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NUMERICAL SIMULATION OF NAPL VAPOR TRANSPORT IN AIR∗

ONDŘEJ PÁRTL † , MICHAL BENEŠ ‡ , AND PETER FROLKOVIČ §

Abstract. We present a mathematical and numerical model for non-isothermal, compressible
flow of a mixture of two ideal gases subject to gravity. The mathematical model is based on balance
equations for mass, momentum and energy combined with the ideal gas equation of state. The nu-
merical model is based on the method of lines; the spatial discretization is carried out by means of the
control volume based finite element method, and for the time integration, the Runge-Kutta-Merson
method is used. Finally, we present preliminary results of numerical experiments that illustrate the
ability of our numerical scheme.
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1. Introduction. In our research, we develop a numerical model for simulation
of NAPL (Non-Aqueous Phase Liquids) vapor transport driven by air flow in porous
medium and above its surface. The goal of this research is to put together a math-
ematical model for these phenomena, and to implement a numerical solver in which
these flows are solved separately, and the information is passed between the flows via
coupling conditions on the interface between the media (similarly as in [1]). Such a
numerical model can be used, for example, for modeling the intrusion of NAPL vapor
into buildings from contaminated soil [5].

To the best of our knowledge, researches in the area of free flow concentrate on
incompressible flows (e.g., [1], [9]) or compressible flows without gravity effects, where
the interaction of the species in the mixture is differently detailed (e.g., [10], [7]). In
this contribution, we present the part of our model of the coupled flows that describes
the free flow. This model is based on the kinetic theory of gas mixtures [3], [4], [6],
and it includes the gravity effects as well.

We also present preliminary results of numerical tests that demonstrate the ability
of our model.

2. Mathematical Model. According to the theory described in [3], [4], [6], a
mixture of two polyatomic ideal gases (the first one will be referred to as ’gas’ and the
second one as ’NAPL vapor’) can be described by the following conservation laws:
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• Conservation equation for the mass of the mixture

∂ρ

∂t
+∇ · (ρv) = 0.(2.1)

• Conservation equation for the mass of the NAPL vapor

∂ρn
∂t

+∇ · [ρn (v + Vn)] = 0.(2.2)

• Conservation equation for the momentum of the mixture

∂(ρv)

∂t
+∇ · (P + ρv ⊗ v) = ρg.(2.3)

• Conservation equation for the energy of the mixture

∂(ρe)

∂t
+∇ · (Q + ρev + P · v) = ρg · v.(2.4)

In these equations, the quantities without subscripts refer to the whole mixture; the
quantities related to the NAPL vapor and gas are denoted by the subscript n and g,
respectively. Vectors and matrices are printed in the bold font, and their components
are in the non-bold font, i.e., v = (v1, v2)T , where T denotes the transposition. ρ
[kg ·m−3] represents the density, t [s] the time, v [m · s−1] the velocity, ρi [kg ·m−3]
the partial density of the component i (

∑
i∈{n,g} ρi = ρ), V i [m · s−1] the diffusion

velocity of the component i, P [Pa] the pressure tensor and g [m·s−2] the gravitational
acceleration vector. The symbol ⊗ stands for the tensor product. e [m2 · s−2] is the
specific energy and Q [kg · s−3] the heat flow vector. The fluxes V i, P and Q are
defined as

V i = −
∑

j∈{n,g}

Di,j (dj + kTj∇ lnT ) , i = g, n,(2.5)

P = pI − 2µS,(2.6)

Q = −λ∇T + p
∑

i∈{n,g}

(
kTi +

κ

κ− 1

pi
p

)
Vi,(2.7)

where di [m−1] is the diffusion driving force defined by

di = ∇
(
pi
p

)
+

(
pi
p
−Xi

)
∇ ln p,(2.8)

where pi [Pa] and Xi [−] are the partial pressure and mass fraction of the component
i (
∑
i∈{n,g} pi = p,

