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HIGHLY EFFICIENT SURFACE NORMAL INTEGRATION

MICHAEL BREUß ∗, YVAIN QUÉAU † , MARTIN BÄHR ∗, AND JEAN-DENIS DUROU †

Abstract. The integration of surface normals for the computation of a surface in 3D space is a
classic problem in computer vision. However, even nowadays it is still a challenging task to device
a method that combines the flexibility to deal with non-trivial computational domains with high
accuracy, robustness and computational efficiency. In this paper we propose to use for the first time
in the literature Krylov subspace solvers as a main step in tackling the task. While these methods
can be very efficient, they may only show their full potential when combined with a numerical
preconditioning and even more importantly, a suitable initialization. To address the latter issue we
propose to compute this initial state via a recently developed fast marching integrator. Numerical
experiments prove the benefits of this novel combination.
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1. Introduction. The integration of surface normals is a fundamental task in
computer vision. Classic examples for processes where this technique is often applied
are shape from shading [11] and photometric stereo (PS) [24]. In these applications the
depth of an unknown surface in 3D space is computed in a first step in terms of a field
of surface normals, or equivalently, a corresponding gradient field. In a subsequent
step this needs to be integrated in order to obtain the shape of the surface.

Let us briefly elaborate on the demands on an ideal integrator. As discussed e.g.
in [6] a practical issue is the robustness with respect to noise and outliers. Since
computer vision processes such as PS rely on simplified assumptions that often do
not capture realistic illumination and light reflectance, such artefacts may often arise
when estimating surface normals at hand of real-world input images. Secondly, objects
of interest for 3D reconstruction are typically in the centre of a photographed scene
and take only a portion of an input image. The sharp gradient representing the
transition from foreground to background is a difficult feature for most surface normal
integrators, as are discontinuous surfaces that may appear at self-occlusions of an
object [2]. Therefore it is desirable to consider only image segments that represent
the object of interest and not the background. With respect to reconstruction quality
and efficiency, an ideal solver for surface normal integration should thus work on non-
rectangular domains. Finally, as camera technology evolves, the resolution of images
tends to increase continually. Consequently the computational efficiency of a solver
is a key requirement for future applications.

In order to solve the problem of surface normal integration many methods have
been developed. Important classic examples are the method of Horn and Brooks [11]
which employs the calculus of variations, the direct line-integration scheme of Wu
and Li [25] and the frequency domain method of Frankot and Chellappa [4]. Many
improvements based upon these methods have been proposed, see e.g. [12, 13, 22]
for a more detailed account. Among these techniques variational methods offer a
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high robustness with respect to noise and outliers. Therefore this class of integrators
has been the subject of many extensions in modern works, as e.g. by Durou and
his co-workers [2, 3] accompanied by the use of alternative optimisation schemes [17]
and the scheme of Harker and O’Leary [7]. However, while the latter scheme is
computationally efficient it relies on a rectangular computational domain whereas the
other variational methods are not too efficient in the non-rectangular case.

Our contributions. In this paper we propose a novel numerical scheme which
explores as done in many works on the variational approach the associated Poisson
equation. In detail, our contributions are: (i) We suggest to our knowledge for the
first time in the computer vision literature to apply preconditioned Krylov subspace
methods [15, 19] for solving the Poisson integration problem over non-trivial compu-
tational domains on a grid. (ii) For computing a good initialisation for the Krylov
solver we propose to employ a recently developed fast marching (FM) integrator [5].
The main advantages of the FM integrator is its flexibility for use with non-trivial do-
mains coupled with a low computational complexity. (iii) By a thorough experimental
evaluation we show that our resulting novel method combines the known advantages
of flexibility and robustness of variational methods with low computational times and
low memory requirements.

2. The FM-Krylov Integrator. We now present the building blocks of our
novel algorithm in two steps, first the FM integrator and then the Poisson solver.

