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EFFICIENT CO-DOMAIN QUANTISATION FOR
PDE-BASED IMAGE COMPRESSION

LAURENT HOELTGEN∗ AND MICHAEL BREUß†

Abstract. Finding optimal data for inpainting is a key problem for image compression with
partial differential equations (PDEs). Not only the location of important pixels but also their values
should optimise the compression quality. The position of such important data is usually encoded in
a binary mask. The corresponding pixel values are real valued and yield prohibitively high storage
costs in the context of data compression. Therefore, quantisation strategies for the pixel value domain
are mandatory to obtain high compression ratios. While existing methods to quantise the data for
PDE-based compression show good quality, unfortunately, they are too slow for many applications.
We discuss several strategies, based on data clustering models from machine learning, to speed up the
quantisation step.
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1. Introduction. A major challenge in data analysis is the reconstruction of an
arbitrary signal from very few data points. In image processing this interpolation
problem is called inpainting. Often one has no influence on the given data and
thus improvements can only be made by introducing more powerful reconstruction
models. In some interesting applications however, one has the freedom to choose
the data used for the reconstruction. For instance, in recent approaches related to
image compression [3–5, 10, 17, 19, 21, 27] the authors select suitable interpolation
data for reconstructions via partial differential equations (PDEs). In recent years
it has been shown that PDE-based image compression schemes can compete with
other state-of-the-art approaches [24,25,27]. Even simple methods that rely on the
interpolation capabilities of the Laplacian may yield more accurate reconstructions
than JPEG 2000. Unfortunately, the underlying optimisation problem concerned
with selecting optimal point locations that occurs during the compression process
is computationally intensive and run times in the range of hours are quite common.
Another crucial step in the encoding process consists in finding the optimal quantisation
of the pixel values. Storing these in floating point precision is prohibitively expensive
and often unnecessary. Already thirty different grey values may be sufficient to achieve
convincing reconstructions. These thirty colours can be encoded with 5 bit instead of
the 64 bit required for a floating point value in double precision. Finding the optimal
number and distribution of these grey values is however a complicated task.

In this work we suggest to use data clustering approaches to perform the quanti-
sation step. Clustering methods have been applied in the literature in the context of
colour quantisation but unrelated to the intended image compression task. As a popu-
lar example for such methods let us mention the median cut algorithm of Heckbert [16].
Data clustering algorithms are also at the heart of many machine learning applications,
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where the goal is to sort a certain set of data points into different categories or groups
such that the elements in each group exhibit a strong similarity. The exact definition
of what means similarity is problem specific. We refer to [1, 11, 13] for an overview
on possible approaches and algorithms. The large variety of applications where data
classification occurs have lead researchers to propose a variety of quality measures.
We refer to [14] for a discussion on their viability.

Our Contribution. In this paper we investigate for the first time in the literature
several combinations of algorithms and features for grey value quantisation tasks within
the context of PDE-based image compression. We show that well established methods
are capable of reducing the number of necessary grey values by as much as 80% without
causing any loss in the reconstruction quality. The reduced grey value map exhibits a
much lower entropy than the original grey value distribution and is therefore much
better suited for compressing the image data. All our experiments have a run time
in the range of less than a seconds whereas the best performing methods from the
literature for PDE-based image compression tend to require hours to optimise the
same data set.

2. PDE-based Image Compression. Even though most diffusion-type PDEs
can be used to reconstruct the data, previous works have shown that homogeneous,
linear diffusion ranks among the best performing ones [24]. Its simplicity allows a
thorough mathematical analysis and an extensive optimisation [17, 18]. Since the
quantisation is likely to depend on the underlying reconstruction process we thus focus
on homogeneous diffusion in this work.

2.1. Inpainting with Homogeneous Diffusion. Inpainting with homogeneous
diffusion (sometimes also called Laplace interpolation) is a rather simple reconstruction
method that is well suited for highly scattered data in arbitrary dimensional settings.
It can be modelled as follows. Let f : Ω→ R be a smooth function on some bounded
domain Ω ⊂ Rn with a sufficiently regular boundary ∂Ω. Throughout this work, we
will restrict ourselves to the case n = 2 (grey value images) even though many of the
results hold for arbitrary n > 1. Moreover, let us assume that there exists a closed
nonempty set of known data ΩK $ Ω that will be interpolated by the underlying
diffusion process. Homogeneous diffusion inpainting considers the following partial
differential equation with mixed boundary conditions.

