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NEW SECOND ORDER UP-WIND SCHEME FOR OBLIQUE
DERIVATIVE BOUNDARY VALUE PROBLEM∗

MATEJ MEDĽA† AND KAROL MIKULA‡

Abstract. This work is devoted to solving the Laplace equation with an oblique derivative
prescribed as a boundary condition on a non-uniform logically rectangular grids. Laplace equation
is solved using a finite volume method and we use new up-wind type discretization for the oblique
derivative. In order to approximate Laplace equation on non-uniform 3D meshes,the normal deriva-
tive is split into the tangential derivative on finite volume faces and derivative in the direction of the
vector connecting representative points of finite volumes. New second order up-wind discretization of
the oblique derivative, based on linear reconstruction of solution on 3D grid, is presented. A gradient
is used for a better approximation of unknown value on the boundary of finite volume. Since both,
up-wind and finite volume method, are second order, the whole scheme is second order.
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1. Introduction. The Laplace equation is a partial differential equation which
describes a variety of physical phenomena. This work deals with finding solution of the
Laplace equation with the oblique derivative prescribed on the part of the boundary

−∆T (x) = 0, x ∈ Ω ⊂ R3,(1.1)

v(x) · ∇T (x) = g(x), x ∈ Γ,(1.2)

T (x) =TDir(x), x ∈ ∂Ω− Γ,(1.3)

where Γ is the part of the boundary with derivative in the direction v prescribed.
Finding a solution on a complex computational domain can be difficult. That’s why
we use numerical methods. This work deals with finding the solution of (1.1) on
non-uniform hexahedron grids using the finite volume method [4]. The problem (1.1)
has application in physical geodesy, in determination of the Earth gravity field, and
is called the Geodetic Boundary Value Problem [8, 3, 1], where T (x) is a so called
disturbing potential, which is a real Earth gravity potential minus a so called normal
gravity potential of a rotating ellipsoid. The computational domain is a volume over
the Earth’s topography. A bottom boundary has a gravity disturbances prescribed
and the remaining boundary has the disturbing potential prescribed by using informa-
tion from satellite missions and global geopotential models. Because of compatibility
of these two boundary conditions a part of the bottom boundary near side boundaries
has also the disturbing potential prescribed.

The paper is organized as follows. In Section 2 we describe our method for
approximation of the Laplace equation. In Section 3 we describe approximation of
the oblique derivative boundary condition. And in Section 4 we discuss numerical
experiments.
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2. Approximation of the Laplace equation. Let us have Laplace equation
on a three dimensional domain Ω with Dirichlet boundary conditions

−∆T (x) = 0, x ∈ Ω(2.1)

T (x) = TDir, x ∈ ∂Ω.(2.2)

We divide the domain Ω into the regular hexahedron grid. Vertices of hexahe-
dron represent the representative points of finite volumes constructed later. Repre-
sentative points are denoted by xi,j,k. Hexahedron finite volumes are constructed
around inner (those that do not lie on the boundary ∂Ω) representative points. Let
p, q, r ∈ {−1, 0, 1} and let Nint denote set of all (p, q, r),|p|+ |q|+ |r| = int. Vertices
of finite volumes are denoted by xp,q,ri,j,k , where (p, q, r) ∈ N3, see Figure 2.1. Vertex

xp,q,ri,j,k is constructed in such way that is located in the center of eight neighbouring
representative points, i.e.,

(2.3) xp,q,ri,j,k =
1

8

∑
(l,m,n)∈B(p,q,r)

xi+l,j+m,k+n,

where B(p, q, r) = {(p, q, r),(p, q, 0),(p, 0, r),(p, 0, 0),(0, q, r),(0, q, 0),(0, 0, r),(0, 0, 0)}.
The finite volume associated with the representative point xi,j,k is denoted by Vi,j,k.

By integrating the equation (2.1) over the finite volume Vijk we obtain

(2.4)

∫
Vi,j,k

−∆Tdx = 0.

