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NUMERICAL PROPERTIES OF A MODEL PROBLEM FOR
EVALUATION OF NATURAL TRACER TRANSPORT IN

GROUNDWATER∗

MILAN HOKR† AND ALEŠ BALVÍN‡

Abstract. We solve a model problem of natural tracer transport in groundwater between the
surface and the tunnel, based on field measured data. The problem with a simplified geometry
represents the main features of flow inhomogeneity, namely the presence of fractures and matrix,
and an influence of the stagnant zones on the tracer breakthrough. From the fictitious pulse tracer
input, we calculate the mean residence time. The problem is solved by the mixed-hybrid finite
element method for the flow equation and the discontinuous Galerkin method for the advection-
diffusion transport, both implemented in Flow123d open-source software. We check a convergence
by the time step refinement and find the limit of the mean residence time with rising time interval.
The effect of dispersion parameters can explain some of the differences between results obtained
by different numerical software in a separate study [5]. We also show how both the flow and the
transport problem have a simple and efficient procedure to solve their inverse problems.
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1. Introduction. Many challenges in modelling of groundwater problem are re-
lated to inhomogeneity, in particular a combination of high permeable fractures and
a less permeable matrix, and to geometry of scale contrasts, e.g. small-scale tun-
nel/borehole and a large scale transport and hydraulic extent. One of the perspective
approaches is a concept of the multidimensional model, coupling subdomains of dif-
ferent dimensions in a single model, requiring non-trivial treatment in mathematical
formulation and particular additions in a numerical scheme [3]. Although the the-
ory and numerical solution are on good level of understanding, the concept is not yet
routinely used in practical hydrogeological modelling. The Flow123d software [11] de-
veloped at the Technical University of Liberec has an ambition to bring the concept
into a practice, in particular for the spent nuclear fuel repository safety evaluation,
which must be accompanied by verification on both testing and real-world problems.

It is known that for inhomogeneous system (especially with stagnant zones) the
tracers breakthrough results to a long tail in the concentration evolution, as the tracer
slowly releases from stagnant zones. A related study on a regular schematic model
domain is [9]. The characteristic quantity is the tracer residence time. The purpose
of this paper is to quantify this effect on a particular case corresponding to real-
world conditions and to evaluate how the error of the incomplete mean residence time
integral calculation interacts with other numerical effects of temporal discretisation,
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SO2013-077.
†Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of

Liberec, Czech Republic (milan.hokr@tul.cz).
‡Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of

Liberec, Czech Republic (ales.balvin@tul.cz).

292



NUMERICAL PROPERTIES OF TRACER TRANSPORT 293

boundary condition form (related to advection/diffusion ratio), and with solution of
an inverse problem, i.e. fitting the rock properties from measured tracers quantities,
which is a typical modelling purpose in hydrogeological problems.

The model problem configuration has been suggested in the DECOVALEX-2015
project, aimed on comparison of models and software by various teams. As one of
the results, a joint work of the authors of this paper and other teams from Germany
and US comparing solution by three different software is currently in progress of
submitting [5]. Not all the numerical effects were studied by other teams, which
motivated this additional study.

The work also continues previous modelling studies with data from the same site,
the water-supply tunnel in granite massif in Bedrichov, Czech Republic. The key steps
were the introduction of the multidimensional fracture-matrix concept for the tunnel
inflow modelling [6] and the study of the discretisation effects in the scale contrast of
the tunnel and the domain [7], all for the water flow equation only.

2. Problem formulation.

2.1. Governing equations. Fluid flow and solute transport in porous media
and in fractures are governed by standard equations in literature. For the multidi-
mensional problem, combining the porous medium or the equivalent continuum with
the discrete fracture network, we consider the equations separately for each dimen-
sional subdomain Ωd, d = 1, 2, 3, with additional coupling between the dimensions.
The problem in a full generality (not used in this study) is described in [2] and in the
software documentation [11].

