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TWO-GRID ALGORITHMS FOR PRICING AMERICAN OPTIONS
BY A PENALTY METHOD

MIGLENA N. KOLEVA∗ AND RADOSLAV L. VALKOV†

Abstract. In this manuscript we present two-grid algorithms for the American option pricing
problem with a smooth penalty method where the variational inequality, associated with the optimal
stopping time problem, is approximated with a nonlinear Black-Scholes equation. In order to compute
the numerical solution of the latter unconstrained problem we must solve a system of nonlinear
algebraic equations resulting from the discretization by e.g. the finite difference or the finite element
method. We propose two-grid algorithms as we first solve the nonlinear system on a coarse grid
with mesh size hc and further a linearized system on a fine grid with mesh size hf , satisfying

hf = O((hc)2
k

), k = 1, 2, . . ., where k is the number of Newton iterations. Numerical experiments
illustrate the computational efficiency of the algorithms.

1. Introduction. Pricing American-type of options is an issue of serious impor-
tance in computational finance as these are the common type of financial instruments
on the derivative market. The holder of an American call (put) option has the right
to buy (sell) an asset at the prescribed strike price before or on a given expiry date.
The early exercise feature of the option is the distinguishing characteristic of this
option contract which postulates the optimal stopping time problem further reformu-
lated as a variational inequality. Analytical solutions of the American pricing problem
are seldom available even for very simplistic cases and there is a strong demand for
computationally efficient numerical methods, see e.g. Ševčovič et al. [10].

Let S stand for the underlying asset price process, following a standard geometric
Brownian motion with volatility σ and drift equal to the interest rate r while t denotes
the time variable. The American option value with payoff V ∗(S) and maturity T
satisfies the backward parabolic linear complementarity problem (LCP) [2, 6, 10] LV (S, t) · (V (S, t)− V ∗(S)) = 0,

LV (S, t) := Vt + 1
2σ

2S2VSS + rVS − rV ≥ 0,
V (S, t)− V ∗(S) ≥ 0,

a.e. in (0,∞)×[0, T ). Further, we consider the penalized problem which approximates
the LCP for some sufficiently small positive parameter ε

V εt +
1

2
σ2S2V εSS + rSV εS − rV + g(S, V ε) = 0, (S, t) ∈ (0, Smax)× [0, T )(1.1)

with far field boundary location Smax. We consider pricing an American put option
with strike price K and the following conditions on the parabolic boundary:

V ε(S, T ) = V ∗(S) := max(K − S, 0), V ε(0, t) = K, V ε(Smax, t) = 0.(1.2)

The penalty method is a widely-used technique in constrained nonlinear pro-
gramming which guarantees in an asymptotic sense the fulfilment of constraints by
including in the objective function an additional penalty term, see Grossmann et al.
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[3]. Thus the constrained programming problem is embedded in a family of uncon-
strained variational problems, depending on some parameter present in the penalty
term acting which acts against the optimization goal if constraints are violated.

The exterior penalty method with nonsmooth penalty term

g(S, V ε) = ε−1 max(V ∗ − V, 0)

is thoroughly investigated in numerical analysis and well-known in computational
finance, cf. e.g. [2, 4]. It is certainly attractive for its exponential convergence rate
in the penalty parameter. However, this approach does not guarantee that the early
exercise constraint is strictly satisfied by the solution.

Nielsen et al. [11] propose an interior penalty method for pricing American put
option pricing where the penalty term takes the form

g(S, Vε) =
εC

Vε + ε− q(S)
, q(S) = K − S.(1.3)

The early exercise constraint V ε − V ∗ ≥ 0 is not violated and moreover the penalty
function g(S, Vε) is smooth. The interior penalty approach (1.3) is considered in a
large number of articles, showing satisfactory numerical results, cf. [7, 11, 12], and
convergence theory has been recently established, see Zhang and Wang [16].

