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STRUCTURE IDENTIFICATION OF METAL FIBRE REINFORCED
CEMENTITIOUS COMPOSITES

JIŘÍ VALA ∗

Abstract. Mechanical properties of metal fibre reinforced cementitious composites, because
of the danger of micro- and macro-cracking due to the mechanism of quasi-brittle fracture, depend
strongly on the macrostructural homogeneity and directional distribution of fibres. Thus some low-
invasive or quite non-destructive measurement techniques, together with non-expensive, quick, robust
and reliable algorithms for evaluation of corresponding material parameters, are needed. This paper
demonstrates some promising classes of such approaches, based on image processing and indirect
magnetic and electromagnetic measurements, with the aim of the development of general methodol-
ogy for technical evaluation of such materials.
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verse problems, image processing.
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1. Introduction. Advanced building structures frequently use materials as sil-
icate composites, reinforced by metal particles, preventing the tension stresses and
strains as sources of undesirable micro- an macro-cracking; the most frequently used
material of this type is the steel fibre reinforced concrete. However, mechanical be-
haviour of such composites is determined by the choice of fibre properties and their
volume fraction, location and orientation in the matrix, sensitive to the technological
procedures (as special compaction) and to the early-age treatment – cf. [29], [13] and
[25]. The employment of the destructive approach relies usually on the separation of
particles, taken from the early-age matrix, alternatively obtained from the crushed
part of the existing structure, in the laboratory; consequently the volume fraction of
particles can be evaluated accurately, whereas any information related to the original
orientation of particles is missing. Moreover, such experiments with many structures
are not allowed by technical standards. Thus the employment of non- or (at least)
semi-destructive measurement methods, applicable in situ, handling homogeneity and
isotropy, as well as the volume fraction of fibres, is required.

A reasonable tool for testing of internal material structures without their damage
is offered by radiographic methods, combined with the image processing analysis;
for its advantages and limitations (namely for the difficulties in non-invasive testing
of massive structures) see [12], [9], [10] and [36], for the 3-dimensional computer
tomography cf. [18] and [38]. Several alternative methods have been presented in the
literature: [35] estimates the effective material permittivity employing a coaxial probe
together with microwave reflectometry techniques, [22] comes from the AC-impedance
spectroscopy, [15] performs special low-frequency electrical resistance measurements,
[7] develops a method based on impedance-over-frequency measurements, employing
certain two-electrode probe, supported by the numerical fast Fourier transform, and
[6] and [39] make use of the ferromagnetic behaviour of metal particles to evaluate
their volume fraction, whereas the deviation of values obtained from measurements
then gives basic information concerning the required homogeneity and isotropy.
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In general, reliable prediction of mechanical, thermal, etc. behaviour of compos-
ites, including (rather small) fibres incorporated into a matrix, can be also performed
using electromagnetic measurements, combined with computational simulation of the
corresponding physical process and solution of inverse problems of identification of
selected material parameters by [11]. This approach needs distinguishable values of
material characteristics, namely of electrical permittivity or magnetic permeability,
which is true e. g. for metal particles in concrete, glass or ceramic matrices.

The special experimental configuration usually tries to force a (nearly) stationary
process, whose mathematical description works with a differential operator close to
the classical Laplace one, to enable non-expensive software simulation. Consequently,
the crucial problem is to implement a correct evaluation procedure for an effective
relative permeability (or permittivity, etc.) using the incomplete data on the material
microstructure and on relative permeability of particular components; a generaliza-
tion to more than two components is possible. Simple linear formulas, supplied by
heuristic recommendations, generate the results far from those observed in practice.
For spherical particles the classical Maxwell-Garnett mixing formula is available; by
[28] this can be interpreted as a (very rough) estimate of effective permittivity, whose
improvement leads to the new (much more complicated) explicit formula, based on the
approximation of a cylindrical particle with a rotational ellipsoid with the dominant
main axis. Such generalization by [8] comes from the so-called Brugemann approach
and the repeated usage of similar ellipsoids as reference volume elements.

