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DEVELOPING A MICRO-SCALE MODEL OF SOIL FREEZING

A. ŽÁK∗, M. BENEŠ∗, AND T.H. ILLANGASEKARE†

Abstract. In this contribution, we analyze thermal and mechanical effects related to the soil
freezing at micro-scale. A simple 2D mechanical model of the phase transition in a pore is presented.
This model is based on the Navier equations and on the continuity equation and serves mainly
for a verification of the dynamics of the mechanical reaction. A basic qualitative computational
study of this model is presented. Further, this model is generalized by supplementing it with a heat
balance law and considering pore structure geometry onto the thermo-mechanical model describing
the mutual interaction of all pore components. For this model, some basic qualitative studies, which
indicate non-trivial progress of the interaction, are presented as well.
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1. Introduction. This work is motivated by processes accompanying seasonal
or climate changes affecting the upper layers of soil ground. In such cases, highly
saturated soils might exhibit structural changes due to the phase transition of the wet
component of soil, which introduces an uncertainty into designs of building structures
in the cold regions or an ambiguity into ecological problems associated with impacts
of the climate change.

The general problem of soil freezing is complex and consists of several elementary
phenomena involving bulk material changes, effects due to the pore structure, and
interactions of components. Although there are several macro-scale models of soil
freezing phenomenon ([1], [2], [3], [4]), they are usually not sufficiently general and
complex, or are one-sidedly oriented, or are based on some simplified assumptions.
Most attention in the problem modeling has been devoted to the frost heave [5], the
phenomenon that contributes a potential of heaving very heavy loads. The causes of
this phenomenon has been also discussed using geometrical considerations at micro-
scale providing its qualitative description [6]. However in contrast to the frost heave,
other contributing effects has been neglected, simplified, or approximated due to their
less importance or efficiency in case of the frost heaving susceptible soils.

In the regimes when the frost heave does not occur, we have a little information on
how to deal with the other effects in the modeling. One of the reasons for such state
of complex understanding of the freezing soil problem is that there is a few studies,
experimental or theoretical, concerning with the behavior of the phenomenon at the
pore-scale level. Thus one of the aims of this work is to improve the understanding
of the impacts of soil freezing at such level. In particular, we provide a simple model
of structural changes induced by the volumetric change of water during freezing.

2. Artificially driven phase and structural model. For the purpose of un-
derstanding structural dynamics of freezing water in a geometrically complex domain,
we have designed a simple micro-scale mechanical model capturing both the solidifi-
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cation of water in terms of local changes of its physical properties and the structural
change induced by the solidification.

Although the phases at such scale are mostly distinguishable and may be located
in separated subdomains, we try to study the whole medium in the pore domain via
an unified description in which the phases are localized by phase indication functions.

Since this version of model has been intended to serve for the purposes of study
of the model concept reliability, here we define the both phase functions artificially.
Ice phase function φai and water phase functions φal are taken, respectively, as

(2.1) φai = φai (t,X) = ϑ(t− t0)ϑ(X−X0) and φal = φal (t,X) = 1− φai (t,X) ,

where ϑ stands for the Heaviside step function and the functions’ arguments stand
for the temporal and spatial coordinates, respectively.

2.1. Conservation laws. Structural behavior of water-ice-grain system is given
by the momentum conservation equation in the Lagrangian framework. A general
form of the equation can be derived in form (similar as used in [7])

(2.2) J %∂
2u
∂t2

= ∇ ·
(
JF−1 · σ

)
,

where J is the Jacobian determinant of the deformation, % stands for the (current)
density of material, F is the deformation gradient, u is the displacement vector, and σ
is Cauchy’s stress tensor. Under the assumption of small deformations, the previous
equation can be simplified, and then it reads

(2.3) %
∂2u
∂t2

= ∇ · σ .

Knowing mechanical properties of investigated materials in terms of the stress tensors,
this equation can be established as the governing equation of the model for structural
behavior of considered medium and its phases.