∑
i∈{n,g}Xi = 1), respectively, and p [Pa] is the pressure. Di,j

[m2 · s−1] is the multicomponent diffusion coefficient, Di,j = Dj,i and Di,i = −ρjρiDj,i

if ρi 6= 0; otherwise, Di,i is not needed. kTi [−] denotes the thermal diffusion ratio,
kTn = −kTg, µ [kg ·m−1 ·s−1] is the dynamic viscosity, S [s−1] the rate-of-shear tensor
defined by

Si,j =
1

2

(
∂vj
∂xi

+
∂vi
∂xj

)
− 1

3
∇ · vδi,j ,(2.9)
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where xi [m], i = 1, 2, are spatial coordinates, and δi,j is the Kronecker delta. λ
[kg·m·K−1·s−3] denotes the thermal conductivity coefficient, T [K] the thermodynamic
temperature and κ =

cp
cv

[−] the ratio of specific heats, where cp [J ·kg−1 ·K−1] and cV

[J · kg−1 ·K−1] denote the specific heat at constant pressure and volume, respectively.
The previous system is supplemented by the following formula relating the energy

to the temperature

(2.10) ρe = cV ρ T +
1

2
ρv2

and by the ideal gas equation of state

ρ = p
M

RT
,(2.11)

where R [J · K−1 ·mol−1] denotes the gas constant, and M [kg ·mol−1] is the molar
mass defined by

M =

 ∑
i∈{n,g}

Xi

Mi

−1

,(2.12)

where Mi [kg · mol−1] is the molar mass of the component i. Combining equations
(2.10) and (2.11) with the Mayer relation M(cp−cV ) = R, we get the formula relating
the energy to the pressure

(2.13) p = (κ− 1)

(
ρe− 1

2
v2ρ

)
.

Note that for ρn = 0, the governing equations reduce to the compressible Navier-
Stokes equations and the corresponding energy balance equation.

The equations are solved in a rectangular domain Ω ⊂ R2 and on a time interval
[tini, tfin]. The initial conditions are

ρ(tini,x) = ρini(x), ρn(tini,x) = ρn,ini(x),(2.14)

T (tini,x) = Tini(x), v(tini,x) = vini(x)(2.15)

for x ∈ Ω. The boundary conditions will be discussed later on.

3. Numerical Solution. The aforementioned mathematical problem is solved
by means of the method of lines, where the spatial discretization is carried out by
the control volume based finite element method [12]. For the time integration, the
Runge-Kutta-Merson method [11] is employed.

All of the unknown functions (the products ρvi, i = g, n, and ρe are treated
as a single variable) are approximated using the classical finite element space based
on the bilinear Lagrange rectangles [11], where the domain Ω is covered by a mesh

T = {T e}NT
e=1 of rectangles (see Figure 3.1), where NT stands for the number of

rectangles in T . Each vertex xi of the mesh is associated with the basis function ϕi.
Further, we use the node-centered dual mesh of finite volumes V = {Vi}NV

i=1, where
NV denotes the number of nodes in T . This mesh will be described later on.

The following notation will be used throughout this text:
• X = {xi}NV

i=1 is the set of all vertices in the mesh T ;
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Fig. 3.1: Mesh of rectangles (solid line) and dual mesh (dashed line). According to the
notation introduced in Section 3, we have Λe1 = {i1, i2, i3, i4}, Λi4 = {i2, i3, i5, i6},
Λe1i4 = {i2, i3}, Λbi4 = {i2, i5, i6}, Λi2,i4 = {e1, e2} and Λni4 = {e1, e2, e3, e4}. The gray
region is V e1i4 .