Various geometrical simplifications, incorporated in the homogenization tech-
niques, frequently supported by physical arguments, lead to rather different results.
In the Maxwell-Garnett mixing rule, namely with spherical particles, [16] admits the
presence of multiple scattering, important for high volume fractions of fibres. No
additional physical assumptions are needed, again for periodic spheres, in [14]: the
auxiliary problem, referring to the mathematical theory of homogenization of elliptic
operators, can be then analyzed (including the existence and uniqueness of solu-
tion, the convergence of sequences of approximate solutions, etc.) using the two-scale
convergence theorems (or, alternatively, similar results from the asymptotic analysis,
G-convergence, H-convergence, Γ-convergence, etc.) by [3] and [17]; the crucial (seem-
ingly) explicit formula for the evaluation of an effective parameter value, comes from
the method of oscillating test functions by [32]. The corresponding theory of finite
element discretization is developed in [5]. Some modifications for periodic structures
with cubes and cylinders (instead of spheres) are introduced in [21]. In [40] the difficul-
ties with complex particle shapes are handled using the boundary integral approach
thanks to the knowledge of general solutions of the Laplace equation, with Heavi-
side characteristic functions of particles. Unfortunately, further generalization of this
approach (namely to non-periodic structure, avoiding all mixing tricks), sketched in
[24], cannot avoid serious (partially still open) problems of mathematical analysis,
namely to the convergence using probability measures by [31] or abstract (a priori
deterministic) homogenization structures related to σ-convergence by [19].

Computational analysis of more complicated physical, chemical etc. processes,
namely those active on certain microscale, hidden from the macroscopic point of
view, able to be detected only from indirect observations, perhaps partially from
some mesoscale analysis, have typically to be done separately, a posteriori applying
some statistical methods (Voronoi tessellations, reverse Monte Carlo optimization),
least square optimization, etc. The dissipative particle dynamics, referring up to the
atomistic or molecular scale, adopted to handle certain super-particles, results in [30]
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in the discrete element method. Unlike such formulation, in [4] and [2] the microme-
chanical computational model for the description of the macroscopic behaviour of such
a class of materials, composed by a matrix phase and a fibre reinforcing phase, is for-
mulated; the macro-constitutive equations of unidirectional or randomly distributed
fibre reinforced materials are then obtained by taking into account the possibility of
crack formation and propagation in the matrix, of fibre debonding and breaking.

This paper follows the research priorities of the project AdMaS UP at FCE BUT
(for more information see Acknowledgments). According to the limited extent of
the paper, we shall sketch the computational algorithms, working with the data sets
obtained from the most important experimental techniques, with the final aim to com-
pose certain general methodology for the identification of crucial material parameters
for mechanical, thermal, etc. properties of metal fibre reinforced cementitious compos-
ites, with numerous references to the literature containing technical details (including
existence, convergence, sensitivity and reliability considerations) and practical appli-
cations. We shall pay attention (using i), ii) for the future references) namely

i) to the volume of fraction of metal fibres,
ii) to the distribution of directions of metal fibres,

not to the detailed structure of a hardened cementitious part containing sand grains
fixed in a cementitious binder, or to the cohesion between such matrix and fibres.

2. Image processing techniques. The best choice for identification of i) and
ii) should be (if possible) a direct method, classifiable as a non-destructive or low-
invasive one, without any requirements to deeper physical analysis. This seems to be
satisfied by image processing techniques. As two such representative techniques, let
us present the exploitation of 2-dimensional radiographic images and of 3-dimensional
tomographic ones.

2.1. 2-dimensional radiographic images. The radiographic method has been
developed and applied by [9] for a rather large class of building materials. It comes
from the gray-scale planar images and their post-processing modifications. Finally all
fibres are reduced to one-pixel thin curves whose direction classes can be detected and
corresponding histograms drawn. However, using the two-dimensional fast Fourier
transform, following [33] (with the straightforward application to textile textures),
most artificial modifications can be avoided. For simplicity, let f(x, y) be the grey
level at pixel coordinates, related to a square image containing N ×N pixels. Then
the direct and inverse Fourier transforms are

F (u, v) =

N−1∑
x,y=0

f(x, y) exp
−2πi(ux+ vy)

N
, f(x, y) =

1

N2

N−1∑
u,v=0

F (x, y) exp
2πi(ux+ vy)

N

and finally the power spectrum P (u, v) = |F (u, v)|2 contains all needed information for
our (more reader-friendly) evaluations. This can be identified with a special diffraction
process where both sums for N →∞ are converted to integrals – cf. [36].