The steady-state flow is governed by the Darcy’s law and the mass balance equa-
tion

~ud = −δdKd∇(pd + z) = −δdKd∇Hd , div~ud = Fd for d = 1, 2, 3 ,(2.1)

where pd is the pressure head [m], Hd the piezometric head [m] (one of two being
the primary unknown), ~ud is the flux density [m4−d s−1] (secondary unknowns), Kd

[m s−1] the hydraulic conductivity (scalar in this study, in general tensor), and z the
vertical coordinate. The parameters δd assure physical compatibility of quantities
based on the real geometry: δ1 is the cross-sectional area of 1D subdomains [m2], δ2
is the thickness of 2D subdomains [m], and δ3 = 1. The source term Fd [m3−d s−1] is
composed of the physical sources in the respective subdomain and of a communication
with higher-dimension subdomains (for d = 1, 2). For detailed expressions we refer to
[2, 11], due to technical complexity.

The solute transport is governed by the advection-diffusion equation

∂(δdndcd)

∂t
+ div(~udcd)− div(ndδdD∇cd) = Fd for d = 1, 2, 3 ,(2.2)

where cd(~x, t) [kg m−3] are the unknown concentrations, nd are the porosities (di-
mensionless), D is the hydrodynamic dispersion tensor, and Fd is the source term
comprising the physical sources and the subdomains communication. The hydrody-
namic dispersion is a total diffusive term composed of the molecular diffusion and
the pore-scale mixing, defined by components (we omit d index of the dimension for
simplicity):

Dij = δijDmτ + ‖~v‖
(
δijαT + (αL − αT )

vivj
‖~v‖2

)
,(2.3)
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where δij is the Kronecker delta, Dm the molecular diffusion coefficient, τ the tortu-
osity, αL and αT the longitudinal and transversal dispersivity, and ~v is the average
pore velocity [m s−1], which characterize the macroscopic transport. It is related
to the flux unknown of the flow problem through the porosity (a transport problem
parameter) by

~vd =
~ud
δdnd

.(2.4)

2.2. Problem configuration. The particular study is on a natural tracer trans-
port between surface and a tunnel, to evaluate data sampled in the precipitation and
in the tunnel inflow. The problem is defined as an analogue of a real configuration and
quantitative conditions, with the only exception in the geometry, when we consider
a regular block shape instead of the terrain topography and a general fracture orien-
tation with respect to the tunnel. In Fig.2.1 we show how the solved problem fits to
the topography-controlled flow pattern. The second part illustrates the configuration,
boundary conditions, and a notation (shallow zone, fracture, matrix).

Small-scale
model domain

Large-scale model
ns
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nm

nf

ns Ks
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(hydrostatic)
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p=320m (larger scale model estimate)

u =200mm/year (infiltration)n

Fig. 2.1. Problem concept, configuration, and flow boundary conditions (lateral views on the
block model domain in two perpendicular directions), the parameter subscripts correspond to the
shallow zone, the fracture, and the matrix.

The model of a block shape of 300 m × 100 m × 400 m is composed of three
components: the shallow zone where most of the precipitation water is conducted
horizontally and drained from the domain (in reality it would be into a stream flow),
the vertical fracture capturing the gravitational water flow deeper into the massif (for
technical reasons, extended up to the surface along the shallow zone block), and the
rock matrix block with very small water flow but a significant storage effect (in reality
of this scale, it is an equivalent continuum of several smaller fractures and compact
blocks). The represented geometry is one symmetric quarter of the reality.

The steady-state flow is controlled by the set of boundary conditions (Fig.2.1):
the Neumann condition of a prescribed infiltration rate (a part of the precipitation),
the Dirichlet condition on the outer side of the shallow zone, on the tunnel wall (zero
pressure generating the drainage), and on the bottom side of the model generating
a piezometric gradient resulting from the larger-scale topography profile. All the
conditions are valid for both the surface of the 3D domains and for adjacent line
boundaries of the 2D fracture domain, including the transport b.c. below.