• Λe = {i|xi ∈ T e};
• Λi is the set of all indices j different from i for which the line segment con-

necting the nodes xi and xj is an edge of a rectangle in T ;
• Λei = Λe ∩ Λi;
• Λbi = Λi ∩ {j|xj ∈ ∂Ω};
• Λi,j = {e|i ∈ Λe ∧ j ∈ Λe};
• Λni = {e|i ∈ Λe};
• xi,j is the midpoint of the line segment connecting the vertices xi and xj ;
• xe is the circumcenter of T e;
• Γei,j is the line segment connecting the points xe and xi,j ;

• Γbi,j is the line segment connecting the boundary points xi and xi,j ;
• Γi =

⋃
j∈Λi

⋃
e∈Λi,j

Γei,j ;

• Γbi =
⋃
j∈Λb

i
Γbi,j for xi ∈ ∂Ω;

• xei,j and xbi,j are the midpoints of Γei,j and Γbi,j , respectively;
• V ei = Vi ∩ T e;
• f(xi) = fi, f(xi,j) = fi,j , f(xei,j) = fei,j , f(xbi,j) = f bi,j , f(xe) = fe, where

the time coordinate is omitted;
• [f ]k denotes the k-th component of the vector f , when there are too many

symbols in the definition of f .

The preceding notation will be used for scalar (f) as well as vector-valued (f) func-
tions.

The finite volume Vi associated with the node xi is defined as the open set sur-
rounded by the piecewise linear curve Γi (i.e., ∂Vi = Γi) for xi /∈ ∂Ω and by the
piecewise linear curve Γi ∪ Γbi (i.e., ∂Vi = Γi ∪ Γbi ) for xi ∈ ∂Ω. The dual mesh of
finite volumes is depicted in Figure 3.1.

In our computations, the physical domain Ω is extended by one layer of dummy
elements [2], and the boundary conditions are prescribed at the corresponding dummy
nodes. Therefore, equations (2.1)–(2.4) are solved in the whole of Ω.

The numerical scheme is derived by integrating equations (2.1)–(2.4) over a vol-
ume Vi, applying the Green formula and using the following approximation formulas:

•
∫
Vi
f(x) dx

.
=
∑
e∈Λn

i
|V ei | fi = |Vi| fi, where |V ei | denotes the area of V ei .
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•
∫
Vi

(∇f) (x) dx
.
=
∑
e∈Λn

i
|V ei | (∇f)e.

•
∫

Γi
f(x) · n dx

.
=
∑
j∈Λi

∑
e∈Λe

i,j

Γei,j
fei,j · nei,j , where

Γei,j
 denotes the

length of the line segment Γei,j , and nei,j is the unit outward normal with
respect to Γei,j .

The previous procedure yields the system of ordinary differential equations for
k = 1, 2 and i = 1, 2, . . . NV (the dummy nodes are used),∑

e∈Λn
i

|V ei | ρ̇i +
∑
j∈Λi

∑
e∈Λi,j

Γei,j
 ρei,jvei,j · nei,j = 0,(3.1)

∑
e∈Λn

i

|V ei | ρ̇n,i +
∑
j∈Λi

∑
e∈Λi,j

Γei,j
 ρen,i,j (vei,j + V e

n,i,j

)
· nei,j = 0,(3.2)

∑
e∈Λn

i

|V ei | ˙(ρvk)i +
∑
e∈Λn

i

|V ei | [(∇p)e]k +
∑
j∈Λi

∑
e∈Λi,j

Γei,j
[(P − pI)

e
i,j · n

e
i,j

]
k

+
∑
j∈Λi

∑
e∈Λi,j

Γei,j
 (ρvk)

e
i,jv

e
i,j · nei,j =

∑
e∈Λn

i

|V ei | ρigk,
(3.3)

∑
e∈Λn

i

|V ei | ˙(ρe)i +
∑
j∈Λi

∑
e∈Λi,j

Γei,j
[(P · v)

e
i,j + Qe

i,j + (ρe)
e
i,jv

e
i,j

]
· nei,j

=
∑
e∈Λn

i

|V ei | g · (ρv)i ,
(3.4)

where

V e
n,i,j = −

∑
l∈{n,g}

De
n,l,i,j

(
del,i,j + keTl,i,j

∇T ei,j
T ei,j

)
,(3.5)

del,i,j = ∇
(
pl
p

)e
i,j

+

(
pel,i,j
pei,j

−Xe
l,i,j

)
∇pei,j
pei,j

,(3.6)