In this paper we propose two-grid algorithms for implicit difference schemes for
the initial-boundary value problem (IBVP) (1.1),(1.2) with interior penalization (1.3).
After the seminal works of O. Axelsson [1] and J. Xu [15] two-grid finite element
methods were further developed in many papers, cf. e.g. [8, 13], and these showed
remarkable computational efficiency. Here, because of the nature of the problem, our
error estimates are measured in maximum norm, similarly as for differential equations
with boundary layers. Section 2 briefly presents the two-grid method and, on this base,
in Section 3 we formulate two algorithms. Finally, various numerical experiments are
presented in the last section.

Notations. Further on, by C we denote a generic positive constant, independent of
mesh size, and by ‖ · ‖, ‖ · ‖h we denote the continuous and discrete maximum norms.

2. The two-grid method. In this section for clarity of the presentation we
consider the forward price u(x, t) by applying the log transformation S = Kex and
abusing the time notation where t = T − τ now stands for time-to-maturity. The
IBVP (1.1),(1.2) now reads as follows:

ut −
1

2
σ2uxx +

(
1

2
σ2 − r

)
ux + ru− g(Kex, u) = 0, (x, t) ∈ I× (0, T ]

u(−L, t) = K, u(L, t) = 0, u(x, 0) = V ∗(Kex)

for I := (−L,L), L = ln(Smax/K).

Further, for a given integer N we define 4t = T/N, tn = n4t. Following
backward Euler time discretization we consider the following ODE problem:

Find pn+1(x), n = 0, . . . , N − 1 such that

− 1

2
σ2pn+1

xx +

(
1

2
σ2 − r

)
pn+1
x +

(
r +

1

4t

)
pn+1 − g(Kex, pn+1) =

1

4t
pn

(2.1)
pn+1(−L) = K, pn+1(L) = 0, p0(x) = V ∗(Kex).
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From (1.3) we have

g′Vε(S, Vε) =
−εC

(Vε + ε− q(S))2
< 0

and from the maximum principle for the boundary value problem (BVP) (2.1)

‖pn+1(x)‖ ≤ K +Q(‖g(Kex, 0)‖+
1

4t
‖pn(x)‖) := ζ,

where the constant Q depends on σ and r while ζ - on 4t and the known pn(x).
Let us now consider Newton’s linearization for the BVP (2.1), p(k)(x) ≈ pn+1(x):

Lp(k+1) := −1

2
σ2p(k+1)

xx +

(
1

2
σ2 − r

)
p(k+1)
x +

(
r +

1

4t

)
p(k+1) − g′p(Kex, p(k+1))

=

(
r +

1

4t

)
p(k) − g(Kex, p(k)) +

1

4t
pn(x)− g′p(Kex, p(k))p(k) =: f(p(k))(2.2)

p(k+1)(−L) = K, p(k+1)(L) = 0.

The following lemma asserts the convergence of the Newton’s iteration (2.2) with
initial guess p(0) s.t. ‖p(0) − pn+1‖ < ρ.

Lemma 2.1. Let Q−1θρ < 1, where

θ = max
x∈I,|ψ|≤ζ+2ρ

∣∣∣∣∂2g(Kex, ψ)

∂ψ2

∣∣∣∣ .
Then the linearization process (2.2) is convergent and the following estimate holds

‖p(k+1) − pn+1‖ ≤ Qθ−1(Q−1θρ)2k , k = 0, 1, 2, . . .

For a given integer m, we define h = 2L/m, xi = −L + ih, i = 0, 1, . . . ,m and

further consider the finite difference analogue of (2.2), P
(k)
i ≈ p(k)(xi)

LhP (k+1)
i := −1

2
σ2P

(k+1)
xxi

+

(
1

2
σ2 − r

)
P

(k+1)
x̊i

+

(
r +

1

4t

)
P

(k+1)
i

(2.3)
− g′Pi(Ke

xi , P
(k)
i )P

(k+1)
i = f(P

(k)
i ), P

(k+1)
0 = K, P (k+1)

m = 0,

where Px̊i and Pxxi are the second-order compact finite difference approximations of
px and pxx for i = 2, . . . , k respectively.

