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DISCRETE DUALITY FINITE VOLUME SCHEME FOR SOLVING
HESTON MODEL ∗

ANGELA HANDLOVIČOVÁ†

Abstract. New numerical scheme for tensor diffusion equation based on discrete duality finite
volume (DDFV) method is derived. Tensor diffusion equation represents an important model in many
fields of science. We focused our attention to the problem which arises in financial mathematics and
is known as 2D Heston model see [5]. Existence and uniqueness of numerical solution is derived and
numerical experiment using proposed scheme are included.
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1. Introduction. Heston model in transformed form can be represent by

∂u

∂τ
+
−→
A · ∇u = ∇ · (B∇u)− ru, in Ω× [t1, t2],(1.1)

where unknown function is u = u(x, y, τ) and

B =
1

2
y

(
1 ρσ
ρσ σ2

)
,
−→
A = −

(
r − 1

2y −
1
2ρσ

κ(θ − y)− λy − 1
2σ

2

)
.(1.2)

Ω is rectangular 2D domain Ω = (Xr, Xl) × (0, Y ) and [t1, t2] is time interval: 0 <
t1 < t2 < ∞. The financial parameters of the model have the following properties:
ρ ∈ 〈−1, 1, 〉, σ > 0, r > 0, κ > 0, θ > 0, λ > 0. For further details see [5] and
references therein.

The above problem can be endowed with the initial condition and boundary
conditions of the type

u (x, y, 0) = max (0, ex − 1) ,(1.3)

u (Xa, y, τ) = 0, u (Xb, y, τ) = eXb − e−rτ ,
∂u (x, Y, τ)

∂n
= 0,

∂u (x, 0, τ)

∂n
= 0,(1.4)

where n is the outward normal to the boundary ∂Ω.

2. Discretization. We present here fully implicit scheme. For discretization in
time we use uniform discrete time step k = t2−t1

N and tn = nk for n = 0, 1, . . . N . The
time derivative is approximated using the backward difference. We denote by un the
piecewise constant function on each time interval [tn−1, tn], n = 1, . . . N . We have

un − un−1

k
= ∇. (B∇un)−∇ ·

(−→
Aun

)
+
(
∇ · −→A

)
un − run.(2.1)
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2.1. Classical Finite volume method in 2D. For the space discretization
we use method based on finite volumes. That means our numerical solution will be
piecewise constant function on each finite volume and each time interval [tn−1, tn].
For the sake of simplicity in subsections 2.1 and 2.2 we will use the notation: x :=
(x, y) ∈ Ω. Moreover in financial mathematics (Heston model) and in image processing
problems (anisotropic tensor diffusion model) we often use the rectangular domain
in 2D. Following [4] our finite volume mesh will consist of cells Vij ∈ Th with the
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ij
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ij
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ij
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d−10i,j
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Fig. 2.1. Finite volume discretization

measure m(Vij), associated with DF nodes xij := (xij , yij) ∈ Vij , say i = 1, . . . , N1,
j = 1, . . . , N2 in such a way that Ω =

⋃
Vij∈Th

. Further we denote σpqij with the

1D measure m(σpqij ) the edges of finite volume Vij and the distance between the
neighbouring representative points we denote by |xij − xi+p,j+q| = dpqij , |p|+ |q| = 1.

Especially we denote d−101j = dist(x1j , ∂Ω) and d10N1j
= dist(xN1j , ∂Ω) due to Dirichlet

boundary conditions. Unit outward normal vector to the edge σpqij we denote by
npqij , |p|+ |q| = 1 as is shown in Figure 2.1

Integrate the equation (2.1) over finite volume Vij , using the same form for ad-
vection term as in [5], use divergence theorem and the fact that unij is a piecewise
constant function on finite volume Vij , and time interval [tn−1, tn], we obtain

unij − u
n−1
ij

k
m(Vij) =

∑
|p|+|q|=1

∫
σpq
ij

B∇unnpq
ij ds−(2.2)

∑
|p|+|q|=1

∫
σpq
ij

−→
Aunnpq

ij ds+ unij

∫
Vij

(
∇ · −→A

)
dx− runijm(Vij).

We further denote the coefficient for the tensor and advection term for each finite
volume Vij and each edge σpqij in the form

Bpqij =

(
b11ij,pq b12ij,pq
b21ij,pq b22ij,pq

)
,
−→
A
pq

ij =

(
a1ij,pq
a2ij,pq

)
.(2.3)

Remark 2.1. For our numerical approximation we can express all coefficients as a
constant function on the whole edge for example by a value at the central point of an
edge, which will be very useful for our purpose as we will see in the next section.