2.1. The Fast Marching Integrator. For the purpose of using the FM scheme,
a useful set-up for the normal integration problem can be described as follows. For a
domain Ω a normal field n := n(x, y) = (n1(x, y), n2(x, y), n3(x, y))> is given at each
grid point (x, y) ∈ Ω. The task is to recover a surface S, which can be represented as
a depth map v(x, y) over (x, y) ∈ Ω, such that n is a normal field of v. A normal field
n of a surface at (x, y, v(x, y))> can be written as

(2.1) n(x, y) :=
(−vx,−vy, 1)>√
‖∇v‖2 + 1

with vx :=
∂v

∂x
, vy :=

∂v

∂y
.

This follows from considering the tangent vectors (0, 1, vy)> and (1, 0, vx)> to S,
making use of the condition that a normal must be parallel to their vector product.
Moreover the components of n are the partial derivatives of v with

(2.2)

(
vx
vy

)
=

(
−n1

n3

−n2

n3

)
=:

(
p
q

)
where we think of p and q as given data. Via g(x, y) := (p(x, y), q(x, y))>, we obtain
from (2.1) and (2.2) the condition ∇v(x, y) = g(x, y). Taking the Euclidean norm on
both sides this leads to the following eikonal-type partial differential equation (PDE):

(2.3) ‖∇v‖ =
√
p2 + q2 =: 1/F

where F > 0. In order to be able to solve (2.3) with FM a boundary condition
v(x0, y0) = v0 must be known.

The Model for FM Integration. It is important to note that we do not recon-
struct the surface exactly from the latter equation. In order to prevent the situation√
p2 + q2 = 0 which would hinder the use of the FM method, we follow an idea of Ho

et al. [10] and modify the latter PDE. To this end we aim to solve for a new function
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w of the form w := v + λf with a parameter λ > 0 and a user-defined function f , so
that the new unknown function w has a known minimum in (x0, y0).

In this setting, we do not compute v directly, but instead we solve in a first step
for w. A natural candidate for f is the squared Euclidean distance function with the
minimum in the centre of the domain (x0, y0) = (0, 0), so we write

(2.4) f := f(x, y) = x2 + y2.

Making the connection to the eikonal-type equation (2.3) we obtain the new consti-
tuting equation

(2.5) ‖∇w‖ =
√

(p+ λfx)2 + (q + λfy)2

where ∇v = (p, q)> is the given data and ∇f is known. As boundary condition we
may employ w(0, 0) = 0. After the computation of w we easily compute the sought
depth map v via v = w − λf .

The PDE (2.5) is as (2.3) a nonlinear Hamilton-Jacobi equation of which the
solution has to be understood in the framework of viscosity solutions [1].

The Concept of Upwinding. In order to obtain a stable method after [5], we
employ the upwind discretisation as proposed in [18] of the partial derivatives f ,
reading as

(2.6) fx :=
[

max
(fi,j − fi−1,j

∆x
,
fi,j − fi+1,j

∆x
, 0
)]2

,

and analogously for fy, where we make use of grid widths ∆x and ∆y. Making use
of the same discretisation for the components of ∇w, we obtain a quadratic equation
one needs to solve in every grid point except at a boundary point at (0, 0). For use
of the integrator over non-convex domains see the description in [5]. We explore that
the solution can be computed efficiently by the FM method.

The Fast Marching Method. The idea of the FM method may be traced back
to Tsitsiklis [23] who solved a Hamilton-Jacobi equation associated to a particular
minimum time problem. About the same time, the FM method in its standard format
as we employ it here was presented by Sethian [20] and Helmsen et al. [8].

Let us briefly describe the FM strategy. The principle behind FM is causality,
meaning that the information advances from smaller values w to larger values w in one
pass, meeting each grid point just once. To this end, one may employ three disjoint
sets of nodes as discussed in detail in [21]: (s1) accepted nodes, (s2) trial nodes and
(s3) far nodes. For the members of set (s1) the arrival time at wi,j is known and
will not be changed. A member wi,j in set (s2) is a neighbour of an accepted node.
This is the set where the computation actually takes place and the values of wi,j can
still change. In set (s3) are the nodes wi,j where an approximate solution has not
yet been computed as these are not in a neighbourhood of a member of (1). The FM
algorithm can also be described as follows until all nodes are accepted:

(a) Find the grid point A in (s2) with smallest arrival time and change it to (s1).
(b) Place all neighbors of A into (s2) if they are not there already and compute

the arrival time for all them, if they are not already in (s1).
(c) If the set (s2) is not empty, return to (a).