Figure 2.1 presents an example of derivation of the histogram of directions using
the two-dimensional discrete Fourier transform: the planar image comes from the
standard X-ray 160 kV apparatus, 8 characteristic directions related to classes of
angles of the same size π/8 are emphasized to demonstrate the potential anisotropy
of a fibre concrete sample. Principal advantages and drawbacks of this approach
are evident just from this simple example. The numerical treatment, based on the
fast Fourier transform using the original code in MATLAB, is rather simple and
inexpensive. The macroscopic material anisotropy, unwelcome in this case, is evident
immediately: the worst reinforced class of directions contains only 48 % of fibres in
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Fig. 2.1. Example of planar radiographic image (left photo). Power spectrum (central image).
Distribution (“rose”) of fibre directions (right graph).

Fig. 2.2. Example of 3-dimensional tomographic image (left photo). Corresponding cumulative
distribution of fibre directions (right graph).

comparison with the best one. Such analysis can be repeated several times due to
particular cuts through the specimen; nevertheless, material composition far from the
building surface (without its destruction) are nearly invisible. The reliable evaluation
of i) (see the last paragraph in Introduction) from a low number of planar images is
also not available.

2.2. 3-dimensional tomographic images. Some unpleasant properties of the
image processing exploiting the planar radiographic images can be overcome using ap-
propriate industrial tomographs. The tomograph GEPhoenix v|tome|x L 300 has been
recently installed in the Centre AdMaS at FCE BUT (cf. the project AdMaS UP in
Acknowledgements); however, Figure 2.1 refers to the (rather expensive) screening
using the tomograph GEPhoenix v|tome|x L 240 including its software image process-
ing support, installed in CEITEC (Central European Institute of Technology, Brno
University of Technology in collaboration with Masaryk University in Brno).

Spacial distributions of fibre directions on (2.1) are only illustrative. However, the
detailed description of the position of all particular fibres is available for prescribed
types of cubic and cylindric material specimens. These data can be very useful for the
validation of other approaches, namely of the electromagnetic ones (cf. the following
section), coupled with Monte Carlo (or similar) simulations or with some kind of (usu-
ally periodic) homogenization. In particular, the influence of the system error coming
from the violation of the assumption of negligible small fibres should be analyzed
carefully. The left and central parts of Figure 2.1 show an example of such numerical
evaluation, exploiting the standard ANSYS software, corresponding to the magnetic
approach, introduced in the subsection 3.1. The rest of Figure 2.1 demonstrates a
possibility of Monte Carlo generation of non-penetrating fibre positions even in the
case of high volume fraction of fibres, using the original MATLAB software by [23].
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Fig. 2.3. Example of numerical simulation of the stationary magnetic field total intensity in
the composite structure, detected from the 3-dimensional tomographic image, applied to the cylindric
specimen: in particular fibres (left figure) and in the whole measurement system corresponding to
Figure 3.1 (central figure). Example of Monte Carlo generation of the composite material structure
containing non-penetrating fibres with prescribed shapes, directional distribution and volume fraction
and its typical detail (right scheme).

3. Electromagnetic approaches. As evident from the discussion of image pro-
cessing techniques, the development of some alternative indirect techniques is useful.
Up to now, the most successful indirect measurement approaches seem to be based on
measurements of some magnetic or electromagnetic quantities. However, this requires
more proper analysis of physical processes active during the measurement and their
similarity to those connected with the deformation and fracture of composites.

3.1. Physical and mathematical background. Up to now, the most suc-
cessful indirect measurement approaches seem to be based on measurements of some
magnetic or electromagnetic quantities, All magnetic or electromagnetic approaches
make use of the different values of such measurable effective time-independent ma-
terial characteristics as the dielectric permittivity ε, the electric conductivity σ, and
the magnetic permeability µ, sometimes also of the magnetic susceptiblity χ. These
characteristics can be considered as constant just for (macroscopically) homogeneous
materials and as scalar for isotropic ones, which brings technical difficulties namely
to the identification of ii). For the sake of brevity we shall assume constant charac-
teristics, in some considerations just scalar (not matrix) ones; however, the form of
all relations enables us to come to more complicated cases naturally.

The theory of existence of solution of the complete evolutionary system of Maxwell
equations, even of the direct one (i. e. for the a priori known material characteristics),
contains still open questions – cf. the “mysteriously difficult problem” by [26], p. 257.
This brings obstacles to all proofs of convergence of sequences of approximate solu-
tions, hidden in computational algorithms, as discussed in [1] and [27]. Consequently
all reasonable electromagnetic experiments must be based on the very special physical
and geometrical setting. In this paper we shall sketch another original methodology,
based on the measurements of complex impedance, which seems (both theoretically
and from first practical experiments) to be able to cover both i) and ii) naturally.