However in order to characterize phases from the mechanical point of view, first
we need to specify their mechanical models, that is to define constitutional relations
for deformations. Ice phase is considered to act like a homogeneous isotropic elastic
material, therefore the ice stress tensor σi might be characterized by

(2.4) σi =
Ei

(1 + νi)
D(u) +

νiEi∇ · u
(1 + νi)(1− 2νi)

I ,

where D denotes the small strain tensor1, I represents the unit tensor, Ei is Young’s
modulus of ice, and νi is Poisson’s ratio of ice. Liquid water phase is considered as
the Newtonian fluid, so the stress tensor of the liquid phase reads

(2.5) σl = −pI + 2µD(u̇) ,

where p is the (gauge) pressure and µ is the (dynamic) viscosity. Since the pressure
represents an another independent variable in this moment, we supplement an addi-
tional relation for the liquid phase to relate the pressure and displacement. Assuming
further that water is slightly compressible, we use relation

(2.6)
p

%lEl
+∇ · u = 0 ,

1D(u) = 1
2

(
∇u+ (∇u)T

)
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Fig. 2.1: The geometry of the considered pore volume in the initial configuration.

which can be derived from the continuity equation and is employed, e.g., in [7].
To provide the unified local expressions of terms in (2.3), we have to allow for

changes in both mechanical description of the phases and mechanical state during
phase transition itself. The first effect is incorporated into the model by means of the
phase functions as combinations of values for single phases. From empirical knowledge,
the second effect is characterized by a jump of the inner tension within the solidifying
material, and we employ this by adding term −φai ξI to the unified expression of the
stress tensor. Thus the final forms of the terms read

(2.7) σ = φal σl + φai (σi − ξI)

and

(2.8) % = φal %l + φai %i ,

where %l and %i are the density of liquid water and ice, respectively.
Let the considered medium occupy pore domain Ω.⊂ R2. Then we describe it by

the system of equations in weak sense for unknowns u = (u1, u2) and p as follows

(φal %l + φai %i)
∂2u

∂t2
−∇ · (φal σl + φai [σi − ξI]) = 0 in Ω. ,(2.9)

φal

(
p

%lEl
+∇ · u

)
= 0 in Ω. .(2.10)

The system is further supplemented with boundary and initial conditions. Their
particular form is discussed in the following subsection.

2.2. Computational results. Since the previous model incorporates discontin-
uous phase functions, we have simplified it for the purpose of performing simulations
in order to decrease convergence difficulties. We have substituted the step function
used in definitions of the phase functions for its regularized form ϑδ that provides a
smooth course of transition between the original function’s values on interval (−δ, δ).

To demonstrate the suitability of the presented approach in the modeling of struc-
tural behavior induced by the phase transition, we have performed a parametric study
in terms of the values of δ. The study has been made for the case of the artificially
solidifying water filling up a microscopic pore. The geometry of the considered pore
domain is shown in Fig. 2.1, and the boundary and initial conditions are stated
in Table 2.1. The study results are compared with a result of simulation of an ice
expansion occurring in the same pore which is however geometrically split into two
subdomains that are each occupied by a single phase and that are connected with
an (non-moving) inner boundary representing the sharp mutual interface between the



DEVELOPING A MICRO-SCALE MODEL OF SOIL FREEZING 237

Variable Walls ∂Ω1, ∂Ω3 Walls ∂Ω2, ∂Ω4 Domain Ω.

u1 u1 = 0 (σ(u) · ~n)1 = 0 u1|t=0 = u̇1|t=0 = 0

u2 (σ(u) · ~n)2 = 0 u2 = 0 u2|t=0 = u̇2|t=0 = 0

Table 2.1: Boundary and initial conditions for geometry in Fig. 2.1. Here ~n stands
for the outward normal vector and u̇ denotes the time derivative.

phases. For the reason of drawing this comparison, we used the following definition
of the phase function of ice in presented results:

(2.11) φai = φai (t,X) = ϑδ̄(t− t0 − δ̄)ϑδ(X−X0) .

The values of all parameters here are stated in Table 2.2 as well as the other settings of
the simulations. The comparison of simulations in terms of the longitudinal displace-
ment u1 is presented in Fig. 2.2. It shows that with decreasing δ results approach
the situation with the sharp interface between the phases. The computational results
were obtained by means of the FEM package of COMSOL Multiphysics ([8]) using
the quadratic Lagrange elements in space and BDF solver in time.