Let us finally note that for initialisation, one may take the node at (0, 0) bearing the
boundary condition into set (s1). The key to an efficient implementation is to store
the nodes in (s2) in a heap data structure, so that the smallest element in step (a)
can be chosen as fast as possible.
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2.2. Krylov-based Poisson Integration. Let us briefly review the classic vari-
ational approach to this problem cf. [3, 7, 11, 17, 22]. In order to recover the surface
it is common to minimise the least squares error between the input and the gradient
field of v via minimising

(2.7) J(v) =

∫∫
Ω

‖∇v − g‖2 dx dy =

∫∫
Ω

(vx − p)2 + (vy − q)2 dx dy.

A minimizer v of (2.7) must satisfy the associated Euler-Lagrange equation which
leads to the following Poisson equation

(2.8) ∆v = div(p, q) = px + qy

complemented by natural Neumann boundary conditions (∇v− g) · µ = 0, where the
vector µ is an outer normal to ∂Ω. Let us note that the handling of strong noisy
data and outliers leads to modifications and regularizations with regard to the energy
functional in (2.7), see [17] for more details.

Discretisation of the Poisson Equation. A standard numerical approach to solve
the Poisson equation in (2.8) makes use of finite differences. Often ∆v = vxx + vyy
and div(p, q) are approximated by central differences. For simplicity we suppose that
the grid size is ∆x = ∆y = 1. Then a suitable discrete version of (2.8) is given by

(2.9) −4vi,j + (vi+1,j + vi−1,j + vi,j+1 + vi,j−1) =
pi+1,j − pi−1,j + qi,j+1 − qi,j−1

2

which corresponds to a linear system Ax = b, where the vectors x and b are obtained
by stacking the unknown values vi,j and the given data (pi,j , qi,j), respectively. The
matrix A contains the coefficients arising by the discretisation of the Laplace operator
∆. With respect to the Neumann boundary conditions the matrix A is a rank-1
deficient matrix which is symmetric, positive semidefinite and diagonal dominant.

Preconditioned Krylov Subspace Solvers. A particular class of iterative solvers
designed for use with large sparse linear systems such as given by (2.9) is the class of
Krylov subspace solvers; for a detailed exposition see [19]. The main idea behind the
Krylov approach is to search for an approximative solution of Ax = b, with A ∈ Rn×n

a large regular sparse matrix and b ∈ Rn, in a suitable low-dimensional subspace Rk

of Rn that is constructed iteratively with k being the number of iterates. The aim in
the construction of a Krylov subspace method is thereby to have a good representation
of the solution after a few iterates.

Let us note that this construction is often not directly visible in the formulation
of a Krylov subspace method, as these are often described in terms of a reformulation
of the original system Ax = b as an optimisation task. An important classic example
for a Krylov subspace method is the well-known conjugate gradient (CG) method of
Hestenes and Stiefel [9]. We will also consider other Krylov subspace methods as
mentioned in the experimental section.

It is important to mention that the use of a preconditioner can enhance the
performance of a Krylov subspace method significantly. The idea of preconditioning is
to multiply the system Ax = b with a matrix M such that M approximates A−1. The
modified system MAx = Mb is much more efficient to solve as the convergence speed
of an iterative solver becomes better as the system matrix, now MA, approximates the
identity matrix. In case of sparse matrices A, typically preconditioners are defined
over the same sparse structure as of A, and we consider in this work the so-called
incomplete LU (ILU) factorisation that represents a sparse version of the classic LU
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factorisation; see once more [19] for details. Let us also note that this preconditioner in
combination with the BiCGStab or TFQMR method is known to be a highly efficient
solver in the context of computational fluid dynamics problems [15]. Furthermore
regarding to the CG method, we consider the so-called CMG preconditioner designed
by Koutis et al. [14].