(2.1) −∆u = 0 on Ω \ ΩK , with u = f on ∂ΩK , and ∂nu = 0 on ∂Ω \ ∂ΩK ,

where ∂nu denotes the derivative of u in the outer normal direction. We assume
that both boundary sets ∂ΩK and ∂Ω \ ∂ΩK are non-empty. Equations of this type
are commonly referred to as mixed boundary value problems and sometimes also as
Zaremba’s problem. The existence and uniqueness of solutions has been extensively
studied during the last century. Showing that (2.1) is indeed solvable is by no means a
trivial feat. We refer to [12] for an extensive study of linear elliptic partial differential
equations. A particularly easy case is the 1-D setting, where the solution can obviously
be expressed using piecewise linear splines interpolating data on ∂ΩK .

2.2. Optimal Inpainting Positions. Finding good inpainting positions is a
task related to the free knot problem from interpolation theory [6, 15]. In the special
context of image inpainting and image compression the authors of [5,8,17,21] suggested
several strategies to find good locations. Mainberger et al. [21] propose stochastic
optimisations that bear similarities to simulated annealing approaches. Chen et al. [5]
use fast bi-level optimisation schemes and in [17] Hoeltgen et al. present an optimal
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control model. Finally the works of Demaret et al. [7–9] use adaptive triangulations
and mesh optimisation strategies, whereas Ochs et al. [23] suggest fast numerics for
the task at hand.

2.3. Continuous Grey Value Optimisation. In [18, 21] the authors discuss
approaches to find the best pixel values. These algorithms have in common, that they
all yield real valued floating point results. If we denote the reconstruction operator
that solves (2.1) for a given mask ΩK byM (ΩK), then this problem can be formulated
as

(2.2) arg min
u

{
‖M (ΩK)u− f‖2

}
Since our initial PDE is linear, the task stated in (2.2) corresponds to a linear least
squares problem and can be solved efficiently. An alternative discrete optimisation has
been suggested by Schmaltz et al. [27]. The latter approach iterates over the inpainting
data and selects in a greedy way the currently best quantised grey value. The iterations
continue until a convergent state is reached. While this approach comes conceptually
close to clustering strategies, it has two notable drawbacks: (i) The approach requires
that the distribution of the quantised values is fixed at the beginning, i.e. it does not
change during the iterations; (ii) to test a certain grey value for its quality requires
the solution of a large and sparse linear system, i.e. the computational costs are
considerable as the algorithm requires the solution of thousands of linear systems.
Nevertheless, we remark that it yields excellent qualitative results.

3. Clustering Inpainting Data. The following paragraphs discuss potential
choices for the feature selection as well as for the algorithmic execution. Our motivation
is to use models that come conceptually close to the continuous grey value optimisation
and the quantisation aware approach of Schmaltz et al. [27]. Therefore, we focus on
the squared Euclidean distance as cost function and seek the best set of grey values
for the mask pixel locations. However, we will refrain from using the reconstruction
inside our algorithms in order to obtain fast methods.

3.1. Feature Selection. Our setup provides us the full image data f as well
as an optimised inpainting mask ΩK . There exist many possible choices to extract
interesting features from this data. The following six feature choices seem reasonable:

1. The grey value information at the mask positions.
2. The grey value information at the mask positions with their frequency count.
3. The grey value information of all pixels.
4. The grey value information of all pixels with their frequency count.
5. The full image pixel information (grey value and pixel position) at the mask

positions only.
6. The full image data (grey value and pixel position).

We remark that including the pixel position into the feature vector renders each sample
unique. In that case it makes no sense to track their frequency as it will always be 1.

Approaches that exploit the full image information have better chances at adapting
to features in the image that are not covered by the mask pixels alone. On the other
hand, optimised positions for the inpainting with homogeneous diffusion are usually in
the vicinity of edges and other important structures. Therefore, we expect that the
outcomes of these two setups will be similar.

Strategies that focus exclusively on the grey values of an image are likely to
perform fastest since they can be carried out on the histogram. As soon as we include
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the spatial position into the feature set we obtain as much unique feature values as
pixels. For large images we may encounter memory or run time restrictions.

Finally let us remark that from a clustering perspective it is irrelevant whether
we consider grey values or colour images. Only the mask optimisation and inpainting
steps are more difficult to carry out for colour images.

3.2. Clustering Approaches for Image Quantisation. In this work we opt
for some of the most popular and best understood approaches to classify our data.
Since clustering approaches are commonly subdivided into partitional and hierarchical
methods we select k-means clustering as a representative of the former class and
consider hierarchical approaches based on Euclidean distances for the latter class.
Furthermore, we consider a second partitional approach based on probabilistic methods.
The k-means algorithm performs a hard thresholding when it assigns labels whereas
the probabilistic approach tries to fit a Gaussian mixture model over the data and
yields a probability that a certain feature belongs to one of the given probability
density functions. These softer transitions from one cluster to the next one could be
beneficial when the labelling is ambiguous.