The tracer in the model is a fictitious pulse, defined by the concentration cin(t) =
100 for t ∈ [0, t̃] and cin(t) = 0 for t > t̃, where t̃ typically equals to the numerical
time step. The only inflow boundary is the upper. There are two options of the tracer
injection representation, either as the Dirichlet b.c., c = cin (allowing both advective
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Table 2.1
Problem parameters for the three model variants corresponding to particular tunnel sampling

points. The upper part are measurements fitted in the inverse solution, the lower part are selected
variants (former inverse solution, partly fitting the measurement) used as a reference in comparisons.

Model 2 Model 3 Model 4
tunnel depth [m] -39.00 -140.00 -91.00

tunnel inflow rate (matrix per 1m) [mL/s] 0.05 5.00E-04 0.05
tunnel inflow rate (2D fracture) [mL/s] 10.00 0.02 14.00
measured mean residence time [month] 42.00 120.00 300.00

Ks (shallow) [m/s] 1.00E-06 1.00E-06 1.00E-06
Kf (fracture) [m/s] 1.03E-07 1.33E-10 2.44E-08
Km (matrix) [m/s] 4.96E-10 3.27E-12 4.29E-10

ns (shallow) 0.02 0.02 0.02
nf (fract) 0.044 4.00E-05 0.073

nm (matrix) 0.023 4.00E-05 0.073

and diffusive fluxes), or indirectly as the prescribed advective flux, (~uc−nδD∇c) ·~ν =
(~u·~ν)cin. The both approaches tend to be equivalent for an advection-dominated case.
The outflow boundary is with the zero Neumann, i.e. the prescribed pure advection
(no interaction back into the model domain).

We represent three quantitatively different cases of water inflow – distinguished
by depth, flow rate, residence time, and type of the water permeable structure – so
the case M2 (i.e. Model 2) is a shallow tunnel section with stronger inflow from a
single fracture, M3 is a deep tunnel section with smaller inflow from a single fracture,
and M4 is a deep tunnel section with larger inflow from a wider fault structure.
The numbering refers to the wider study [5] where also M1 is present representing
qualitatively different case of the shallow zone.

The parameters of M2–M4 are listed in Tab.2.1. The remaining parameters are
uniform for all the models and all the subdomains: the molecular diffusion coefficient
Dm = 10−9 m2s−1, the tortuosity τ = 0.6, the longitudinal and transversal disper-
sivities αL = 5 m and αT = 1 m, leading to dominant dispersion compared to the
molecular diffusion in most of the problem domain. Although all the quantities have
their physical units, we omit them in most cases below to save space. We always refer
to units used in the previous subsection and in the cited table, except the time, which
is expressed in months, appropriate with its magnitude.

3. Solution methods.

3.1. Flow and transport numerical schemes. We mainly refer to other lit-
erature describing the particular form of the numerical methods. In both cases of
the flow and the transport, they are based on generally known principles, adopted to
particular configuration of the multidimensional set of subdomains. The flow problem
is solved by the mixed-hybrid finite element method, with the lowest-order Raviart-
Thomas base functions, piecewise linear for the velocity/flux and piecewise constant
for the pressure [1, 3]. The discrete quantities are the pressures in the element cen-
tres, pressures in the side centres (the Lagrange multipliers) and fluxes through the
element sides (of appropriate dimensions).

The transport problem is solved by the discontinuous Galerkin method [4], which
was recently implemented to the Flow123d code, as a follower of the formerly im-
plemented finite volume method, still available as an alternative for problems with
pure advection. We use first-order base functions for the concentration and the non-
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symmetric variant. The time discretisation is by the implicit Euler method. The
details are given in the Flow123d documentation [11].

In both cases, the methods well fit the needs of the problem solution. The mixed-
hybrid method provides a conservative velocity field for the subsequent transport
calculation and its discrete unknown positions are convenient for the coupling be-
tween the different dimensions. The discontinuous Galerkin is one of the options to
provide a solution of the advection-dominated problems free of oscillations and with
an acceptable numerical diffusion.

3.2. Evaluation of the mean residence time. To get a simple quantity char-
acterising movement of a fluid in a system, a time spent by a tracer particle between
the input and the output is often considered. In groundwater, this is typically the
time between infiltration (the last contact with the atmosphere) and sampling (here
the tunnel).