Lemma 2.2. Let p(k+1) be the solution of problem (2.2) and P (k+1) be the solution
of (2.3). Then the following error estimate holds

‖P (k+1) − p(k+1)‖ ≤ Ch2.

For the convergence of the scheme (2.3) we have the following theorem.
Theorem 1. There exist constants ρ0 and h0 s.t. if h ≤ h0 and ‖p(0) − pn+1‖ ≤

ρ ≤ ρ0 then the following estimate holds

‖P (k+1) − pn+1‖h ≤ Ch2 +Qθ−1(Q−1θρ)2k , k = 0, 1, 2 . . .(2.4)

Next, we consider the mesh function Pn+1
i ≈ pn+1(xi) and approximate the problem

(2.1) in the following standard way for i = 2, . . . ,m− 1:

−1

2
σ2Pn+1

xxi
+

(
1

2
σ2 − r

)
Pn+1
x̊i

+

(
r +

1

4t
Pn+1
i

)
− g(exi , Pn+1

i ) =
1

4t
Pni .(2.5)
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Following the estimate (2.4) we consider two-grid algorithms for the pricing of the
American options. Let us define two spatial grids: a coarse grid with step size hc and
a fine grid with step size hf where hc � hf holds. The two-grid method is initiated
with solving the discrete problem (2.5) on the coarse grid and then interpolate this
coarse-grid solution Pn+1 for which we have the estimate

‖I(Pn+1)− pn+1‖hc ≤ ‖I(Pn+1)− Pn+1‖hc + ‖Pn+1 − pn+1‖hc ≤ C(hc)2,

where I(Pn+1) is the interpolant of the discrete solution Pn+1 of problem (2.5). If
in the iterative process (2.2) we consider one Newton iteration k = 1 and the initial
guess p(0) := I(Pn+1) then in (2.4) we have (Q−1θρ)2 = Ch4. Therefore, if one solves
the linearized problem (2.2) on a fine mesh with step hf = (hc)2 then the right-hand
side of (2.4) takes the form C(hc)4.

Theorem 2. Let the assumptions of Theorem 1 hold. Then for the error of the
two-grid method with hf = (hc)2 we have

‖Pn+1 − u‖hc ≤ C(4t+ (hc)4).

3. Two-grid algorithms for American option pricing. The outlined theo-
retical considerations, which refer to the log-price of the underlying for clarity, prompt
the application of the two-grid method for the American option pricing problem.

In this section we present our two-grid algorithms for the IBVP (1.1),(1.2) after
time reversal with interior penalty term (1.3). Let us define two non-uniform spatial
grids - a coarse mesh ωc and a fine grid ωf

ωc = {S1 = 0, Si+1 = Si + hci , i = 1, . . . ,mc − 1, Smc = Smax},
ωf = {S1 = 0, Si+1 = Si + hfi , i = 1, . . . ,mf − 1, Smf = Smax},

where mf � mc and the discrete solution, computed on the mesh ω∗ is denoted by
Pni,∗ = V (Si, t

n). Let us now write down the considered finite difference approxima-
tions of the first derivative for hi = Si+1 − Si, ~i = 0.5(hi + hi−1)

(PŠ)ni =
Pni+1 − Pni

hi
, (PŜ)ni =

Pni − Pni−1

hi−1
, (PS̊)ni =

hi−1PS
n
i + hiPS

n
i

2~i

where (PŠ)ni , (PŜ)ni are of first order and (PS̊)ni of second on a smooth grid. The
second derivative is further approximated as

(PSS)ni =
(
(PŠ)ni − (PŜ)ni

)
/~i.