Symbol Value Symbol Value Symbol Value
δ̄ 0.02[1] µ 180[Pa · s] νi 0.33[1]

%l 1000[kg ·m−3] %i 920[kg ·m−3] ξ 1.3044 · 108[Pa]

El 5.33 · 109[Pa] Ei 7.8 · 109[Pa] X0 2 · 10−6[m]

Table 2.2: Simulation settings

3. Thermally driven phase and structural model. In the next step of the
model development, we have generalized the previous model in several aspects. Trying
to involve natural conditions and principles of the freezing dynamics at this scale, we
have added the thermal description of the considered domain and related the phase
indication functions to the local temperature of the investigated medium. In order to
increase geometry complexity, we have also included some adjacent subdomains rep-
resenting rock components within porous material into our considerations. However
still the smallest appropriate region of a soil pore structure has been considered.

A change of phase is naturally triggered by a change of thermo-dynamical condi-
tions, especially of the temperature. Thus in our model, the temperature T represents
the leading governing quantity for all changes within the material. When the temper-
ature at some point passes the value of TM , the local equilibrium between the both
phases, the phase occupying the elementary volume surrounding the point changes.
This leads to the obvious thermal definition of the phase functions as

(3.1) φi = φi(t,X) = ϑ(TM(X)− T (t,X)) and φl = φl(t,X) = 1− φi(t,X).

In complex geometries at small scales, the local equilibrium is significantly influ-
enced by the curvature of the phase interface. Assuming that the phase transition is
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(a) Mixed model δ = 1 · 10−6[m] (b) Mixed model δ = 5 · 10−7[m]

(c) Mixed model δ = 1 · 10−7[m] (d) Interface model

Fig. 2.2: The results of the fluid-solid structural interaction during the freezing process
performed for various setting of parameter δ. Here the interaction is caused only by
the swelling effect of crystalizing ice material. The crystallization has been induced
within the right-hand side half of the considered domain (Fig. 2.1) by the artificial
continuous transition (2.1) starting at t1 = 0.05[s] and culminating at t2 = 0.09[s].
The above graphs show the longitudinal displacement (u1) along the cut of the
domain running at x = 10−7[m]; the displacements are shown at times: 0.06[s] (blue),
0.07[s] (green), 0.08[s] (red), 0.09[s] (cyan).

not conducted by the pressure, the dependency between the local equilibrium temper-
ature TM and the local shape of interface Γ can be expressed by the Gibbs-Thomson
equation which reads

(3.2) %ilM
T0 − TM(X)

T0
= γκ on Γ ,

where lM is the specific latent heat of the phase change, T0 is the bulk freezing point,
γ is the surface tension, and κ is the curvature of the phase interface.

Since we have extended our focus on all components of the saturated porous
medium, the representative volume Ω of the porous material now consists of two
subdomains - one representing solid rock skeleton of the material and one representing
the pore volume - and their mutual interface (see Fig. 3.1a). The interface stands for
the structural boundary which can be mechanically deformed and on which we assume
the continuity of both descriptive quantities and physical fluxes through the boundary.
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The interface (or transition zone in case of computational simulations) between the
changing phases in the pore subdomain is created thermodynamically and driven by
(3.1).

Therefore the proper determination of the liquid-ice interface at any instant re-
quires the knowledge of the distribution of TM (X) within the considered pore. This
can be obtained by either adding an equation for evolution of the equilibrium inter-
face or assuming idealized symmetric geometries in which it is possible to find an
analytical expression for the distribution. To keep the complexity of the model as low
as possible, we make use of the latter possibility in our simulation scenarios. Then
using (3.2), we simply calculate the distribution of TM (X) according to the possible
shapes (curvatures) of the interfaces within the particular symmetric geometry.

Considering time interval I = (0, tfinal) and representative space domain Ω with
its corresponding subdivision (see Fig. 3.1a), we try to look for a solution for unknown
functions T,u : I × Ω → R, where the functions are naturally (with regard to the
assumptions) composed as

(3.3) T =

{
Ts in Ωs

Tp in Ωp
, u =

{
us in Ωs

up in Ωp
.