Let us now briefly present the adopted strategies in some detail. In the following
paragraphs we assume that we are given a set X ⊂ Rp of observed feature values
xi ∈ X with i = 1, . . . ,m. The overall task consists in dividing X into k pairwise
disjoint subsets Cj that still cover the whole set X.

3.2.1. K-means. The k-means algorithm of Lloyd [20] is one of the oldest and
most popular clustering approaches. Its roots date back to 1957 [28], resp. 1967 [22].
It aims to partition the set X into k classes Cj such that

(3.1) arg min
C1,...,Ck


k∑

i=1

 ∑
xj∈Ci

‖xj −mi‖2


becomes minimal. Here, the mi represent the centroids of the clusters Ci. A detailed
description of the k-means algorithm of Lloyd is given in Algorithm 1. We note that
extensions, such as the kmeans++ approach [2] can also be applied to our setup. They
merely improve the initialisation but have no influence on the algorithm otherwise.

Algorithm 1: K-Means Algorithm of Lloyd [20]
Input : Feature set X, number of clusters k
Output : Clusters Ci ⊆ X, centroids mi, i = 1, . . . , k
Initialise : Choose k initial centroids mi arbitrarily

1 repeat
2 Assign each feature xj to its closest centroid mi.
3 Update position of the centroids mi.
4 until centroids mi reach fixed point

3.2.2. Hierarchical Clustering. In these methods, the clusters are represented
hierarchically in a tree-like structure called dendrogram. Two approaches exist. Either
the tree is set up top-down where one starts with a single cluster containing all features
and which is iteratively split into smaller subclusters. Alternatively, a bottom-up
strategy can be used which assigns in the beginning each feature to a single cluster
and merges clusters in subsequent steps to larger supersets.
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In this work we opt for the latter approach. As a means to merge two clusters
we choose to use Ward’s criteria [31]. It aims at minimising the increase of the
within-cluster variance after the merging of two clusters. For any two clusters Ci and
Cj , this increase is given by

(3.2) ∆i,j :=
2|Ci||Cj |
|Ci|+ |Cj |

‖mi −mj‖22

where mi and mj are the centroids of the clusters Ci and Cj respectively and where
| · | denotes the cardinality of the cluster. The multiplicative factor 2 is included such
that the formula coincides with the squared Euclidean distance for singleton clusters.
The full algorithm is given in Algorithm 2.

Algorithm 2: Hierarchical Clustering with Ward’s Method
Input : Feature set X
Output : Hierarchical cluster structure
Initialise : Assign each feature xk to its own cluster Ck

1 repeat
2 Find clusters Ci and Cj with smallest ∆i,j .
3 Merge Ci and Cj into single cluster Ci∪j .
4 until single cluster remains

We remark that hierarchical approaches do not yield a single clustering but rather
a complete evolution similar to the well known scale spaces from image processing [32].
We will address the task of extracting a good clustering in a later paragraph.

3.2.3. Fuzzy Clustering with Gaussian Mixture Models. As a third al-
ternative we consider a parametric Gaussian mixture model where all features are
assumed to follow the distribution

(3.3)
k∑

j=1

ωj N ( · ;µj , σj)

and where N ( · ;µj , σj) is the probability density function of a Gaussian with mean
µj and standard deviation σj . The difficulty lies in estimating the parameters ωj , µj ,
and σj for all j = 1, . . . , k, such that the resulting density function in (3.3) fits best
to the observed features xi. Additionally, the weights ωj must be non-negative and
sum up to 1. Once the optimal parameters are found, it is possible to assign each
feature to one of the Gaussians to obtain a partitioning of the data. This assignment
can be deduced with Bayes’ Theorem. In order to derive the best parameter settings
we use the popular expectation maximisation algorithm of Sundberg [29, 30]. The
underlying idea of this approach is to maximise iteratively the log-likelihood function.
The complete algorithm (referred to in the following as EM-GMM) is presented in
Algorithm 3. The variable Tj,i in this listing states the probability that an observation
xi stems from the Gaussian j. These probabilities Tj,i mark the basis of our clustering
strategy. We assign to each feature vector the distribution N ( · ;µ, σ) with highest
probability. We emphasise that the classification is not strict as for the two other
methods and may yield ambiguous results in certain cases. If an observation belongs
with a probability 0.5 to two different Gaussians, there is no optimal assignment
anymore.
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Algorithm 3: Expectation Maximisation with Gaussian Mixture Model
Input : Feature set X := {xi | i = 1, . . . , n}, number of clusters k
Output : Fuzzy clustering of X into k sets
Initialise : Choose initial values for each parameter ωk, µk, σk