After backward Euler time discretization of (1.1) and application of the maximal use of
central differencing with flag χ := H(σ2Si−rhi) (H stands for the Heaviside function),
see Wang and Forsyth [14], we get the following system of nonlinear equations for
n = 0, . . . , N − 1 and i = 1, . . . ,m− 1:

Pn+1
i − Pni
4t

−σ
2S2

i

2
(PSS)n+1

i

−rSi
(
χ(PS̊)n+1

i + (1− χ)(PŠ)n+1
i

)
+ rPn+1

i − g(Si, P
n+1
i ) = 0,(3.1)

P (0, tn+1) = K, P (Sm, t
n+1) = 0, P (Si, 0) = V ∗(Si).



TWO-GRID FOR AMERICAN OPTION 279

We find Pn+1 by initiating a Newton’s iteration process with initial guess P (0) = Pn,
where the Newton increment on the (k + 1)-th step 4(k+1) = P (k+1) − P (k) is the
solution of the following tridiagonal system of linear equations

−Ai4(k+1)
i−1 + C

(k)
i 4

(k+1)
i −Bi4(k+1)

i+1(3.2)

=
Pni
4t

+AiP
(k)
i−1 − C̃iP

(k)
i +BiP

(k)
i+1 + F

(k)
i ,

where A1 = AN = B1 = BN = 0, C
(k)
1 = C

(k)
N = 1, F

(k)
N = K, F

(k)
N = 0 and

Ai =
Si

2~ihi−1

(
σ2Si − χrhi

)
, Bi =

Si
2~ihi

(
σ2Si + χrhi−1

)
+ (1− χ)

rSi
hi
,

C
(k)
i = C̃i +

εC

(P
(k)
i + ε− qi)2

, C̃i =
1

4t
+Ai +Bi + r, F

(k)
i =

εC

P
(k)
i + ε− qi

,

The iteration process is terminated when reaching the desired tolerance i.e. we set

Pn+1 := P (k+1) when max
i
{|4(k+1)

i |/(max{1, P (k+1)
i })} < tol.

At each iteration k, in view of the definition of χ, M := tridiag[−Ai, C(k)
i ,−Bi]

is strictly diagonally dominant and Ai, C
(k)
i , Bi > 0, i.e. it is an M-matrix (inverse

monotone). The fully implicit upwind (first order) scheme is unconditionally mono-
tone under the mild restriction C ≥ rK, see Nielsen et al. [11]. Analogously, the same
result holds true for the fully implicit discretization (3.1).

Following Section 2 we propose the following space two-grid algorithm.

Algorithm 1 (A1) At each time level n = 0, 1, . . . we perform the two steps:

step 1. Set P
(0)
c := Pnc and compute Pn+1

c by (3.1) through Newton’s iterations
(3.2) on the coarse mesh ωc.

step 2. Set P
(0)
f := I(Pn+1

c ), where I(Pc) is the interpolant of Pc on the fine grid,

perform only one Newton’s iteration (3.2) on the fine mesh ωf and get Pn+1
f .

Further, in order to accelerate the computational process we propose the following
space-time two-grid algorithm. Let us define two time steps - a coarse4tc (n4tc = T )
step and a fine 4tf step such that 4tc � 4tf and 4tc = j4tf (or nj4tf = T ),
where j is a positive integer.

Algorithm 2 (A2) At each time level n = 0, 1, . . . we perform the two steps:
step 1. The same as step 1 in Algorithm 1, 4t := 4tc.
step 2. For l = 0, . . . , j − 1 on the fine space mesh ωf with fine time step 4tf ,

compute Pn+1
f , solving the difference scheme:

P l+1
f,i − P lf,i
4tf

− σ2S2
i

2
(PfSS )l+1

i

−rSi[χ(PfS̊ )l+1
i + (1− χ)(PfS )l+1

i ] + rP l+1
f,i = g(Si, P

∗), i = 2, . . . ,mf − 1,(3.3)

P (0, tfl ) = K, P (SN , t
f
l ) = 0, P (Si, 0) = V ∗(Si), i = 1, . . . ,mf ,

tfl = n4tc + (l + 1)4tf , P 0
f := I(Pnc ), P ∗ =

{
I(P l+1

c ), l = j − 1,
P lf,i, l < j − 1.