The analysis of electromagnetic fields works with a set of scalar and vector quan-
tities, introduced on Ω× I where Ω is a domain in the 3-dimensional Euclidean space,
supplied by Cartesian coordinates, and I means a finite time interval; dots refer to
partial time derivatives. Using the notation of [20], pp. 1 and 4, such basic quantities
on Ω× I are the scalar real volume charge density ρ and the following 3-dimensional
real vectors: the electric current density (charge flux) J , the electric field intensity
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E, the magnetic field intensity H, the electric flux density (electric displacement) D,
the magnetic flux density (magnetic induction) B, and the magnetization (average
magnetic moment per unit volume) M .

The obvious charge conservation principle, two Gauss laws for electric and mag-
netic fields and the Ampère and the Faraday laws are

ρ̇+∇ · J = 0 , ∇ ·D = ρ , ∇ ·B = 0 , Ḋ −∇×H + J = 0 , Ḃ +∇× E = 0 .(3.1)

Following [20], p. 11, we are allowed to consider the linear constitutive equations

J = σE , D = εE , B = µH , M = χH .(3.2)

Moreover, we can introduce the energy density w = 1
2 (D · E + B ·H) and the total

energy flux (Poynting vector) P = E ×H; then we receive, in addition to (3.1),

ẇ +∇ · P + J · E = Ḋ · E + Ḃ ·H +∇ · (E ×H) + J · E
= Ḋ · E + Ḃ ·H +H · ∇ × E − E · ∇ ×H + J · E(3.3)

= (Ḋ −∇×H + J) · E + (Ḃ +∇× E) ·H = 0 ,

which can be seen as the energy conservation principle. In addition to (3.3), from
(3.1) for homogeneous materials (with zero derivatives of ε, σ and µ) we obtain

∇×∇×H = ∇J +∇Ḋ = σ∇× E + ε∇× Ė = −σḂ − εB̈ = −σµḢ − εµḦ ,

∇×∇× E = −∇× Ḃ = −µ∇× Ḣ = −µJ̇ − µD̈ = −µσĖ − µεË .(3.4)

Applying the mathematical formula ∇ × ∇ × S = ∇(∇S) − ∇ · ∇S, for the choice
both S = H and S = E its left side degenerates, thanks to (3.2), to ∆S = ∇ · ∇S,
and (3.4) gets the simple form

∆H = σµḢ + εµḦ , ∆E = µσĖ − µεË .(3.5)

A more complicated form of (3.5) and (3.4) can be derived in the same way without
any homogeneity assumption. In particular, for isotropic materials ε, σ and µ can be
considered as scalar constants, thus σµ = µσ and εµ = µε.

Especially for the stationary pure magnetic field the second equation and the right
side of the first one in (3.5) vanish, which results in the homogeneous Laplace equation
∆H = 0 with no explicit µ (which comes back from the boundary condition). Then
the interface boundary condition of type (S−S×) ·ν = 0, with S× in the role of some
vector variable S coming from a domain adjacent to S (or from external environment)
where nu is the local (formally outward) unit normal vector to the boundary of Ω,
can be implemented. This configuration with the natural choice S = B contains µ,
thus enables us to exploit some rather simple semi-implicit identification formulae,
at least those obtained from the mixture theory by [8]; for more detailed discussion
see [36]. Moreover, it seems to be reasonable, analogously to [34], to convert more
complicated problems to some similar semi-stationary form, as will be demonstrated
here for the special case of harmonic time dependence.

Through the inverse Fourier transform, general solutions of Maxwell equations
can be built, following [20], p. 13, as linear combinations of single-frequency solutions

S(r, t) =
1

2π

∫ ∞
−∞

S̃(r, ω) exp(−iωt) dω(3.6)

with S ∈ {J,E,H,D,B,M} where r denotes the distance from some selected fixed
point from Ω in R3 and the time t is transformed to the frequency ω between 0 and
2π; the phasor amplitudes S̃ are complex-valued. Consequently, using the notation ∗

for complex conjugates, we receive w = 1
2 Re (D̃ · Ẽ∗ + B̃ · H̃∗) and (3.1) yields