Using Green’s theorem we obtain

(2.5)

∫
∂Vi,j,k

−∇T · ndτ = 0.

Considering that the finite volume Vi,j,k has neighbouring volumes Vi+p,j+q,k+r,
(p, q, r) ∈ N1with non-zero measure of the common boundary, and ep,q,ri,j,k is the bound-
ary between volumes Vi,j,k and Vi+p,j+q,k+r, we can rewrite the equation (2.5) to the
form

(2.6) −
∑

(p,q,r)∈N1

∫
ep,q,ri,j,k

∇T · ndτ = 0.

Unknown values Ti,j,k are considered in points xi,j,k.
Unit vector sp,q,ri,j,k , which is pointing from the neighbouring point xi,j,k to the

point xi+p,j+q,k+r, is given by

(2.7) sp,q,ri,j,k =
xi+p,j+q,k+r − xi,j,k
|xi+p,j+q,k+r − xi,j,k|

,

where |x| is Euclidian norm of a vector x. Let us introduce new operations on the set
N1

⊕(p, q, r) =


(p, 1, 1),

(1, q, 1),

(1, 1, r),

p, 6= 0

q, 6= 0

r, 6= 0

, 	(p, q, r) =


(p,−1,−1),

(−1, q,−1),

(−1,−1, r),

p 6=,
q 6= 0

r 6= 0
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Fig. 2.1. Finite volume

�(p, q, r) =


(p, 1,−1),

(1, q,−1),

(1,−1, r),

p 6= 0

q 6= 0

r 6= 0

, �(p, q, r) =


(p,−1, 1),

(−1, q, 1),

(−1, 1, r),

p 6= 0

q 6= 0

r 6= 0

Thanks to our structure of finite volumes, the faces of finite volumes are given by
four vertices. These vertices are used to compute tangent vectors. The first tangent
vector tp,q,ri,j,k to the boundary between Vi,j,k and Vi+p,j+q,k+r is given by

(2.8) tp,q,ri,j,k =
x
⊕(p,q,r)
i,j,k − x	(p,q,r)i,j,k

|x⊕(p,q,r)i,j,k − x	(p,q,r)i,j,k |
,

where x
⊕(p,q,r)
i,j,k and x

	(p,q,r)
i,j,k are vertices of ep,q,ri,j,k , those connecting line is diagonal of

the face ep,q,ri,j,k . The second tangent vector fp,q,ri,j,k is given by other two vertices of ep,q,ri,j,k ,

(2.9) fp,q,ri,j,k =
x
�(p,q,r)
i,j,k − x�(p,q,r)

i,j,k

|x�(p,q,r)
i,j,k − x�(p,q,r)

i,j,k |
.

The normal vector to the boundary of the finite volume is then defined by

(2.10) np,q,r
i,j,k = tp,q,ri,j,k × fp,q,ri,j,k .

where np,q,r
i,j,k is the outer normal relative to the finite volume Vi,j,k. See Figure 2.1.

Since the vector spqrijk can be expressed as a linear reconstruction of npqr
ijk , tpqrijk ,

fpqrijk , it holds

(2.11) ∇T · spqrijk = ∇T · (βpqr
ijk n

pqr
ijk + αpqr

ijk t
pqr
ijk + γpqrijk f

pqr
ijk )

= βpqr
ijk∇T · n

pqr
ijk + αpqr

ijk∇T · t
pqr
ijk + γpqrijk∇T · f

pqr
ijk ,

where coefficients αpqr
ijk , βpqr

ijk and γpqrijk are given by solving a linear system of equations

(2.12) spqrijk = βpqr
ijk n

pqr
ijk + αpqr

ijk t
pqr
ijk + γpqrijk f

pqr
ijk .