Here, at step 2, we advance in time (between two coarse levels) by a fine step 4tf ,
solving the semi-implicit scheme (3.3) which is monotone under an additional step-size
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condition 4tf ≤ ε/(rK), cf. also Nielsen et al. [11]. This scheme is, however, very
cheap in terms of computational resources because of the applied LU decomposition
of the system matrix prior to the time loop. In contrast to A1, using A2 we perform
Newton iterations only on the coarse time levels.

4. Numerical experiments. In this section we verify the experimental con-
vergence rate and computational efficiency of the presented space and space-time
two-grid methods, A1 and A2, respectively.

4.1. The space-time grid partition. The numerical experiments are first com-
puted on a uniform space grid as a benchmark test. Further, we consider a smooth
nonuniform grid, cf. in ’t Hout et al. [5] - uniform inside [Sr, Sl] = [K/2, 3K/2],
which is the region of interest for practitioners where the at-the-money, at-the-strike,
option value and the free boundary are located, and nonuniform outside with stretching
parameter c = K/10:

Si := φ(ξi) =

 Sl + c sinh(ξi), ξmin ≤ ξi < 0,
Sl + cξi, 0 ≤ ξi ≤ ξint,
Sr + c sinh(ξi − ξint), ξint ≤ ξi < ξmax.

(4.1)

The uniform partition of [ξmin, ξmax] is defined trough ξmin = ξ0 < . . . < ξN = ξmax:

ξmin = sinh−1

(
−Sl
c

)
, ξint =

Sr − Sl
c

, ξmax = ξint + sinh−1

(
Smax − Sr

c

)
.

In view of Theorems 1 and 2 the likely local consistency is O(4t + |hf |2 +
|hc|4), |h| = maxi hi at the grid nodes in the region of interest, where the central
stencil is used for first derivative approximation. Let us note that the first order
upwinding is applied only for very small values of S where the problem is convection-
dominated. Thus, in order to verify this assertion and to obtain the optimal accu-
racy, it is naturally to choose 4t = mini(h

f
i )2 and mf = (mc − 1)2/Smax + 1 (i.e.

hf = (hc)2 in the case of uniform mesh) when computing with A1. Further, we set

4t = T/dT/(mini h
f
i )2e, where due is the smallest integer greater than or equal to u

in order to get exactly the desired final time T and avoiding time interpolation.
As for A2, again referring to Theorems 1 and 2, we further expect second order

consistency in time with respect to the coarse time grid i.e. O((4tc)2 +4tf + |hf |2 +
|hc|4). Thus, the optimal accuracy will be obtained if we set 4tf = (4tc)2, 4tc =
mini(h

c)2 and mf = (mc − 1)2/Smax + 1. Since we have to get embedded coarse-
fine meshes in time and also the final time T we select 4tc = T/dT/(mini h

c
i )

2e,
4tf = 4tc/j, where j = max{d4tc/(mini h

f
i )2e, drK4tc/εe}, respecting the stability

condition for the semi-implicit scheme.

4.2. Computational results for (1.1)-(1.3). We consider pricing an Ameri-
can put option with strike K = 50, maturity T = 1 and interest rate r = 0.1 where
the constant in the interior penalty term is selected as C = rK. The tolerance of
the Newton’s iterative scheme is tol = 1.e − 8 and for the coarse-fine grid transition
we use the shape-preserving piecewise cubic interpolation of the solution and in the
opposite direction - from fine to coarse - we use linear interpolation.

We list the option values at-the-money i.e. at S = K and time-to-maturity T
(corresponding to t = 0 in the backward problem (1.1)-(1.3)). Here diff stands for the
difference in the value P (K,T ) from the previous grid refinement level and therefore
for the numerical convergence rate (CR) we use the double-mesh principle. These are
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computed when solving numerically (1.1),(1.3) for fixed ε which is an approximation
of the LCP and thus penalization error is present.
Example 1. (moderate volatility) Let σ = 0.2, ε = 0.001 and the far field boundary
location Smax = 100. First, we compute the numerical solution of (1.1)-(1.3) with
the one-grid Newton process (step 1 of A1, A2) on the uniform and the smooth
non-uniform spatial grid (4.1). The results are provided in Table 4.1.