∇× H̃ = J̃ − iωD̃ , ∇× Ẽ = iωB̃ , ∇ · D̃ = ρ̃ , ∇ · B̃ = 0(3.7)
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with ρ̃ introduced similarly to (3.6). Let us remark that (3.7) can be derived even
without (3.6), for particular values of ω. In addition to (3.7), under the same as-
sumptions on material characteristics, using the identity matrix I, then (3.5) reads

∆H̃ +

(
I + σε−1

i

ω

)
ω2εµH̃ = 0 , ∆Ẽ + ω2µε

(
I + ε−1σ

i

ω

)
Ẽ = 0 ,(3.8)

which are two separated complex Helmholtz equations (instead of the original real
Laplace one), with a (seemingly free) real parameter ω.

Fig. 3.1. Geometrical configuration of the experiment and its possible computational simplifi-
cation (left scheme), not needed in Figure 2.1. Evaluation of volume fraction of fibres from Hall
probe based measurements (right graph, including photos of the whole measurement equipment with
the Hall probe and of the reference epoxy specimen).

Fig. 3.2. Sketch of the experimental device (left scheme). Idealized one-dimensional model of
LRC-circuit (right scheme). Preparation of reference specimens for testing (right upper photos).
First experimental equipment for measurements in situ (right lower photos).

3.2. Stationary magnetic fields. The generation of (nearly) stationary mag-
netic field can use certain set of permanent magnets and the Hall probe (based on the
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physical Hall effect), whose application can be seen from the left part of Figure 3.1:
measured boundary values γ = B · ν, containing the effective composite permeability
µ, for certain positive volume fraction of ξ (unlike the right part of Figure 2.1: 3 sets
of transparent specimens with ξ ∈ {0.5, 1.0 1.5} are used here) are related to corre-
sponding values γ∗ corresponding ξ = 0; for more details (including the justification
using finite and infinite element modelling in MATLAB and COMSOL) see [36].

Thanks to the expected macroscopic homogeneity and isotropy and the low vol-
ume fraction of fibres, the explicit evaluation formula

ξ(µ, µs) = 1− µs − µ
µs − µc

(
µc

µs

)3L(1−2L)(2−3L)(
(1 + 3L)µc + (2− 3L)µs

(1 + 3L)µ+ (2− 3L)µs

) (3L−1)2

(2−3L)(1+3L)

where µs refers to the permeability of steel fibres (not guaranteed by the producer
unfortunately), µc to the known permeability of the remaining material, µ to the
effective mixture permeability (a priori unknown) in sense of [40] and

L =
ζ

4ϑ3

(
2ζϑ+ ln

ζ − ϑ
ζ + ϑ

)
contains certain shape parameters ϑ and ζ. As derived in [37], these parameters are

just ζ = a/b and ϑ =
√
ζ2 − 1 for all fibres considered as identical rotational ellipsoids

with the lengths of main and remaining axes a and b.
Some couples (ξ, γ/γ∗) from the Hall probe measurements are available for the

successful least squares identification of ξ from any values γ/γ∗, as discussed in [36].
However, for higher volume fractions the mutual influence of particular fibres as mag-
netic dipoles should not be neglected (as in standard mixture theories); for (nearly)
periodic structures this can be handled using e. g. the two-scale homogenization, refer-
ring to the numerical analysis of certain auxiliary periodic boundary value problem,
applied to one partial differential cell equation by [3], p. 96.

In practice, for the identification of ξ the above sketched magnetic approach can
be reliable; nevertheless, this needs to install the Hall probe inside certain number of
drilled holes, which allows detection of material structure even inside massive building
constructions, but may not be classified as a low-invasive treatment. Moreover, the
estimate of fibre orientation is more complicated and practical results may be worse
than those from radiographic images.

3.3. Time-harmonic electromagnetic fields. The electromagnetic measure-
ment and identification system relies on the analysis coming from (3.8), making use of
some special choices and simplifications. In the case for one-dimensional modelling,
open to various generalizations, a circuit consisting of (parallel or serial) capacitors,
solenoids and resistors can be characterized by their capacitance C, inductance L and
resistance R, as sketched on the small right scheme on Figure 3.1, that are propor-
tional to ε, µ and σ (in our general notation). Thus, unlike the magnetic approach,
more free parameters, including the frequency ω, can be utilized, in the formulation
of the identification problem, which offers namely a possibility to handle material
structures in various distances from the building surface.