Therefore, for the derivative in the direction of normal we get

(2.13) ∇T · npqr
ijk =

1

βpqr
ijk

(∇T · spqrijk − α
pqr
ijk∇T · t

pqr
ijk − γ

pqr
ijk∇T · f

pqr
ijk ).
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The equation (2.13) is approximated by

(2.14)
1

βpqr
ijk

(∇T · spqrijk − α
pqr
ijk∇T · t

pqr
ijk − γ

pqr
ijk∇T · f

pqr
ijk ) ≈

1

βpqr
ijk

Tijk − Ti+p,j+q,k+r

dpqrijk

−
αpqr
ijk

βpqr
ijk

T
⊕(p,q,r)
i,j,k − T	(p,q,r)i,j,k

|x⊕(p,q,r)i,j,k − x	(p,q,r)i,j,k |
−
γpqrijk

βpqr
ijk

T
�(p,q,r)
i,j,k − T�(p,q,r)

i,j,k

|x�(p,q,r)
i,j,k − x�(p,q,r)

i,j,k |
,

where T
⊕(p,q,r)
i,j,k are values in points x

⊕(p,q,r)
i,j,k and dpqrijk is the distance between xp,q,ri,j,k

and xi,j,k.
The equation (2.6) can be rewritten using the equation (2.14) to form

(2.15) −
∑

(p,q,r)∈N1

m(epqrijk )

(
1

βpqr
ijk

Tijk − Ti+p,j+q,k+r

dpqrijk

−
αpqr
ijk

βpqr
ijk

T
⊕(p,q,r)
i,j,k − T	(p,q,r)i,j,k

|x⊕(p,q,r)i,j,k − x	(p,q,r)i,j,k |
−
γpqrijk

βpqr
ijk

T
�(p,q,r)
i,j,k − T�(p,q,r)

i,j,k

|x�(p,q,r)
i,j,k − x�(p,q,r)

i,j,k |

)
=0,

where m(epqrijk ) is areas of the face epqrijk . For the finite volumes, that are adjacent to
the boundary finite volumes, the value Ti+p,j+q,k+r is given by the Dirichlet boundary

condition (2.2). Values T
⊕(p,q,r)
i,j,k are unknowns not given in representative points, but

unknowns in points x
⊕(p,q,r)
i,j,k , vertices of finite volume. They lie in the center of

corresponding representative points (2.3). So values T
⊕(p,q,r)
i,j,k are approximated by

(2.16) T
⊕(p,q,r)
i,j,k = T (x

⊕(p,q,r)
i,j,k ) =

1

8

∑
(l,m,n)∈B(⊕(p,q,r))

Ti+l,j+m,k+n,

and values T
	(p,q,r)
i,j,k , T

�(p,q,r)
i,j,k , T

�(p,q,r)
i,j,k in the equation (2.15) can be expressed simi-

larly.
Equation (2.15) is given for every inner finite volume Vi,j,k with the unknown

value Ti,j,k. Therefore, we have as many equations as unknowns, and we get the linear
system, which can be solved, e.q. by BiCGStab method [9]. Numerical experiment
for solving the problem (2.1)-(2.2) is presented in Section 4.

3. Approximation of the oblique derivative boundary condition. Let us
have the Laplace equation (2.1) on the domain Ω with prescribed derivative in the
direction v, pointing outward from Ω, on the part of the domain boundary Γ and the
Dirichlet boundary condition (2.2) on the rest of the boundary. The oblique derivative
boundary condition is thus given by

(3.1) v(x) · ∇T (x) = g(x), x ∈ Γ.

The computational domain is divided by finite volumes as in the previous section.
However the finite volumes are constructed also around representative points on the
boundary Γ. Vertices common to boundary finite volumes and inner finite volumes
are located in the center of representative points, defined by (2.3). Other vertices of
boundary finite volumes are obtained by mirroring of the former ones through Γ. The
set of added finite volumes is denoted by O.
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We understand the equation (3.1) as advection equation, see [4], we integrate it
over the finite volume Vi,j,k ∈ O:

(3.2)

∫
Vi,j,k

v · ∇Tdx =

∫
p

gdx.