So the question now is to approximate the gradients on edges of the finite volume
properly. As we can see in Figure 2.2, the natural way is to approximate the gradient
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as a piecewise constant function on diamond around the edges. The only problem is
how to approximate the values in corner of the finite volume. One possibility is used
for example in [5] where the average values of the neighbouring values in representative
points are used. Another possibility will be described below.

p qΣ

Fig. 2.2. Rectangular mesh (black lines) and one diamond around the edge σ (blue lines) with
representative point p, q of neighbouring finite volumes

2.2. Discrete duality finite volume method. The main idea is derived in [3]
and [1] for elliptic equations and for parabolic type equation in [4]. For much more
general problems very important results are in [2] but they do not cover the tensor
diffusion term as in our model.

In this case we have two meshes first one as in classical finite volumes and second
one, we called it dual mesh is shifted to the north-east direction, consists of cells
V ij ∈ T h with measure m(V ij) associated only with DF nodes xij , say i = 0, . . . , N1,
j = 0, . . . , N2 in such a way that xij is the right top corner for the volume Vij of the
original mesh - see Figure 2.3. Again, all inner dual finite volumes are rectangles and
boundary volumes are created in such a way that Ω =

⋃
V ij∈T h

. All other entities are

denote in similar way as for primal mesh but ”barred”. The new unknown function
uh,k(t, x) will be given by discrete values in the corners of original rectangles and
is again piecewise constant function in space and time. We can define constant

Fig. 2.3. Example of sets of finite volumes for primal (red) and dual (black) meshes

gradients on diamond cells as we can see in Figure 2.4, which is the union of Dh and
Dh, where

Dh =
⋃

(i,j)=(0,0),...,(N1,N2)

Dij ,

where Dij has the vertices {xij , xi,j−1, xi+1,j , xij , } with degenerated (triangles) dia-
monds on the boundaries (for i = 0, or i = N1) and

Dh =
⋃

(i,j)=(0,0),...,(N1,N2)

Dij ,
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Fig. 2.4. Diamond cell (red
lines), where the gradient is con-
stant, primal mesh (dashed lines),
dual mesh (solid lines)

Fig. 2.5. Diamonds Dij

(gray) and diamonds Dij (white)
with primal-dual mesh and un-
knowns u (gray points) and u
(black points)

where Dij has the vertices {xij , xij , xi,j+1, xi−1,j} with degenerated (triangles) dia-
monds on the boundaries (for j = 0, or j = N2). Under this notation it is clear that
Ω = Dh ∪ Dh (see Figure 2.5).

Then the gradient can be define in the form:

∇uij =

(
ui+1,j − uij

d10ij
,
uij − ui,j−1
m(σ10

ij )

)
= (uijx , u

ij
y ) on Dij ,(2.4)

∇uij =

(
uij − ui−1,j
m(σ01

ij )
,
ui,j+1 − uij

d01ij

)
= (uijx , u

ij
y ) on Dij .

and similarly for the time dependent gradient at time level n.

To obtain numerical scheme for both primal and dual meshes, we must approxi-
mate all terms on the right hand side of (2.2). Notice that when at least one edge of
the finite volume belongs to ∂D then in these points boundary conditions are take into
account, that means for the Dirichlet boundary condition the unknowns un0,j = 0 for

j = 1, . . . , N2, un0,j = 0 for j = 1, . . . , N2−1, unN1+1,j = eXb−e−rkn for j = 1, . . . , N2,

unN1,j = eXb − e−rkn for j = 1, . . . , N2 − 1. For zero Neumann boundary condition
we pose at all additional so called ghost points values ui0 = ui1, ui,N2+1 = ui,N2 for
1 = 1, . . . , N1, and ui0 = ui1, ui,N2 = ui,N2+1 for 1 = 1, . . . , N1 − 1. We will derive
it for the primal mesh precisely. It can be done for the dual mesh analogously. Our
computation domain is rectangle, so we can construct both meshes as super admissible
mesh consisting of rectangles only with edges hx in x-direction and hy in y direction.
In this case m(Vij) = m(V ij) = hxhy, m(σij) = dij = hy, dij = m(σij) = hx . Under
this simplification we can approximate first term on the right hand side of (2.2) in
the form