The set of flow pathways in the system is characterised by the residence time
distribution g(t) expressing relative number of pathways with the time of travel equal
to t, in the continuous sense [10]. Then the concentration evolution in the output c(t)
can be expressed from the input concentration evolution cin(t) by the convolution
integral

c(t) =

∞∫
0

cin(t− τ)g(τ)dτ .(3.1)

For a theoretical unit pulse input (cin(t) = δ(t), the Dirac function), the output
evolution is c(t) = g(t). Then the mean residence time (MRT), i.e. the first moment of
its density function g(t), can be equivalently evaluated from the transport calculation
output as

Tmr =

∞∫
0

tc(t)dt

∞∫
0

c(t)dt

,(3.2)

where t is time and c(t) is the concentration in the sampling point, taking into account
the input of the total mass other than one or any kind of approximation.

We calculate the MRT by a separate postprocessing of the Flow123d outputs
in the spreadsheet, the integrals are evaluated by the rectangle method which is
compatible with the integral mass and fluid balance meaning of the solution outputs.
There are two main source of the MRT calculation error: the temporal discretisation
and the incomplete integral evaluation (approximation by a finite interval of the model
simulation time), which are both discussed in the section below. The integral (3.2)
is controlled by the residence time distribution g(t) which can be arbitrary function
fulfilling

∫∞
0
g(t)dt = 1, determined by the system configuration. There are many

results in literature describing g(t) and MRT for particular configurations (e.g. [8]),
but the approximation behaviour cannot be theoretically predicted for a general case.

4. Model results – parameter sensitivity. The solution evaluated as an evo-
lution of the average concentration in the tunnel–fracture intersection boundary (the
breakthrough curve) is basically a non-symmetric peak with a long “tail” of gradual
concentration decrease. The curve becomes more symmetric on a logarithmic time
axis (Fig.4.1), the three models M2–M4 differ mainly by the position (related to the
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Table 4.1
Results of the mean residence time for variants of temporal discretisation and the model time

interval (all values in time units of months).

dt=0.4 dt=1 dt=2 dt=10 dt=20
T=600 53.37 53.18 54.13 61.31

M2 T=1300 61.63 61.42 62.41 69.61
T=10000 (converg.) 74.01 82.5
T=600 258.87 270.97 258.59 267.38

M3 T=6500 643.74 644.02 644.52 654.25
T=25000 (converg.) 675.94
T=600 247.24 248.73 247.75 256.57 263.03

M4 T=6500 673.17 672.93 673.89 686.31 695.73
T=20000 963.29 973.09
T=100000 (converg.) 1139

residence time) and partly qualitatively in the shape. The mean residence time for
various cases is listed in Tab.4.1. We study effects of several parameters which are
quite free for selection by a user in the application.
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Fig. 4.1. Breakthrough curves (the tunnel concentration evolution) and the mean residence
time depending on the model interval, for the three model variants – the longest calculated intervals
with the highest time steps of 10 or 20.

4.1. Model interval sensitivity. Important and the most insidious is the effect
of the model interval as it has no counterpart parameter in the nature. Normally, a
criterion for the time interval could be based on a ratio of the inflow and the outflow
mass, but it is difficult to define a certain value for this problem because of a dominant
part of mass (orders of magnitude ratio) leaving through a different output boundary
than the evaluated tunnel sampling point. A more precise evaluation can be done
studying a dependence of the evaluated residence time on the model time interval
(technically, selecting data from a single long simulation run), as shown in Fig.4.1.
The convergence is significantly longer than the value of the mean, confirming the
effect of the rock matrix as an almost stagnant zone. Typically, the interval is two
orders of magnitude over the MRT and three orders of magnitude over the peak
position. The values are also present in a numeric form in Tab.4.1.