1 repeat
2 Compute membership probabilities for all j, i

(3.4) Tj,i =
ωjN (xi;µj , σj)∑
` ω`N (xi;µ`, σ`)

Update parameters of the mixture model for all j = 1, . . . , k:

(3.5) ωj =
1

n

n∑
i=1

Tj,i, µj =

∑
i Tj,ixi∑
i Tj,i

, σj =

∑
i Tj,i (xi − µj)∑

i Tj,i
∀j

3 until until fixed-point is reached
4 Assign to each xi the Gaussian N ( · ;µj , σj) with highest probability Tj,i

3.3. Quality Measures and Optimal Number of Clusters. When evaluat-
ing a partitioning of the data we need to consider two criteria. First, the quality of
the clustering itself: Features in the same group should indeed be similar and also
distinct from observations from other clusters. Secondly, we need to keep in mind
that our ultimate goal is to reconstruct images from sparse quantised data by means
of PDE-based inpainting. Since we are focusing on data compression tasks we can
assume that the full original data is available and may be used as a ground truth.
Thus, we consider two quantities to evaluate the quality of our partitioning. On the
one hand we use the silhouette value [26] and on the other hand we consider the Mean
Squared Error (MSE).

The silhouette value is a method to interpret and validate the consistency within
clustered data. It is applicable to any clustering method and appealing due to its
simplicity. If the feature x belongs to the cluster C, then we define the silhouette S(x)
of x to the cluster C as

(3.6) S (x) :=

{
0, dist(x,C) = 0,

dist(x,D)−dist(x,C)
max{dist(x,C), dist(x,D)} , else,

where dist(x,C) corresponds to the average distance of x to all other elements from
the cluster C. The silhouette values range from -1 to 1. Since dist(x,C) is a measure
of how dissimilar x is to its own cluster, a small value means it is well matched.
Furthermore, a large dist(x,D) suggests that x is badly matched with respect to D.
It follows that an S(x) close to one means that x is appropriately labelled. If S(x) is
close to negative one, then by the same logic we see that x would be better placed
in D. An S(x) near zero means that x is on the border of two clusters. Finally, the
average S(x) over all data of a cluster is a measure of how tightly grouped all the data
in the cluster is. Thus the average S(x) over all data can be understood as a measure
of how well the data has been grouped. If there are too many or too few clusters some
of the clusters will typically display much narrower silhouettes than the rest. Thus
silhouette plots and averages may be used to determine the optimal number of clusters
within a data set.
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Figure 4.1. Left: trui input image (256× 256 pixel), Right: inpainting mask with 5% density,
pixel locations used for the reconstruction are marked in white.

The MSE simply measures the average squared distance between the original
ground truth image f and a reconstruction g from the quantised data. It can be
computed as

(3.7) MSE (f, g) :=
1

|f |
∑
i,j

(fi,j − gi,j)2 ,

where |f | denotes the number of pixels in the image f .
Let us shortly summarise the criteria that we will consider. An ideal clustering

should have a relatively high mean silhouette value. Averages above 0.6 are considered
to be good. Furthermore, there should be no negative silhouette values, since those
suggest erroneous labels. Secondly, uncompressed encodings require 256 grey values in
their colour map. Good clusterings should have significantly less. A rule of thumb says
that a reasonable quantisation should have around 35 distinct grey values. Finally,
the reconstruction quality should not suffer from the smaller spectrum of possible grey
levels. Therefore, the MSE of the quantised reconstruction should be roughly equal to
the MSE of the unquantised reconstruction. Let us emphasise that PDE-based image
compression is usually lossy, i.e. even the reconstruction with the unquantised data is
not perfect and differs from the original input image.

4. Numerical Experiments. Our experiments cover the following choices:
1. Hierarchical clustering of the grey values at the mask positions.
2. Hierarchical clustering of the grey values and positions for all pixels.
3. K-means clustering of the grey values and positions for all pixels.
4. K-means clustering of the grey values at the mask positions.
5. Hierarchical clustering of the histogram of the grey values from the mask

positions.
6. Hierarchical clustering of the histogram of the grey values from all image

pixels.
7. EM-GMM clustering of the grey values at the mask positions.