∑
|p|+|q|=1

∫
σpq
ij

B∇unnpq
ij ds ≈ hy[b11ij,10u

ij,n
x + b12ij,10u

ij,n
y ] + hx[b21ij,01u

ij,n
x + b22ij,01u

ij,n
y ]−

hy[b11ij,−10u
i−1j,n
x + b12ij,−10u

i−1j
y ]− hx[b21ij,0−1u

ij−1,n
x + b22ij,0−1u

ij−1,n
y ].
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Second term can be express∑
|p|+|q|=1

∫
σpq
ij

−→
Aunnpq

ij ds ≈ hya
1
ij,10

unij + uni+1,j

2
+ hxa

2
ij,01

unij + uni,j+1

2
−

hya
1
ij,−10

unij + uni−1,j
2

− hxa2ij,0−1
unij + uni,j−1

2
.

and third term

unij

∫
Vij

(
∇ · −→A

)
dx ≈ unij

(
hya

1
ij,10 + hxa

2
ij,01 − hya1ij,−10 − hxa2ij,0−1

)
.

We can write numerical scheme for unknown value uij

unij − u
n−1
ij

k
hxhy + runijhxhy −(2.5)

hy[b11ij,10u
ij,n
x + b12ij,10u

ij,n
y ]− hx[b21ij,01u

ij,n
x + b22ij,01u

ij,n
y ] +

hy[b11ij,−10u
i−1j,n
x + b12ij,−10u

i−1j,n
y ] + hx[b21ij,0−1u

ij−1,n
x + b22ij,0−1u

ij−1,n
y ] +

hya
1
ij,10

uni+1j − unij
2

+ hxa
2
ij,01

unij+1 − unij
2

−

hya
1
ij,−10

uni−1j − unij
2

− hxa2ij,0−1
unij−1 − unij

2
= 0.

For unknown value uij we now use the Remark 2.1. If we denote for a moment the
coefficients for advection vector and diffusion tensor with ”bars” we can derive that
for all coefficients of the matrix B from (2.3) we have bij,10 = bi+1,j+1,0−1 bij,01 =
bi+1,j+1,−10 bij,−10 = bi,j,01 bij,0−1 = bi,j,10. And the same is true for the vector
−→
A . We have

unij − un−1ij

k
hxhy + runijhxhy −(2.6)

hy[b11i+1j+1,0−1u
i+1,j
x + b12i+1j+1,0−1u

i+1,j
y ]− hx[b21i+1j+1,−10u

i,j+1
x + b22i+1j+1,−10u

i,j+1
y ]

+hy[b11ij,01u
i,j
x + b12ij,01u

i,j
y ] + hx[b21ij,11u

i,j
x + b22ij,10u

i,j
y ] +

+hya
1
i+1j+1,0−1

uni+1j − uni,j
2

+ hxa
2
i+1j+1,−10

unij+1 − uni,j
2

−

hya
1
ij,01

uni−1j − uni,j
2

− hxa2ij,10
unij−1 − uni,j

2
= 0.

3. Existence and uniqueness of the numerical solution. At each time
step tn = nk we must solve linear system of equations for unknown values unij , i =
1, . . . N1, j = 1, . . . N2 and unij , i = 1, N1− 1, j− 1, . . . N2− 1 described in (2.5) and
(2.6). For further considerations we must use the properties of our data, that means

the coefficients of matrix B and advection vector
−→
A and a special construction of our

primal and dual mesh. Moreover we use a1ij = 1
2yij+ 1

2ρσ−r and a2ij = 1
2σ

2−κθ+κyij
.

Theorem 3.1. Let the discretization mesh has the properties described in section

2 and k, hx, hy have the same meaning. We denote by C = max{Y2 , r,
σ2

2 , κθ, κ+λ}.
Let us suppose

σ ≥ ρ, 1 ≥ ρσ.(3.1)
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Let the time step k fulfils the condition

k ≤ max{hx, hy}
C

.(3.2)

Then for each n = 1, . . . N there exists unique solution to the numerical scheme (2.5),
(2.6).