Since

(3.3) v · ∇T = ∇ · (vT )− T∇ · v,

we can rewrite the equation (3.2) into the form

(3.4)

∫
Vi,j,k

∇ · (vT )dx−
∫
Vi,j,k

T∇ · vdx =

∫
Vi,j,k

gdx.

Since the value T is considered constant on the finite volume, we can take out T in
the second integral

(3.5)

∫
Vi,j,k

∇ · (vT )dx− Ti,j,k
∫
Vi,j,k

∇ · vdx =

∫
Vi,j,k

gdx.

Using Green’s theorem

(3.6)

∫
∂Vi,j,k

Tv · nds− Ti,j,k
∫
∂Vi,j,k

v · nds =

∫
Vi,j,k

gdx.

Suppose g is constant on the finite volume and T is constant on its faces ep,q,ri,j,k ,then
the equation (3.6) can be rewritten as

(3.7)
∑

(p,q,r)∈N1

T p,q,r
i,j,k

∫
ep,q,ri,j,k

v · nds− Ti,j,k
∑

(p,q,r)∈N1

∫
ep,q,ri,j,k

v · nds = |Vi,j,k|g,

where T p,q,r
i,j,k is the value on the boundary ep,q,ri,j,k and |Vi,j,k| is a 3D measure of the

finite volume Vi,j,k.

The up-wind principle will be used in the sequel. Let us define the integrated flux
over ep,q,ri,j,k by

(3.8) vp,q,ri,j,k =

∫
ep,q,ri,j,k

v · nds.

If vp,q,ri,j,k > 0, ep,q,ri,j,k is an outflow face. Thus T p,q,r
i,j,k should be computed by using the

information from inside of the finite volume, T p,q,r
i,j,k := Ti,j,k +∇Ti,j,k · (xp,q,ri,j,k −xi,j,k),

where ∇Ti,j,k is an approximation of gradient in finite volume Vi,j,k. If vp,q,ri,j,k < 0,

ep,q,ri,j,k represents an inflow face, thus T p,q,r
i,j,k is computed using information from the

neighbouring finite volume. Hence T p,q,r
i,j,k := Ti+p,j+q,k+r + ∇Ti+p,j+q,k+r · (xp,q,ri,j,k −

xi+p,j+q,k+r), see Figure 3.1.

Let us split the set N1 for (i, j, k) into N in
1 (i, j, k) and Nout

1 (i, j, k), N in
1 (i, j, k) are

indexes of neighbours for which vp,q,ri,j,k < 0 and Nout
1 (i, j, k) are indexes of neighbours

for which vp,q,ri,j,k > 0. Then the equation (3.7) can be rewritten in the form
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Ti,j,k +∇T (̇x−1,0,0i,j,k − xi,j,k)

vi,j,k

Ti,j,k +∇T (̇x0,−1,0i,j,k − xi,j,k)

Ti,j,k +∇T (̇x1,00i,j,k − xi+1,j,k)

Ti,j,k +∇T (̇x0,1,0i,j,k − xi,j+1,k)

Fig. 3.1. Neighbor finite volume

(3.9)
∑

(p,q,r)∈Nin
1 (i,j,k)

(Ti+p,j+q,k+r +∇Ti+p,j+q,k+r · (xp,q,ri,j,k − xi+p,j+q,k+r))vp,q,ri,j,k

+
∑

(p,q,r)∈Nout
1 (i,j,k)

(Ti,j,k +∇Ti,j,k · (xp,q,ri,j,k − xi,j,k))vp,q,ri,j,k

−
∑

(p,q,r)∈Nin
1 (i,j,k)

Ti,j,kv
p,q,r
i,j,k −

∑
(p,q,r)∈Nout

1 (i,j,k)