Each test case uses the popular test image trui as well as an optimised inpainting
mask with a density of 5% obtained with the optimal control approach of Hoeltgen et
al. [17]. The image and the mask are depicted in Figure 4.1. In Figure 4.2 we have
plotted the number of clusters against the mean squared error for the test cases 1, 4,
and 7. The remaining setups performed significantly worse and will not be considered
in the following anymore. The solid horizontal line in Figure 4.2 corresponds to the



EFFICIENT CO-DOMAIN QUANTISATION FOR PDE-BASED IMAGE COMPRESSION 201

10 20 30 40 50 60 70
45

50

55

Number of clusters

M
ea

n
Sq

ua
re

d
E

rr
or Hierarchical

k-means
EM-GMM

No optimisation

Figure 4.2. MSE obtained from clustering the grey values from the mask positions by hierarchical
clustering, k-means, and EM-GMM. The solid line indicates the error obtained by inpainting with the
original unaltered data (186 grey values). The hierarchical clustering yields a very stable behaviour,
whereas k-means exhibits sudden fluctuations. Similar fluctuations occur with EM-GMM, too. In
this case the k-means approach has been able to improve the error from the unaltered data with only
30 colours. EM-GMM achieves a similar feat with 35 clusters.

reconstruction error with the unquantised image data. Interestingly, the k-means
and the EM-GMM approach have rather strong fluctuations in the quality of their
clusterings. An issue that stems from the fact that the initialisation is random. It
may be overcome by restarting the methods several times and choosing the best result.
However such a strategy will also have an negative impact on the run time. Nevertheless,
the k-means approach is capable of improving on the original reconstruction with just
30 clusters and the EM-GMM approach does the same for 35 clusters. The original
image data had 186 distinct grey values.

The hierarchical approach is very stable and yields an almost monotonic decrease
in the error when increasing the number of clusters. Figures 4.3 also presents the
silhouette plots of the hierarchical and k-means approach for the experiment with 30
clusters. The findings correlate with the results depicted in Figure 4.2. The clustering
of the k-means approach is superior to the the hierarchical strategy. The hierarchical
clustering exhibits a high median silhouette value of 0.8 but its plot indicates that
a few pixels may have bad labels. On the other hand, the k-means approach yields
a clean graph that contains no negative coefficients and many values exceeding 0.8.
Its mean value is 0.63 with a standard deviation of 0.28. Furthermore, all clusters
have similar widths suggesting an overall good classification. The silhouette plot of
the EM-GMM approach for 35 clusters has a similar appearance. A pure Matlab
implementation of the k-means algorithm also has a run time of about 0.35 seconds
for a single clustering. The EM algorithm is similarly fast. The hierarchical method
yields a run time of 0.15 seconds for a single clustering. Overall, our whole evaluation
is significantly faster than the method of Schmaltz et al. [27], which has a run time
in the range of hours. Finally, the fact that we were able to reduce the number of
grey values down to roughly a sixth of the original amount without any loss in the
reconstruction quality is a significant advantage for the subsequent use of entropy
coders, which perform much better in presence of smaller number of colours.

Let us remark, that in all our experiments, the models that relied on the grey value
information alone performed better than those strategies that included the positional
information of the pixels as well. Often, the difference between two pixel positions
correlates with the difference in the grey values. Neighbouring pixels have similar
colours and pixels that are far apart tend to have distinct values. Now, if we have two
pixels (2, 3, 127) and (3, 4, 128), then the distance between the grey values is 1 whereas
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Figure 4.3. Left: The silhouette plot corresponding to the hierarchical clustering approach with
30 clusters. We see that most clusters exhibit large values and very few pixels have been labelled
wrongly. The average silhouette value being 0.59 and the median value being 0.8. Right: The
silhouette plot corresponding to the k-means approach with 30 clusters. We see that all clusters
exhibit large values and that no wrong labels have been assigned. The average silhouette value being
0.63 and a median of 0.73.

the distance between the full pixel data is
√

3 > 1. We conjecture that models that
include the positional information are likelier to separate this data than models which
only consider the colour information and that these unnecessary splittings cause a
degradation of quality.

5. Summary and Conclusions. Our experiments show that we can reduce
the number of colours used for PDE-based inpainting by as much as 80% without
encountering any loss in the reconstruction quality. Our run times usually lie below
one second and are significantly lower than for competing approaches. Therefore, we
think that our approach is an important step in the development of a practicable
image compression codec.

In the future we would like to perform a more thorough analysis of different
clustering strategies to quantise the data in an optimal way for the reconstruction
process. The integration of the reconstruction function into the clustering is certainly
beneficial for the quality of the classifications.
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