P e
i,j = (pI − 2µS)

e
i,j ,(3.7)

Qe
i,j = −λ (∇T )

e
i,j + pei,j

∑
l∈{n,g}

(
keTl,i,j

+
κ

κ− 1

(
pel,i,j
pei,j

))
V e
l,i,j .(3.8)

For stability reasons, the term
∫
Vi
∇p is approximated as the volume integral in (3.3),

and the underlined terms are modified by the full upwind formula

fei,j =

{
fi, v

e
i,j · nei,j ≥ 0

fj , v
e
i,j · nei,j < 0

.

The terms ∇vk and ∇
(
pk
p

)
are calculated via

∇vk = ∇
(

(ρvk)

ρ

)
=
ρ∇ (ρvk)− (ρvk)∇ρ

ρ2
, ∇

(
pk
p

)
=
p∇pk − pk∇p

p2
.

Similarly, the terms ∇ lnT and ∇ ln p are replaced by ∇TT and ∇p
p , respectively, in

(3.5) and (3.6).
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par. value unit par. value unit

Dg,n −8.35 · 10−5 m2 · s−1 g1 0.0 m · s−2

µ 1.725 · 10−5 kg ·m−1 · s−1 g2 −9.81 m · s−2

λ 0.02428 kg ·m ·K−1 · s−3 pref 101325 Pa
κ 1.4 − Tref,1 295.15 K

Mg 0.02896 kg ·mol−1 Tref,2 294.65 K

Mn 0.13139 kg ·mol−1 vref,1 1.0 m · s−1

R 8.3144621 J ·K−1 ·mol−1 vref,2 0.0 m · s−1

Xn,ref 0.001 −

Table 4.1: Values of constant physical parameters.

4. Numerical Results. In this section, results of two of our numerical tests are
presented. Describing the boundary conditions, we shall use the abbreviations lef, rig,
top, bot which refer to the left, right, top and bottom edge of Ω.

4.1. Spreading Wave of NAPL Vapor. In this test, the domain Ω = (0.0, 3.0)
× (−0.5, 0.5) is considered, where the units are [m], and there are 120 and 40 square
elements in the x1- and x2-direction, respectively. The same squares are used as
the dummy elements. The following hydrostatic initial (tini = 0.0s) conditions are
considered:

ρini(x) = pref
Mg

RTref,1
exp

(
Mgg2

RTref,1
x2

)
, ρn,ini(x) = 0, Tini(x) = Tref,1, vini(x) = vref.

At the dummy nodes, the following setup for v, ρ, ρn and p is used:
• Left edge. v|lef(x) = vref,

ρ|lef(x) = (pref + 100.0)
Mg

RTref,1
exp

(
Mgg2

RTref,1
x2

)
, ρn|lef(x) = Xn,refρ|lef(x);

the pressure p is extrapolated constantly.
• Right edge. v|rig(x) = vref; the densities ρ and ρn and the pressure p are

extrapolated constantly.
• Top and bottom edge. v|top(x) = vref, v|bot(x) = vref; the density ρn is

calculated from Xn, which is extrapolated constantly. The density ρ and the
pressure p are extrapolated exponentially because for our g, the hydrostatic
pressure and density distribution at constant temperature is exponential. Ac-
cording to our experience, the exponential extrapolation of p and ρ together
with the approximation of

∫
Vi
∇p as a volume integral in (3.3) seems to be

necessary if similar physical conditions are considered. Without these details,
the scheme produces oscillations in the state variables which grow without
limits.

The values of the physical constants are listed in Table 4.1. The coefficient kTn is
defined by the formula kTn = 0.35XnMM−1

n , which is based on information in [3].
The numerical results are presented in Figures 4.1–4.3. We can see how the wave

of higher density and non-zero mass fraction of NAPL vapor spreads towards the right
edge. As we need to model only slow flows with minor differences in the densities over
very long time intervals in our application, the fact that the wavefront is smeared
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Fig. 4.1: Spreading wave of NAPL Vapor on mesh 120x40. Mass fraction of NAPL
vapor Xn [−] at time t = 1.5s.