Ti,j,kv
p,q,r
i,j,k = |Vi,j,k|g,

where vp,q,ri,j,k is approximated by

(3.10) vp,q,ri,j,k = |ep,q,ri,j,k |(v · n
p,q,r
i,j,k ),

where |ep,q,ri,j,k | is a 2D measure of the face ep,q,ri,j,k . By using functions max(0, vp,q,ri,j,k ) and

min(0, vp,q,ri,j,k ) we can rewrite (3.9) as

(3.11)∑
(p,q,r)∈N1

[
(Ti+p,j+q,k+r +∇Ti+p,j+q,k+r · (xp,q,ri,j,k − xi+p,j+q,k+r)) min(0, vp,q,ri,j,k )

+ (Ti,j,k +∇Ti,j,k · (xp,q,ri,j,k − xi,j,k)) max(0, vp,q,ri,j,k )− Ti,j,kvp,q,ri,j,k

]
= |Vi,j,k|g.

The gradient on the finite volume Vi,j,k can be expressed using derivatives in three
linear independent directions. Let us denote these directions p, q, r and define them
by

(3.12) p =
xi+p,j,k − xi,j,k|
|xi+p,j,k − xi,j,k|

, q =
xi,j+q,k − xi,j,k
|xi,j+q,k − xi,j,k|

, r =
xi,j,k+r − xi,j,k
|xi,j,k+r − xi,j,k|

,

where values of p, q, r ∈ {−1, 1} are chosen according to up-wind direction. Ap-
proximation of derivatives in these directions are

(3.13)
∂T

∂p
≈ Ti+p,j,k − Ti,j,k
|xi+p,j,k − xi,j,k|

,
∂T

∂q
≈ Ti,j+q,k − Ti,j,k
|xi,j+q,k − xi,j,k|

,
∂T

∂r
≈ Ti,j,k+r − Ti,j,k
|xi,j,k+r − xi,j,k|

,
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and since

∂T

∂p
= ∇T · p =

∂T

∂x
px +

∂T

∂y
py +

∂T

∂z
pz,(3.14)

∂T

∂q
= ∇T · q =

∂T

∂x
qx +

∂T

∂y
qy +

∂T

∂z
qz,

∂T

∂r
= ∇T · r =

∂T

∂x
rx +

∂T

∂y
ry +

∂T

∂z
rz,

we obtain a system of linear equations for unknowns ∂T
∂x , ∂T

∂y , ∂T
∂z . By solution of

(3.14) we get

∂T

∂x
= −
−pzqy ∂T

∂r + pyqz
∂T
∂r − qz ∂T

∂p ry + pz
∂T
∂q ry + qy

∂T
∂p rz − py ∂T

∂q rz

pzqyrx − pyqzrx − pzqxry + pxqzry + pyqxrz − pxqyrz
,(3.15)

∂T

∂y
= −

pzqx
∂T
∂r − pxqz ∂T

∂r + qz
∂T
∂p rx − pz ∂T

∂q rx − qx ∂T
∂p rz + px

∂T
∂q rz

pzqyrx − pyqzrx − pzqxry + pxqzry + pyqxrz − pxqyrz
,

∂T

∂z
= −
−pyqx ∂T

∂r + pxqy
∂T
∂r − qy ∂T

∂p rx + py
∂T
∂q rx + qx

∂T
∂p ry − px ∂T

∂q ry

pzqyrx − pyqzrx − pzqxry + pxqzry + pyqxrz − pxqyrz
,

and thus

∇Ti,j,k =
p× q∂T

∂r + q× r∂T
∂p + r× p∂T

∂q

det(p,q, r)
,(3.16)

where

det(p,q, r) = det

 px py pz
qx qy qz
rx ry rz

 .(3.17)

If we substitute derivatives in directions p, q, r in (3.16) by the approximations (3.13)
we get

∇Ti,j,k ≈
p× q

Ti+p,j,k−Ti,j,k

|xi+p,j,k−xi,j,k| + q× r
Ti,j+q,k−Ti,j,k

|xi,j+q,k−xi,j,k| + r× p
Ti,j,k+r−Ti,j,k

|xi,j,k+r−xi,j,k|

det(p,q, r)
.(3.18)