3. Numerical experiments. Let us now demonstrate the efficiency of the pro-
posed FM-Krylov approach compared to the state of the art. Thereby we give a
careful evaluation of all the components of our novel algorithm. On the technical
side, let us note that the experiments were conducted on a I7 processor at 2.9GHz.
Besides the quality of results, we also evaluate the considered integration methods
with respect to CPU time and also memory requirements as this is an interesting
point of the discussion in the recent work [7].

3.1. Fast Approximate Reconstruction. We first consider important prop-
erties of the FM integrator and compare with results of the Poisson integration. Let
us note that for experiments with the FM integrator we have to define the parameter
λ, which is not a crucial choice as discussed in [5]. Any large number λ� 0 will work.

Tested Datasets. To evaluate the efficiency of the proposed algorithm, we con-
sider the datasets presented in Figure 3.1, representing examples of applications of
our method to gradient-domain image reconstruction (PET imaging, Poisson image
editing) and surface-from-gradient (photometric stereo). The gradients of the Phan-
tom and Lena images were constructed using finite differences, while that of the
Beethoven surface was estimated by classic PS [24]. Finally, both the surface and
the gradient of the Peaks datasets are analytically known, preventing any bias due to
finite difference approximations.

Let us note that our test datasets also address fundamental aspects one may
typically find in gradient fields obtained from real-world problems: sharp gradients
(Phantom), highly fluctuating gradients oriented in all grid directions representing
for instance textured areas (Lena) and smoothly varying gradient fields (Peaks). The
gradient field corresponding to the PS solution of the Beethoven bust features dif-
ficulties like e.g. self-occlusions at the nose as well as a non-trivial computational
domain.

Comparing FM integration with Poisson solvers. The reconstruction results of
the FM integrator are demonstrated in the left columns of Figures 3.2, 3.3, and 3.4,
and compared to Poisson reconstruction (right column). Both reconstructions are
qualitatively quite close. This shows that the FM integrator can be used to get
efficiently a first approximation of the Poisson solution. To numerically solve the
arising discrete Poisson equations, as we cannot use fast Poisson solvers as e.g. in [22]
due to the non-rectangular nature of the domains, we constructed explicitely the linear
systems and solved them using a direct solver (Matlab’s backslash) as often done by
practitioners. This requires a lot more time and memory than the FM integrator.

Robustness. One can observe a certain lack in robustness of the FM integrator,
especially in directions not aligned with the grid structure. However, this is a property
that is evident because of the causality concept behind the FM scheme; errors that
once appear are transported over the computational domain. This is not the case
using Poisson reconstruction, which is a global approach and includes a regularising
mechanism via the underlying least squares model.

Hence, the FM solver we propose is more efficient than previous approaches in
terms of system requirements. Yet, it is quantitatively less accurate and less robust to
noise: such an issue can be dealt with by coupling both approaches, considering the
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Fig. 3.1. Data used in the experiments: Phantom (1024 × 1024), Lena (512 × 512), Peaks
(512×512) and Beethoven (256×256) datasets. For each dataset, the top row illustrates the dataset,
and the bottom row shows the input data provided to our algorithm (estimation of the gradient in
the x− and y− direction, and reconstruction domain). For both first sets, the gradient is estimated
by finite differences of the input image, while it is analytically known for Peaks, and estimated by
photometric stereo for Beethoven, from the three images shown in the corresponding top row.

FM reconstruction as an initialization for iterative Poisson solvers based on Krylov
subspaces.

3.2. Accelerating Krylov-based Integration. The direct approach to Pois-
son equation resolution is very memory expensive (it requires almost 1GB of memory
for a 1024× 1024 dataset, while the FM requires only 115MB). Given the considera-
tions above on the accuracy of FM results, we propose to use FM as an initial provider
for the depth map, which is further refined using Krylov solvers. This is illustrated
in Figure 3.5, where it is shown that choosing the FM as initialization improves a lot
the convergence rate of the LSQR method for solving the discrete Poisson equation.