Table 4.1
One-grid computations, Example 1

Uniform mesh, 4t ∼ h2 Non-uniform mesh, 4t ∼ min
i
{h2

i }

mc Pc(K, 1) diff CR CPU Pc(K, 1) diff CR CPU

161 2.26865 0.02 2.32293 0.02
321 2.36986 -1.01e-1 0.03 2.38820 -6.53e-2 0.05
641 2.40003 -3.02e-2 1.75 0.11 2.40545 -1.72e-2 1.92 0.13

1281 2.40882 -8.79e-3 1.78 0.48 2.41024 -4.79e-3 1.85 0.61
2561 2.41113 -2.32e-3 1.92 3.02 2.41151 -1.26e-3 1.92 3.35
5121 2.41174 -6.05e-4 1.94 16.99 2.41183 -3.29e-4 1.94 21.17

10241 2.41189 -1.57e-4 1.95 135.41 2.41192 -8.48e-5 1.96 181.01
20481 2.41193 -4.01e-5 1.97 1150.01 2.41194 -2.16e-5 1.97 1462.04

We observe that the rate of convergence at S = K is about 2. For the same
number of spatial grid nodes the accuracy of the scheme on the nonuniform grid (4.1)
is better than the one on the uniform one. On the other side the CPU time is more
than the corresponding uniform one since, because of the choice of the time step
(dependent on mini hi), we solve on much more fine grid in time. Nevertheless, we
observe the better computational performance with the nonuniform grid (4.1) - we
get better accuracy for much smaller CPU time in comparison with the uniform grid,
compare the option values on the uniform grid with nodes mc = 20481 in Table 4.1
and for mc = 10241 on the nonuniform grid (4.1).

In Table 4.2 we present the computational results with our algorithms A1 and
A2 on the considered uniform and nonuniform grid. We observe that the space-
time two-grid algorithm A2 is more efficient than the space two-grid approach A1 if
mini(h

f
i )2 < ε/(rK), i.e. on fine grids. The computational efficiency of the two-grid

technique is noticeable as we compare the last line of Table 4.1 with last two lines
in Table 4.2 since we get the same precision as one-grid computations but spending
much less computational resources.

Table 4.2
Two-grid computations, Example 1

Uniform mesh Non-uniform mesh

mc Pf (K, 1) diff CR CPU Pf (K, 1) diff CR CPU

161(A1) 2.34701 0.05 2.37606 0.18
321(A1) 2.40710 -6.01e-2 0.32 2.40933 -3.33e-2 0.73
641(A1) 2.41162 -4.52e-3 3.73 10.15 2.41177 -2.45e-3 3.77 16.30
641(A2) 2.41185 24.49

1281(A1) 2.41193 -3.07e-4 3.88 493.02 2.41194 -1.65e-4 3.89 678.81
1281(A2) 2.41193 45.88 2.41194 85.59



282 M. KOLEVA AND R. VALKOV

In order to check the rate of convergence of A2 on the non-uniform grid (4.1),
we set 4tc = mini(h

c
i )

2, mf = (mc − 1)2/Smax + 1 and fix 4tf ∼ 5.e − 6 for all
computations. The results are listed in Table 4.3.

Table 4.3
Two-grid algorithm A2 on the grid (4.1), Example 1

mc Pf (K, 1) diff CR CPU

161 2.4116149 9.90
321 2.4119249 -3.09994e-4 20.17
641 2.4119445 -1.95796e-5 3.9855 79.48

1281 2.4119457 -1.21910e-6 4.0048 333.59

The rate of convergence of the two-grid algorithms is fourth order on the coarse
space at the strike S = K. We infer that these are much more efficient than the
one-grid procedure and we observe best performance of A2 on fine grids.