4.2. Temporal discretisation. Two effects related to the time step were stud-
ied: a check of the convergence with dt decreasing and an effect of coarser dt on the
MRT evaluation through an approximation of the Dirac pulse. Visually, the conver-
gence of the breakthrough curve is observed for dt ≤ 0.4. For all the smaller time
steps, the pulse width is the same t̃ = 2 for precise comparison. For long interval
calculations, larger time steps are necessary, where t̃ = dt. The differences in MRT
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(Tab. 4.1) due to the time step can be mostly explained by the corresponding shift of
the middle of the peak (t̃/2).

4.3. Hydrodynamic dispersion and input boundary effects. The hydro-
dynamic dispersion parameters are very difficult to determine in practice and usually
they are chosen in relation to the model scale. We study their effect on the model
evaluation for this reason, to see the related uncertainty. There are four values of
dispersivities around the reference one, covering a range of three orders of magnitude,
from αL = 0.05 and αT = 0.01 to αL = 50 and αT = 10. The results for M2 and
M3 are presented in Fig.4.2. The two lowest dispersion cases are relatively close to
each other, meaning a small contribution of the equation term to the overall diffu-
sion/dispersion process. As the decrease of the molecular diffusion coefficient did not
have significant effect, we assign the pulse smearing to the “macro-dispersion”, the
mixing between permeable and stangant zones.

While the dispersion has a strong effect on the mean residence time (known also for
1D advection-diffusion), the choice of the injection boudnary condition has a smaller
effect on MRT within the range of uncertainty of time discretisation, compared to
relatively more visible peak shape differences (4.2).
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5. Inverse problem solution. The problem has been solved as an inverse prob-
lem, both for the flow and for the transport part. For the former, it means finding
the hydraulic conductivities Kf and Km fitting the measured inflow into the tunnel
from the fracture and from the matrix respectively. For the transport, it means find-
ing the porosities of the subdomains (shallow, fracture, and matrix), fitting the given
residence time.

5.1. Measured data. The tunnel inflow is measured in several sampling points
and in a canal collecting all the water along the tunnel. The sampling points, typically
in larger fractures and faults, correspond to the fracture inflow in the model. The
matrix inflow is so small that it cannot be measured directly and the rate is derived
indirectly from the canal flow rate change along the position, with less accuracy. The
inflow from the shallow zone is also derived from the canal flow rate and it was used to
estimate the shallow zone hydraulic conductivity Ks (considered as a given parameter
in this study).

The mean residence time is not measured directly but it is derived from natural
tracers concentrations. The data in the background of this study are from stable
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isotopes 2H and 18O in the water molecule and from tritium 3H and its decay product
3He in a form of dissolved gas. In the latter case, the time between infiltration input
and the tunnel output can be calculated from the decay rate. For the stable isotopes,
the mean residence time is obtained as a parameter in a lumped parameter model,
as an inverse problem solution, fitting the temporal concentration evolution in the
tunnel related to the given input evolution in the atmosphere.

The particular data to be fitted are in the upper part of Tab. 2.1. The transport
problem inversion below needs additional conditions obtained from physical argu-
ments: The shallow zone tracer breakthrough should be similar for all model cases
and the mean residence time derived at another tunnel sampling point in the shallow
zone can be seen as partial residence time Ts in the shallow subdomain (explained
below). Similar, we can apply a-priori estimates on the rock matrix porosity (a pa-
rameter) – equality between the models and a range of literature values based on
laboratory sample measurements. For demonstration purposes with one model only,
the conditions are introduced in the form of two synthetic residence time values Tf
and Tm (the rightmost column of Tab. 5.1).

5.2. Flow problem. The inverse hydraulic problem has convenient properties
that the fracture inflow is dominantly controlled by the fracture conductivity and the
matrix inflow by the matrix conductivity, but not exclusively. The dependence is
approximately linear, resulting from the equation linearity (valid fully for a homoge-
neous problem only). The iterations to the inverse solution can therefore be based

on this property – the new estimate of K
(k+1)
i is derived from the current K

(k)
i and

the ratio between the current flux solution Q
(k)
i and the measurement Q

(meas)
i , for

i ∈ {f,m} (the fracture and the matrix):

K
(k+1)
i = K

(k)
i

Q
(meas)
i

Q
(k)
i

.(5.1)