Proof. The existence and the uniqueness of numerical solution can be proved in
such a way that for homogeneous linear system there exists unique zero solution. For
this purpose we can rewrite our linear algebraic system in the form: Lun

h = f , where
unh =

(
un11, u

n
11, . . . , u

n
N1−1,N2−1, u

n
N1,N2

)
. The equation for unknown value unij for an

interior point is of the form

unijhxhy − khy[b11ij,10u
ij,n
x + b12ij,10u

ij,n
y ]− khx[b21ij,01u

ij,n
x + b22ij,01u

ij,n
y ] +

khy[b11ij,−10u
i−1j,n
x + b12ij,−10u

i−1j,n
y ] + khx[b21ij,0−1u

ij−1,n
x + b22ij,0−1u

ij−1,n
y ] +

khya
1
ij,10

uni+1j − unij
2

+ khxa
2
ij,01

unij+1 − unij
2

−

khya
1
ij,−10

uni−1j − unij
2

− khxa2ij,0−1
unij−1 − unij

2
+

krunijhxhy = un−1ij hxhy.(3.3)

For the unknown value unij for any point neighbouring to the non zero Dirichlet bound-
ary that means points xN1,j and for the unknown value unij for any point neighbouring
to the zero Dirichlet boundary that means points x1,j we have little bit another sit-
uation, because we must split appropriate approximation of space derivatives where
their members are the nodes on the boundary. For the page limit reasons we omit it
here. This can be done analogously for unknown value uij .

We notice that hy is the size of vertical diagonal of each Dij and hx the size of
horizontal diagonal of Dij . We denote by bij , aij the coefficients of the tensor and
convection terms from the equation evaluated at the barycentre of Dij . Analogously
hx is the size horizontal diagonal of Dij , hy the size of vertical diagonal of Dij and
bij , aij the coefficients of the tensor and convection terms from the equation evaluated
at the barycentre of Dij . Finally we denote by Dh,int the set of all diamonds Dij

for i = 1, . . . N1 − 1, j = 1, . . . N2 and by Dh,int the set of all diamonds Dij for
i = 2, . . . N1− 1, j = 1, . . . N2− 1. That means the terms for diamonds that have at
least one point belonging to the Dirichlet boundary condition we will treat extra.

Let us now pose the right hand side of all rows as zeros. First we multiply all
equations (3.3) for zero right hand side by unij and sum over all finite volumes of the
primal mesh. Using the usual finite volume property we have∑

Vij∈T
(1 + kr)(unij)

2hxhy +(3.4)

k
∑

Dij∈Dh,int

(
hxhy

(
b11ij (uij,nx )2 + b12ij u

ij,n
y uij,nx

)
+ hy

a1ij
2

((uni+1j)
2 − (unij)

2)

)
+

k
∑

Dij∈Dh,int

(
hxhy

(
b
22

ij (uij,ny )2 + b
21

ij u
ij,n
x uij,ny

)
+ hx

a2ij
2

((unij+1)2 − (unij)
2)

)
+

khy

N2∑
j=1

((
2b11N1,j

hx
−
a1N1j

2

)
(unN1j)

2 +

(
2b111,j
hx

+
a11j
2

)
(un1j)

2

)
+
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khx

N2−1∑
j=1

(
b
22

N1,jhy(uN1j,n
y )2 −

b
21

N1,jhy

hx
unN1−1,ju

N1,j,n
y

)
+

khx

N2−1∑
j=1

(
b
22

1,jhy(u1j,ny )2 −
b
21

1,jhy

hx
un1,ju

1,j,n
y

)
+

khx

N2−1∑
j=1

(
a2N1j

2
((unN1j+1)2 − (unN1j)

2) +
a21j
2

((un1j+1)2 − (un1j)
2)

)
= 0

and analogously for the unknowns of the dual mesh:∑
V ij∈T

(1 + kr)(unij)
2)hxhy +(3.5)

k
∑

Dij∈Dh,int

(
hxhy

(
b22ij (uij,ny )2 + b12ij u

ij,n
y uij,nx

)
+ hy

a2ij
2

((unij)
2 − (unij−1)2)

)
+

k
∑

Dij∈Dh,int

(
hxhy

(
b
11

ij (uij,nx )2 + b
21

ij u
ij,n
x uij,ny

)
+ hx

a1ij
2

((unij)
2 − (uni−1,j)

2)

)
+

khy

N2−1∑
j=1

(
(
b
11

N1,j

hx
−
a1N11j

2
)(unN1−1j)

2 − b12N1,ju
N1,j,n
y unN1−1j

)

+khy

N2−1∑
j=1

(
(
b
11

1,j

hx
+
a111j

2
)(un1j)

2 + b
12

1,ju
1,j,n
y un1j

)
= 0.