Coupling appropriate initialization with efficient preconditioning. It has been ex-
perimentally shown in [7] that the LSQR method, which is a classic method proposed
for such a task [16], is inefficient at solving the integration problem. This serves as
an argument in [7] to justify a faster Sylvester-based approach, rather than the tra-
ditional Poisson one. Yet, this approach requires the reconstruction domain to be
rectangular, a strong assumption which is rarely desirable in surface reconstruction.
We show in Figure 3.6 that there are much faster Krylov solvers for solving the prob-
lem: replacing the solver from LSQR to CG reduces the iteration number required to
get a 10−2 relative residual from 10000 to only 400. Using an appropriate precondi-
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MSE = 9.8× 10−4 MSE = 4.4× 10−4

CPU = 1.1s CPU = 6.3s
Mem. Peak = 115MB Mem. Peak = 950MB

Fig. 3.2. Results on the 1024 × 1024 ’Phantom’ dataset. Left: FM result; Right: Poisson
result. Top row: reconstruction result. Bottom row: squared error map. The two results are roughly
equivalent, but the FM approach is much faster and less memory-hungry. On the other hand, it
produces radial artifacts and is thus qualitatively less accurate. Such artifacts are easily smoothed
when applying iterative Poisson resolution afterwards.

tioner such as the mentioned CMG scheme, the relative residual at just a quarter of
these iterations is even reduced from to 10−2 to below 10−8, cf. Figure 3.6.

Similar tests were conducted on the following solvers (considering the ILU pre-
conditioning): BICGSTAB, BICGSTAB(l), CGS, GMRES, LSQR, MINRES, QMR
and TFQMR, cf. [19]. According to our experiments, CG and TFQMR are supe-
rior, whose convergence rates are illustrated in Figure 3.6. These experiments show
that, by choosing appropriate initialization (FM) and preconditioner (CMG or ILU),
the iterative FM-Krylov methods for solving the discrete Poisson equation provide
fast and accurate 3D-reconstruction, while requiring limited memory and making no
assumption on the shape of the reconstruction domain. We emphasize that this is
a relevant step forward with respect to the literature, where all these features were
never simultaneously demonstrated.

4. Conclusion. We demonstrated the properties of our novel FM-Krylov surface
normal integrator. It combines all efficiency benefits of the FM and Krylov-based
components while retaining the robustness and accuracy of the underlying variational
approach. Recalling the properties of an ideal surface normal integrator as discussed
in the introduction, we think that all the desirable points including especially the
flexibility in handling non-trivial domains are met by the proposed method.
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MSE = 35× 10−4 MSE = 1.8× 10−4

CPU = 0.27s CPU = 1.8s
Mem. Peak = 40MB Mem. Peak = 180MB

MSE = 0.91 MSE = 0.02
CPU = 0.28s CPU = 1.3s

Mem. Peak = 40MB Mem. Peak = 160MB

Fig. 3.3. Results on the 512 × 512 ’Lena’ and ’Peaks’ datasets. Though the squared error map
demonstrates the artifacts due to the propagating nature of the FM scheme, the reconstruction result
is qualitatively very satisfactory, while requiring much less resources, compared to Poisson solvers
(right column).
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Fig. 3.4. Results on the 256 × 256 ’Beethoven’ dataset. Left: squared error map of FM result;
Right: reconstruction result of FM. The results of the FM scheme are qualitatively similar to the
solution by Poisson reconstruction, though it as a much lower complexity. The left figure shows the
difference from FM to the Poisson reconstruction, putting the latter into the role of the ground truth
because of its overall higher accuracy.

Fig. 3.5. Convergence rate of the LSQR method, considering flat vs. FM initialisation. We
show the relative residual as a function of the iteration. Convergence is accelerated a lot using the
FM initialisation, though LSQR is not efficient for this problem (see Figure 3.6).
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Fig. 3.6. Convergence rates for CG and TFQMR, for flat or FM initialization, and with
or without preconditioning (CMG for CG and ILU for TFQMR). Coupling FM initialisation with
appropriate preconditioning provides enhanced convergence rates.