Fig. 4.2: Spreading wave of NAPL Vapor on mesh 120x40. Temperature T [K] at
time t = 1.5s.

should not pose any problems in our research. Note that the wavefront in 4.3 seems
to be skew because the height of the density differs in the x2-direction. The final
density distribution equals to the density profile prescribed on the left edge at every
x1 ∈ [0.0, 3.0].

Finally, Figure 4.4 shows the density distribution in the same test, where the
spatial mesh has 480 and 160 elements in the x1- and x2-direction, respectively. Com-
paring Figures 4.3 and 4.4, it seems that the numerical solution converges.

4.2. Natural Convection. This test is motivated by the temperature induced
air circulation in a well which is studied in [8]. We consider the domain Ω = (0.0, 0.1)×
(−0.05, 0.05), where the units are [m], and there are 10 and 10 square elements in the
x1- and x2-direction, respectively. The same squares are used as the dummy elements.
The following initial (tini = 0.0s) conditions are considered:

Tini(x) = Tslox2 + Tshi, where Tslo =
Tref,2 − Tref,1

0.05− (−0.05)
and Tshi = Tref,1 + 0.05 · Tslo;

ρn,ini(x) = 0, vini(x) = (0, 0)T, ρini(x) = pref
Mg

RTini(x)

(
Tini(x)

Tref,1

)Mgg2
TsloR

.

Note that the previous conditions are hydrostatic with the temperature T decreasing
from Tref,1 to Tref,2.
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Fig. 4.3: Spreading wave of NAPL Vapor on mesh 120x40. Density ρ [kg · m−3] at
time t = 1.5s.

Fig. 4.4: Spreading wave of NAPL Vapor on mesh 480x160. Density ρ [kg ·m−3] at
time t = 1.5s.

At the dummy nodes, the following setup for v, ρ, ρn, T and p is used:
• Left and right edge. v|lef(x) = (0, 0)T and v|rig(x) = (0, 0)T; the densities ρ

and ρn and the pressure p are extrapolated constantly.
• Top and bottom edge. v|top(x) = (0, 0)T, v|bot(x) = (0, 0)T; T |bot(x) =
Tref,1, T |top(x) = Tref,2. The densities ρn and ρ are extrapolated constantly
and linearly, respectively.

Note that we do not need any Dirichlet boundary conditions for p or ρ.
The values of the physical constants are listed in Table 4.1. The coefficient kTn

is not needed.
The numerical results in a steady state are presented in Figures 4.5 and 4.6.

We can see that two circulation cells appear. As we do not apply any numerical
stabilization in our scheme, in accordance with [12], there are oscillations in the
pressure p in order of Pascals along the vertical axis of symmetry of the domain Ω.

5. Conclusions. In this section, we want to discuss the aforementioned numeri-
cal results. The method which we use for the spatial discretization was chosen because
it is simple, and it seems not to produce any non-physical oscillation in the density
ρn and mass fraction Xn. But it can produce oscillations in the pressure p, and it can
add too much artificial diffusion in the regions where the gradient of the solution is
discontinuous. The former can be prevented by using the staggered arrangement of
the variables [12]. According to [1], an another option can be to add a stabilization
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Fig. 4.5: Natural Convection. Temperature T [K] at time t = 900.0s. The arrows
indicate the direction and magnitude of the velocity v [m · s−1].

term into equation (3.1). The tests of various stabilization terms are our next step in
the development of the model. In our opinion, the later disadvantage should not pose
any problems in our future research.

Finally, the approximation of the term
∫
Vi
∇p in (3.3) as a volume integral to-

gether with the exponential extrapolation of p and ρ which we employ in the Section
4.1 seems to be necessary when modeling systems in which the hydrostatic distribution
of p and ρ is exponential.
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