On Figures 4.1, 4.2 we visualize, respectively, the numerical option price and the
hedge factor Delta = PS̊(S, t), computed by A1 with mc = 320, mf = 1025 and

4t ∼ mini(h
f
i )2 at (time-to-maturity) t = 0 (at expiry i.e. the payoff) and at t = T .
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Fig. 4.1. Option price for σ = 0.2 Fig. 4.2. Delta of the option for σ = 0.2
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Fig. 4.3. Free boundary for σ = 0.3 Fig. 4.4. Free boundary for σ = 0.2

The time evolution of the free boundary Sfb, separating the continuation and
stopping regions, is shown on Fig. 4.3 for various ε. For ε = 0.00001 we observe a plot,
analogous to the one computed with the PSOR method, see Ševčovič et al. [9], and
convergent behaviour for ε→ 0 since the penalized equation (1.1),(1.3) approximates
the LCP in the penalty parameter. Fig. 4.4 visualizes the free boundary for σ = 0.2.
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Example 2. (small volatility) Here we set σ = 0.05 and Smax = 100 in order to
compute the rate of convergence of the two-grid approach. In Table 4.4 we present
the computational results with A2 for 4tc = mini(h

c
i )

2, mf = (mc − 1)2/Smax + 1
and 4tf = 5.e− 6 on the non-uniform grid (4.1) for different values of ε.

Table 4.4
Two-grid computations with A2 for various ε, Example 2

ε = 0.01 ε = 0.001 ε = 0.0005

mc Pc(K, 1) diff CR Pc(K, 1) diff CR Pc(K, 1) diff CR

161 0.25949 0.22710 0.22508
321 0.26438 -4.89e-3 0.23167 -4.51e-3 0.22941 -4.34e-3
641 0.26468 -2.99e-4 4.02 0.23202 -3.52e-4 3.70 0.22975 -3.38e-4 3.68

1281 0.26470 -1.87e-5 4.00 0.23204 -2.08e-5 4.08 0.22977 -2.10e-5 4.01

On Figures 4.5, 4.6 we visualize the option value at T = 1, the payoff and the
corresponding Delta. These are computed with the two-grid space-time algorithm A2
for mc = 320 and ε = 0.001.
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Fig. 4.5. Option price for σ = 0.05 Fig. 4.6. Delta of the option for σ = 0.05

Example 3. (substantial volatility) Let us now consider the model problem (1.1)-
(1.3) for σ = 0.8 with far field boundary location Smax = 400. We compare the
efficiency of the presented two-grid algorithms and simultaneously verify the rate of
convergence. To this aim the relation between grid parameters for A2 are the same
as in Example 2. The results for ε = 0.001 on the non-uniform grid (4.1) are given in
Table 4.5 as we observe the superior performance of A2 in comparison with A1.

Table 4.5
Two-grid computations, Example 3

A1 A2

mc Pc(K, 1) diff CR CPU Pc(K, 1) diff CR CPU

400 13.02472 0.39 13.14786 12.27
800 13.13939 -1.15e-1 1.68 13.14807 -2.12e-4 28.29

1600 13.14753 -8.14e-3 3.82 41.57 13.148088 -1.33e-5 4.00 116.54
3200 13.14807 -5.38e-4 3.92 1961.88 13.148089 -8.88e-7 3.90 534.47

Finally, let us note that all experiments were done with Matlab 2013a. We focus
on the computational efficiency of the presented two-grid algorithms for the American
option pricing problem and we do not discuss the interior penalty method in detail.
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Conclusion. In this paper we realize two-grid Newton algorithms for pricing
American options with the interior penalty method. We infer the superior computa-
tional efficiency of the considered methods over the standard one-grid computations.
Because of the suggested practical importance of this approach we consider future
improvements and extensions as well as deriving rigorous theoretical estimates.
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