1
i j+2 − 10un+1

i j+1 −D
−(un+1

i j+2 − 2un+1
i j+1)) +

+ 2D+(C+(un+1
i−1 j−1 − u

n+1
i−1 j − u

n+1
i j−1)− C−(un+1

i+1 j−1 − u
n+1
i+1 j − u

n+1
i j−1)) +

− 2D−(C+(un+1
i−1 j+1 − u

n+1
i−1 j − u

n+1
i j+1)− C−(un+1

i+1 j+1 − u
n+1
i+1 j − u

n+1
i j+1)) =

12unij + C+(2unij + 2uni−1 j − 4uni+1 j)− C−(2unij + 2uni+1 j − 4uni−1 j) +

+ D+(2unij + 2uni j−1 − 4uni j+1) −D−(2unij + 2uni j+1 − 4uni j−1) +

+ C2(uni+1 j − 2unij + uni−1 j) +D2(uni j+1 − 2unij + uni j−1) +

+ |CD|(uni−1 j + uni+1 j + uni j−1 + uni j+1 − 2unij) +

− (C−D− + C+D+)(uni−1 j+1 + uni+1 j−1) + (C−D+ + C+D−)(uni−1 j−1 + uni+1 j+1) .

Note that due the fact that either C+ = 0 or C− = 0, and similarly for D, only some
terms in above are nonzero.

The Taylor series analysis of (3.10) (from which the scheme (3.8) was derived)
proves that this scheme is 2nd order accurate for variable velocity case and the 3rd

order accurate for constant velocity vector ~V in (3.1). Moreover, it is unconditionally
stable for arbitrary velocity and arbitrary positive time step.

4. Numerical experiments. In what follows we illustrate the properties of
semi-implicit IIOE methods for some benchmark examples. Note that linear algebraic
systems in all examples are solved by Gauss-Seidel iterations using so called fast
sweeping method [17]) where at most 2 sweeps (i.e. 8 Gauss-Seidel iterations) used.

4.1. Translation by constant velocity. To illustrate the formal order of ac-
curacy of all methods we start with numerical examples of advection equation with
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constant velocity ~V = (0.8, 0.9). The exact solution is given simply by

u(x, y, t) = u0(x− 0.8t, y − 0.9t),(4.1)

where u0 = u0(x, y) is a given initial function. To check the implementation of
methods we begin with the choice u0(x, y) being randomly chosen quadratic function.
Using the exact solution (4.1) to define Dirichlet boundary conditions, we obtain with
(3.3) and (3.6) - (3.9) for all interesting choices of κ∗ij in (3.2) the exact solution up
to a machine accuracy for any chosen T , N , and M . Choosing as the initial function
some cubic polynomial, only the Corner Transport IIOE scheme (3.10) gives numerical
solutions differing from the exact solution purely by rounding errors.

Next we test analogous example where we choose

u0(x, y) = exp(−((x− x0)2 + (y − y0)2)/0.04)(4.2)

with (x0, y0) = (−0.5,−0.4) and the zero Dirichlet boundary conditions that differ
negligibly from the exact boundary conditions given by (4.1). Analogous initial and
boundary conditions are typical for examples of e.g. contaminant transport [2].

In Figure 4.1 we illustrate a typical behavior of the IIOE κ-scheme for three
choices of parameters κ∗ij . We can confirm for this example the analogous behavior
of phase error as reported e.g. in [15, 8] for fully explicit κ-scheme. Such numerical
error is visible for coarse grids e.g. from a wrong speed of the maximum of numerical
solution, see Figure 4.1. Particularly for the choice κ = 1 this speed is underestimated
and for κ = −1 it is overestimated, the choice κ = 0 seems to give a good compromise.
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Fig. 4.1. Numerical solutions for translation of Gaussian with constant velocity for the coarse
grid (M = 30, N = 50). The red contour lines represent the initial function for values 0.1, 0.2
up to 0.9, the black contour lines represent the numerical solutions for values 0.1 up to 0.8, with
the addition of value −0.1 in the left picture, consult the Table 4.1. The left picture represent the
numerical solution at T = 1 for κ∗ij ≡ 1, the middle one for κ∗ij ≡ −1 and the right one for κ∗ij ≡ 0.

The Table 4.1 illustrates three types of errors for the previous numerical experi-
ments - the values of extrema, where the exact extrema are 0 and 1, and the discrete
error e given by

e = τ h

N∑
n=1

M∑
i,j=1

|unij − u(xi, yj , t
n)| .(4.3)

Analogous example is tested with the Corner Transport IIOE scheme, see Table
4.2 for results and Figure 4.2 for pictures. Note that the Experimental Order of
Convergence (EOC) for this example is larger than 2. To check also the stability
condition, we compute this example with five times larger time step τ . No instabilities
are observed and the EOC is analogous.
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M min max e10−2 min max e10−2 min max e10−2

30 -1.6E-1 .83 4.40 -8.7E-2 .60 5.22 -2.6E-2 .74 1.76
60 -1.8E-2 .97 1.09 -4.9E-2 .87 1.72 -4.7E-3 .94 0.40

Table 4.1
The minimum, maximum and the error (4.3) for the numerical solutions of translation of

Gaussian for κ∗ij ≡ 1 (the 2nd - 4th columns), κ∗ij ≡ −1 (the 5th - 7th ones), and κ∗ij ≡ 0. Note

that N = 5/3M .
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Fig. 4.2. Numerical solutions analogous to Figure 4.1 using Corner Transport IIOE scheme.
The left picture represent the numerical solution at T = 1 for M = 30 and N = 50, the middle one
for M = 60 and N = 100 and the right one for M = 60 and N = 20.

M N min max e.10−2 N min max e.10−2

30 50 -1.5E-2 .77 1.43 10 -2.6E-2 .65 3.0
60 100 -4.2E-4 .95 .23 20 -3.5E-3 .89 .60
120 200 -2.2E-4 .99 .032 40 -2.2E-4 .98 .087

Table 4.2
Analogous results to Table 4.1 for the Corner Transport IIOE scheme for two different Courant

numbers, consult the Table 4.1 for notations.

The next example takes the same initial function in (4.2) for (x0, y0) = (−0.5, 0.)
with a variable velocity field defined by

~V (x, y) = (−2πy, 2πx) .(4.4)

The stop time is T = 1.5, so the initial profile will rotate one and half time, namely

u(x, y, t) = e−((x cos(2πt)+y sin(2πt)−x0)
2+(x sin(2πt)+y cos(2πt)−x0)

2)/0.04.

The results are summarized in Table 4.3 and in Figure 4.3 where we compare the
κ-scheme for κ∗ij ≡ 0 and the Corner Transport scheme for same settings. For the
latter case we present also the results with three times larger time step.

We note that for chosen examples the choice κi ≡ 0 gives better results than
κi = sign(Vi) or κi = −sign(Vi) in (3.6) - (3.9), but our experiences (to be published
elsewhere) is that e.g. the single vortex benchmark example [3] gives the smallest
error at t = T for the choice κi = sign(Vi).
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