Putting both equations (3.4), (3.5) together we obtain∑
Vij∈T

(1 + kr)(unij)
2hxhy +

∑
V ij∈T

(1 + kr)(unij)
2)hxhy +(3.6)

k
∑

Dij∈Dh,int

(
b11ij (uij,nx )2 + b22ij (uij,ny )2 + 2b12ij u

ij,n
y uij,nx

)
hxhy +

k
∑

Dij∈Dh,int

(
b
22

ij (uij,ny )2 + b
11

ij (uij,nx )2 + 2b
21

ij u
ij,n
x uij,ny

)
hxhy +A+B + C = 0,

where

A = k
∑

Dij∈Dh,int

hy
a1ij
2

((uni+1j)
2 − (unij)

2) + hx
a2ij
2

((unij)
2 − (unij−1)2) +

k
∑

Dij∈Dh,int

hx
a2ij
2

((unij+1)2 − (unij)
2) + hy

a1ij
2

((unij)
2 − (uni−1,j)

2) +

+khx

N2−1∑
j=1

(
a2N1j

2
((unN1j+1)2 − (unN1j)

2) +
a21j
2

((un1j+1)2 − (un1j)
2)

)
,

B = khy

N2∑
j=1

((
2b11N1,j

hx
−
a1N1j

2

)
(unN1j)

2 +

(
2b111,j
hx

+
a11j
2

)
(un1j)

2

)
,
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C = khx

N2−1∑
j=1

(
b
22

N1,jhy(uN1j,n
y )2 −

b
21

N1,jhy

hx
unN1−1,ju

N1,j,n
y

)
+

khx

N2−1∑
j=1

(
+b

22

1,jhy(u1j,ny )2 −
b
21

1,jhy

hx
un1,ju

1,j,n
y

)
+

khy

N2−1∑
j=1

(
(
b
11

N1,j

hx
−
a1N11j

2
)(unN1−1j)

2 − b12N1,ju
N1,j,n
y unN1−1j

)
+

khy

N2−1∑
j=1

(
(
b
11

1,j

hx
+
a111j

2
)(un1j)

2 + b
12

1,ju
1,j,n
y un1j

)
.

We estimate term A,B,C using (1.2)

A = k
hy
2

N2∑
j=1

(
1

4
hy(2j − 1) +

1

2
ρσ − r)

(
(unN1,j)

2 − (un1,j)
2
)

+

k
hx
2

(
1

2
σ2 − κθ)

(
N1−1∑
i=1

(
uni,N2−1)2 − (uni1)2

)
+

N1∑
i=1

(
uni,N2)2 − (uni1)2

))
−

k(κ+ λ)
hxhy

4

N1∑
i=1

N2−1∑
j=1

(unij)
2 +

(uni1)2

2
− 2N2− 3

2
(uni,N2−1)2

−
k(κ+ λ)

hyhx
2

N1∑
i=1

N2−1∑
j=1

(unij)
2 − (N2− 1)(uniN2)2


+k

hy
2

N2∑
j=1

(
1

2
jhy +

1

2
ρσ − r)

(
(unN1−1,j)

2 − (un1,j)
2
)
,

B =
khy
2

N2∑
j=1

hy(2j − 1)

hx

(
(unN1j)

2 + (un1j)
2
)

+

khy
2

N2∑
j=1

(
(2j − 1)hy

4
+
ρσ

2
− r
)(

(un1j)
2 − (unN1j)

2
)
,

C =
khxhy

2

N2−1∑
j=1

σ2jhy
(
(uN1,j,n
y )2 + (u1,jny )2

)
−

khxhy
2

N2−1∑
j=1

jhyρσ

hx

(
un1,ju

1,n
y + unN1−1,ju

N1j,n
y

)
+

N2−1∑
j=1

k
hy
2hx

jhy
(
(unN1−1,j)

2 + (un1,j)
2
)

+

N2−1∑
j=1

k
hy
4

(jhy + ρσ − 2r)
(
(un1,j)

2 − (unN1−1,j)
2
)

+
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N2−1∑
j=1

k
hy
2
ρσjhy

(
un1,ju

1,j,n
y − unN1−1,ju

N1,j,n
y

)
.