Now we have to decide, which values p ∈ {−1, 1}, q ∈ {−1, 1}, r ∈ {−1, 1} to use
in (3.18). To that goal we use a kind of up-wind approach again. The preferred choice
of neighbouring value is given by the face with larger inflow flux. If there is no inflow
face, we use outflow neighbour with smallest outflow flux. We define a function

(3.19) I(a, b, v1, v2) =

{
a, v1 ≤ v2
b, v1 > v2,

and using it in (3.18) we get
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∇Ti,j,k =

(
p× q

I(Ti+1,j,k, Ti−1,j,k, v
1,0,0
i,j,k , v

−1,0,0
i,j,k )− Ti,j,k

|I(xi+1,j,k, xi−1,j,k, v
1,0,0
i,j,k , v

−1,0,0
i,j,k )− xi,j,k|

(3.20)

+ q× r
I(Ti,j+1,k, Ti,j−1,k, v

0,1,0
i,j,k , v

0,−1,0
i,j,k )− Ti,j,k

|I(xi,j+1,k, xi,j−1,k, v
0,1,0
i,j,k , v

0,−1,0
i,j,k )− xi,j,k|

+ r× p
I(Ti,j,k+1, Ti,j,k−1, v

0,0,1
i,j,k , v

0,0,−1
i,j,k )− Ti,j,k

|I(xi,j,k+1, xi,j,k−1, v
0,0,1
i,j,k , v

0,0,−1
i,j,k )− xi,j,k|

)/
det(p,q, r),

where vectors p, q, r are

p =
I(xi+1,j,k, xi−1,j,k, v

1,0,0
i,j,k , v

−1,0,0
i,j,k )− xi,j,k∣∣∣I(xi+1,j,k, xi−1,j,k, v

1,0,0
i,j,k , v

−1,0,0
i,j,k )− xi,j,k

∣∣∣ ,(3.21)

q =
I(xi,j+1,k, xi,j−1,k, v

0,1,0
i,j,k , v

0,−1,0
i,j,k )− xi,j,k∣∣∣I(xi,j+1,k, xi,j−1,k, v

0,1,0
i,j,k , v

0,−1,0
i,j,k )− xi,j,k

∣∣∣ ,
r =

I(xi,j,k+1, xi,j,k−1, v
0,0,1
i,j,k , v

0,0,−1
i,j,k )− xi,j,k∣∣∣I(xi,j,k+1, xi,j,k−1, v

0,0,1
i,j,k , v

0,0,−1
i,j,k )− xi,j,k

∣∣∣ .
Substituting (3.20) into the (3.11), we get equations for boundary finite volumes
Vi,j,k ∈ O. Due to construction of our scheme the equations for these finite volumes
may require two neighbouring finite volumes in directions of q and r. For those,
which do not have such neighbours, we have to prescribe Dirichlet boundary con-
ditions, which is also in accordance with the compatibility of boundary conditions
mentioned in the introduction. All these equations together with equations from the
discretization of Laplace equation form a numerical scheme for solving the problem
(1.1).

4. Numerical experiment. The computational domain is a segment of 3D
space where the bottom boundary is a perturbed sphere, see Figure 4.1, left. In order
to test the numerical scheme we constructed the most coarse grid by using a surface
evolution of the bottom boundary, see [2, 7]. Then a refined grids are constructed
by adding new representative points in-between representative points of previous grid
using the equation (2.3). The exact solution is taken as T (x) = 1