As the heat transfer in the volume is given by the heat equation incorporating
generally a term taking the phase transition of the medium in pores into consideration,
the governing system of the thermo-mechanical model reads

%c
∂Tp
∂t
− %ilM

∂φi
∂t

= ∇ · (k∇Tp) in Ωp ,(3.4)

%
∂2up

∂t2
= ∇ · σ in Ωp ,(3.5)

φl

(
p

%lEl
+∇ · up

)
= 0 in Ωp ,(3.6)

%scs
∂Ts

∂t
= ∇ · (ks∇Ts) in Ωs ,(3.7)

%s
∂2us

∂t2
= ∇ · σs in Ωs ,(3.8)

Ts = Tp , us = up on Γps ,(3.9)
ks∇Ts · n = k∇Tp · n , σs · n = σ · n on Γps .(3.10)

Here c, %, k, and σ are, respectively, the effective values of the specific heat, the
density, the thermal conductivity, and the stress tensor; they are taken as

% = φl%l + φi%i , c = φlcl + φici ,(3.11)
k = φlkl + φiki , σ = φlσl + φi (σi − ξI) ,(3.12)

where subscripts l and i signify the quantities of liquid water and ice, respectively.
The system can be supplemented with boundary and initial conditions to create

an initial-boundary value problem. Such particular problems are discussed in the next
section.

3.1. Computational results. The following scenario has been designed to pro-
vide a basic information on the interaction between the freezing pore water content
and the surrounding uncemented solid skeleton. The problem scenario considers a
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Fig. 3.1: The representative and considered domains.

Variable Boundary Γl Boundary Γr Boundary Γb Domain Ω

u1 (σ(u) · ~n)1 = 0 (σ(u) · ~n)1 = 0 (σ(u) · ~n)1 = 0 u1|t=0 = u̇1|t=0 = 0

u2 u2 = −
√

3u1 u2 =
√

3u1 u2 = 0 u2|t=0 = u̇2|t=0 = 0

T k∇T · ~n = q k∇T · ~n = q k∇T · ~n = 0 T |t=0 = Ṫ |t=0 = 0

Table 3.1: Boundary and initial conditions for geometry in Fig. 3.1b. Here ~n stands
for the outward normal vector, q is the heat flux, and u̇, Ṫ denote the time derivatives.

vertical cross-section through a small region of saturated soil with an ideal geometry
but with the quite realistic physical dimensions and properties. The geometry com-
prises a group of untouching sectors, which represents the skeleton grains, and the
remaining region, which stands for the pore filled with water. The particular geom-
etry with all sizes is illustrated in Fig. 3.1b and the boundary and initial conditions
are written in Table 3.1.

To stress the importance of the geometry effect, two variants of simulations have
been run. One under the assumption of a constant freezing point of the water in the
pore and another under the assumption of the spatially dependent freezing point dis-
tribution induced by the equilibrium condition (3.2). The maps of freezing points for
the both simulations are shown in Fig. 3.2a and Fig. 3.2b, respectively. The settings
of the physical parameters are stated in Table 2.2 and Table 3.2. The simulation re-
sults are shown in Fig. 3.3 and Fig. 3.4. They reveal the qualitative difference of the
freezing dynamics between the two assumptions on the freezing point distribution.

4. Conclusions. The presented micro-scale model includes a basic heat and
force balance and has been designed for the purpose of a study of structural change
dynamics within saturated soils caused by the phase transition of the water content.
Simulations so far provided by the model indicate non-trivial progress of the thermo-
mechanical interaction, but for a general conclusion, wider testing will be needed.
Results obtained from existing and future studies at this scale are planned to be used
for upscaling the relevant information into our macro-scale model [9].
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Symbol Value Symbol Value Symbol Value
γ 0.075[Pa ·m−1] νs 0.33[1] Es 7.5 · 1010[Pa]

ci 2.1[kJ/(kg ·K)] cl 4.2[kJ/(kg ·K)] cs 1[kJ/(kg ·K)]

ki 2.18[W/(K ·m)] kl 0.6[W/(K ·m)] ks 2[W/(K ·m)]

l 3.34 · 105[J ·K−1] q −50[W/m] T0 0[◦C]

Table 3.2: Simulation settings

[m]

[m]

(a) Constant

[m]

[m]

(b) Induced

Fig. 3.2: The freezing point distributions in [◦C].
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Fig. 3.3: The simulated dynamics of freezing of the considered domain. The freezing
point is constant as in Fig. 3.2a. The color stands for the ice phase; the isolines
signify 20 current uniformly distributed isotherms - their color legend is not shown.
Here the pore water freezing depends on the temperature gradient only.
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Fig. 3.4: The simulated dynamics of freezing of the considered domain. The freezing
point is distributed as in Fig. 3.2b. The color stands for the ice phase; the isolines
signify 20 current uniformly distributed isotherms - their color legend is not shown. If
the influence of the pore geometry is encompassed, first the pore ice begins to appear
within an area with the smallest curvature and then spreads further to menisci.