Collect all these expressions together and using boundary conditions, we obtain

A+B + C ≥ −D =

−khy
2

N2∑
j=1

(
(2j − 1)hy

4
+ r)

(
(un1,j)

2 + (unN1,j)
2
)

+

−khy
2

N2∑
j=1

(
jhy
2

+ r)
(
(un1,j)

2 + (unN1−1,j)
2
)
−

k
hx
2

N1−1∑
i=1

(
σ2

2

(
(uni1)2 + (uni1)2

)
+ κθ

(
(uni,N2)2 + (uni,N2−1)2

))
−

k(κ+ λ)
hyhx

2

N1−1∑
i=2

N2−1∑
j=1

((unij)
2 + (unij)

2)).

Now we can estimate for all finite volumes

2b12ij u
ij,n
y uij,nx ≤ |b12ij |(uij,nx )2 + |b12ij |(uij,ny )2,

2b
21

ij u
ij,n
x uij,ny ≤ |b21ij |(uij,nx )2 + |b21ij |(uij,ny )2.(3.7)

Involving these estimations to the (3.6) we get∑
Vij∈T

(1 + kr)(unij)
2hxhy +

∑
V ij∈T

(1 + kr)(unij)
2)hxhy +(3.8)

khxhy
∑

Dij∈Dh,int

((
b11ij − |b12ij |

)
(uij,nx )2 +

(
b22ij − |b12ij |

)
(uij,ny )2

)
+

khxhy
∑

Dij∈Dh,int

((
b
22

ij − |b
2

ij |
)
uij,ny )2 +

(
b
11

ij − |b
2

ij |
)

(uij,nx )2
)
−D ≤ 0.

Now we can use the assumptions (3.1) of the theorem. We have (the same for ”over-
lined” coefficients)

b11ij − |b12ij | =
yij
2

(1− ρσ) > 0 b22ij − |b12ij | =
yij
2

(σ2 − ρσ) > 0.

Thus we obtain ∑
Vij∈T

(1 + kr)(unij)
2hxhy +

∑
V ij∈T

(1 + kr)(unij)
2)hxhy −

k

N2∑
j=1

hy
4

(jhy + 2r)
(
(un1,j)

2 + (unN1,j)
2 + (un1,j)

2 + (unN1−1,j)
2
)
−

k
hx
2

N1−1∑
i=1

(
σ2

2

(
(uni1)2 + (uni1)2

)
+ κθ

(
(uni,N2)2 + (uni,N2−1)2

))
−

k(κ+ λ)
hyhx

2

N1−1∑
i=2

N2−1∑
j=1

((unij)
2 + (unij)

2)) ≤ 0.(3.9)
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Now if we pose the time step k as in (3.1) we obtain

kr
∑
Vij∈T

(unij)
2hxhy + kr

∑
V ij∈T

(unij)
2)hxhy ≤ 0,(3.10)

which conclude the proof.

4. Numerical experiment. Here we focused on computing the problem de-
scribed by Heston model of the form, where we can compute the solution in closed
form. For details see [5]. The results using DDFV scheme were computed in collabo-
ration with Mária Zboranová, author’s diploma student in [6]. They can be compared
with those obtained by classical finite volume method presented in [5]. The data of
the experiment have the following values:

ρ = −0.5, σ = 0.5, r = 0.1, κ = 5., θ = 0.07, λ = 0, E = 100.
Computational domain is of the form:

Ω =
{

(x, y) ∈ R2| − 7 ≤ x ≤ 3, 0 ≤ y ≤ 1
}
.

We compute the problem on the time interval [0, 0.05] and the initial and boundary
conditions are :

u (x, y, 0) = max (0, ex − 1) ,

u (−7, y, τ) = 0, u (3, y, τ) = e3 − e−rτ ,
∂u

∂y
(x, 0, τ) = 0,

∂u

∂y
(x, 1, τ) = 0.

For comparing results obtained by proposed method and the method used in
[5] we use the same definition of L2 error. That means we compute the error only
on the sub domain < −1, 1 > × < 0, 1 >. When we take into account the used
transformation x = ln S

E in Heston model we obtain for variable S which represent
price of the underlying asset the interval< 36, 272 > which represent the usual interval
for underlying asset prices. For more detail see [5]. Results are presented in the Table
4.1 , where Nx, Ny is number of finite volumes of primal mesh along the horizontal
boundary respectively vertical boundary. Nts is number of computed time steps.

Nx Ny Nts k L2C L2D
20 10 1 0.05 0.00368077 0.00318228
40 20 4 0.0125 0.00249468 0.00205695
80 40 16 0.003125 0.00188673 0.00150821
160 80 64 0.000781 0.00157042 0.00124239

Table 4.1
Results for Heston model, classical (C) and dual (D) finite volume methods
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