|x−(0.1,0.2,0.3)| and

the exact solution values are prescribed on the Dirichlet part of the boundary. Five
experiments are presented. In Table 4.1 errors in L2-norm, maximum norm, and
the experimental order of convergence (EOC) for the case with Dirichlet boundary
condition only is presented, i.e., solving (2.1)-(2.2). Next tables show errors and EOC
for the case with oblique derivative prescribed on the bottom boundary Γ, see Figure
4.1, right. In Tables 4.2 and 4.3 the vector v is in the direction of the ∇T (x). The
Table 4.2 shows results of classical first order up-wind scheme and Table 4.3 shows
results for our second order up-wind scheme. In Tables 4.4 and 4.5 the vector v is not
in the direction of the gradient T (x), in this case ∇T (x) is rotated alternately by an
angle of π/6 around x, y, z axes to get the vector v, see Figure 4.1, right. The Table
4.4 shows results for the first order up-wind scheme and the Table 4.5 shows results
for the up-wind scheme presented in this paper.
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hmax ||ehmax
||L2

EOC ||ehmax
||max EOCmax

0.125851 9.15713e-05 0.000477755
0.0642099 2.0156e-05 2.24924 0.000163837 1.59036
0.0324264 4.71736e-06 2.12571 5.50703e-05 1.59586
0.0162958 1.14219e-06 2.06128 1.66108e-05 1.74192
0.00817221 2.81252e-07 2.0306 4.82242e-06 1.792

Table 4.1
Results of our scheme with Dirichlet boundary conditions only.

hmax ||ehmax
||L2

EOC ||ehmax
||max EOCmax

0.125851 0.000802119 0.00643173
0.0642099 0.000496918 0.711546 0.00490152 0.403746
0.0324264 0.000290903 0.783734 0.00328474 0.585871
0.0162958 0.000166066 0.814758 0.00207933 0.664534
0.00817221 9.37399e-05 0.82858 0.00127585 0.707698

Table 4.2
Results of our scheme with oblique derivative boundary conditions approximated by classical

first order upwind, oblique vector v is in direction of gradient.

hmax ||ehmax ||L2 EOC ||ehmax ||max EOCmax

0.125851 0.00014071 0.00142455
0.0642099 3.85122e-05 1.92546 0.000571048 1.35842
0.0324264 1.30241e-05 1.58694 0.000220138 1.39526
0.0162958 4.14275e-06 1.66473 7.53294e-05 1.55855
0.00817221 1.25519e-06 1.73012 2.40939e-05 1.65165

Table 4.3
Results of our scheme with oblique derivative boundary conditions approximated by our second

order upwind, oblique vector v is in direction of gradient.

hmax ||ehmax ||L2 EOC ||ehmax ||max EOCmax

0.125851 0.000724601 0.00655075
0.0642099 0.00053919 0.439194 0.00621504 0.0781763
0.0324264 0.000367634 0.560583 0.0049306 0.338871
0.0162958 0.000231581 0.671677 0.00336302 0.55608
0.00817221 0.000139933 0.729914 0.00214585 0.651011

Table 4.4
Results of our scheme with oblique derivative boundary conditions approximated by classical

first order upwind, oblique vector v is not in direction of gradient.

hmax ||ehmax ||L2 EOC ||ehmax ||max EOCmax

0.125851 0.000210131 0.00176395
0.0642099 6.52277e-05 1.7384 0.0007382 1.29445
0.0324264 2.42012e-05 1.45127 0.000324416 1.20347
0.0162958 7.85634e-06 1.63513 0.00013536 1.27035
0.00817221 2.47186e-06 1.67546 5.0292e-05 1.43457

Table 4.5
Results of our scheme with oblique derivative boundary conditions approximated by our second

order upwind, oblique vector v is not in direction of gradient.
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Fig. 4.1. Left: computational domain, Right: oblique derivative directions

4.1. Conclusion. In the paper we present new numerical method for solving
the Laplace equation with oblique derivative prescribed on a part of the boundary.
As one can see in Tables, the experimental order of convergence is approaching two
and the errors are much smaller then these obtained by the classical up-wind scheme
both in L2 and maximum norms. In the future we plan to apply this method to real
Geodetic BVPs.
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