The original measurement equipment, designed and constructed at BUT, is now in
the process of patent registration, thus the left part of Figure 3.1 shows only the phys-
ical idea, not all technical details. Two photos document the preparation of special
specimens for calibration curves (which can be correlated with the results of numer-
ical analysis of certain simplified version of (3.8) with homogenized characteristics)
and the first experience with practical measurements. However, this method is still
in progress, involving the more detailed study of its fundamentals and applicability.
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4. Conclusion. In this paper we have introduced four methods of experimental
identification of i) and ii) and sketched the corresponding computational algorithms.
To reach the aim to formulate some general methodology (as promised in Introduc-
tion), a lot of research work is needed: not only the progress in the mathematical
analysis and computational algorithms related i) and ii), including the homogenization
effects (formulation of macroscopic material characteristics), but also in the optimiza-
tion of experimental settings, namely in the case of electromagnetic measurements,
and in the proper analysis of similarity of relevant physical processes, needed for any
reasonable calibration. New ideas may come from the discussion at Algoritmy 2016.
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[12] S. Kärkkäinen and E. B. Vedel Jensen, Estimation of fibre orientation from digital images.

Image Analysis and Stereology, 20 (2001), pp. 199–202.
[13] A. Krasnikovs, V. Zaharevskis, O. Kononova, V. Lusi, A. Galushchak and E. Zaleskis,

Fiber concrete properties control by fibers motion – investigation in fresh concrete during
casting. Industrial Engineering – 8th International DAAAM Baltic Conference in Tallin,
2012, Part V: Materials Engineering, #10, 6 pp.

[14] G. Kristensson, Homogenization of spherical inclusions. Progress in Electromagnetic Re-
search, 42 (2003), pp. 1–25.

[15] J. F. Lataste, M. Behloul and D. Breysse, Characterisation of fibres distribution in a steel
fibre reinforced concrete with electrical resistivity measurements. NDT & E International
(Independent Nondestructive Testing and Evaluation), 41 (2008), pp. 638–647.



STRUCTURE IDENTIFICATION OF . . . CEMENTITIOUS COMPOSITES 253
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2006.

[27] V. A. Rukavishnikov and A. O. Mosolapov, New numerical method for solving time-
harmonic Maxwell equations with strong singularity. Journal of Computational Physics,
231 (2012), pp. 2438-2448.

[28] A. H. Sihvola and I. V. Lindell, Effective permeability of mixtures. Progress in Electromag-
netics Research, 6 (1992), pp. 153-180.

[29] D. V. Soulioti, N. M. Barkoula, A. Papietis and T. E. Matikas, Effects of fibre geometry
and volume fraction on the flexural behaviour of steel-fibre reinforced concrete. Interna-
tional Journal for Experimental Mechanics, 47 (2011), pp. 535–541.

[30] M. O. Steinhauser, Computational Mulsiscale Modeling of Fluids and Solids, Springer, 2008.
[31] N. Svanstedt, Multiscale stochastic homogenization of convection-diffusion equations. Appli-

cations of Mathematics, 53 (2008), pp. 143–155.
[32] L. Tartar, Quelques remarques sur l’homognsaition. In: Functional Analysis and Numerical

Analysis – Proceedings of the Japan-France Seminar, Japanese Society for Promotion of
Science (1978), pp. 136–212.

[33] M. Tunák and A. Linka, Analysis of planar anisotropy of fibre systems by using 2D Fourier
transform. Fibres & Textiles in Eastern Europe, 15 (2007), pp. 86–90.

[34] R. Urban, P. Fiala, M. Hanzelka and J. Mikulka, Stochastic models of electrodynamics
and numerical models. 33rd PIERS (Progress In Electromagnetics Research Symposium)
in Taipei (China), 2013, pp. 33–37.

[35] S. Van Damme, A. Franchois, D. De Zutter ND L. Taerwe, Nondestructive determina-
tion of the steel fiber content in concrete slabs with an open-ended coaxial probe. IEEE
Transactions of Geoscience and Remote Sensing, 42 (2004), pp. 2511–2521.

[36] J. Vala and M. Horák, Nondestructive identification of engineering properties of metal fibre
composites. 10-th ICNAAM (International Conference of Numerical Analysis and Applied
Mathematics) in Kos (Greece), AIP Conference Proceedings, 1479 (2012), pp. 2208–2211.
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