The ratio between a sensitivity of the flux on the corresponding subdomain conduc-
tivity and on the second subdomain conductivity is about two orders of magnitude.
The convergence is therefore very quick, decreasing the error by such ratio each step.
Usually two iterations are enough for practical model calibration precision. Also, the
same number of parameters and constraints (together with the quasi-linearity) means
that the problem has a unique solution. Examples for the particular models are given
in Fig.5.1.
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Table 5.1
Iterations of the transport model inverse algorithm and the fitted residence time values.

init iter1 iter2 iter3 fitted time
ns 0.1 0.027 0.0263 0.0264 Ts= 30.59
nf 0.05 0.0225 0.0219 0.0221 Tf= 4
nm 0.01 0.005 0.0041 0.004092 Tm= 8

MRT 138.33 44.96 42.43 42.58 Tmr= 42.59
relative error 2.25 5.55E-02 -3.80E-03 -1.40E-04

5.3. Transport problem. The inverse transport problem has similar property
of the linearity but not the equal number of parameters and constraints. Typically,
the inverse problems are solved as overdetermined, solving an optimization problem
minimizing the error (residual). Here we have an underdetermined problem, with
three parameters (porosities) and one constraint condition of the mean residence time,
so the problem was completed with physical assumptions in the section 5.1.

To apply the information on the shallow zone residence time, we need additional
understanding of the problem properties. The total residence time Tmr can be split
into partial residence times in subdomains, by analogue to “serially” connected seg-
ments

Tmr(ni) =
∑
i

Ti =
∑
i

Li

vi
=
∑
i

ni
Li

ui
,(5.2)

where Li are the segment lengths, vi are the transport velocities, and ui are the flux
densities (given from the hydraulic model).

In our 3D case, we use the above equation as an approximation, for the three
subdomains i ∈ {s, f,m}. The unknown factors Li/ui at the porosities are evaluated

as derivatives T
(app)
i = ∂Tmr

∂ni
ni and approximated by perturbation sensitivities (i.e.

forward difference formulas) with 1% change of ni. Then the k-th iteration is defined

n
(k+1)
i = n

(k)
i

T
(meas)
i

T
(app,k)
i

= T
(meas)
i

[
∂Tmr

∂ni
α(k)

]−1
,(5.3)

where an additional correction factor is used, defined by α(k)
∑

i∈{s,f,m}
∂Tmr

∂ni
ni =

Tmr, corresponding to the property that Tmr is proportional to a uniform change of
porosity in the whole domain. This is especially important for the MRT approximation
by an incomplete integral to get more realistic values.

The solution for given subdomain residence times is an analogue of the hydraulic
inverse problem, but with less separated parameter sensitivity. An example for M2
is given in Tab.5.1, with the convergence rate of one order of magnitude every time
step.

6. Conclusion. We studied several properties of a flow and transport model
problem used for evaluation of the natural tracer data sampled in a tunnel, to de-
termine the water mean residence time and estimating porosities as some of the rock
parameters. We found that the simulation length is much more important than tem-
poral discretisation to get reasonable results of MRT. Especially for repeated calcu-
lations during an inverse solution, it is convenient to use relatively long time steps to
save computing time and then to switch to a smaller time step in the last iteration.

Also, the form of the injection boundary condition, which is usually not subject of
attention, can significantly influence the shape of the breakthrough curve and partly
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the mean residence time, for problems not strictly advection-dominated. Moreover,
we could see that diffusion/dispersion parameters control not only the breakthrough
curve width (tracer spreading) but also the peak position and MRT, masking the
expected effect of advective velocity.

The inverse problem solution based on the specific problem properties and on the
physical understanding was found efficient and the practical experience confirms it as
an alternative to general-purpose methods.

A following work of fitting a general tracer concentration evolution sampled both
in the precipitation and in the tunnel is in progress, as a direct approach avoiding the
intermediate use of the lumped parameter models and the pulse tracer evaluation [10].
This leads to an inverse problem more complicated to solve, but with a stronger deter-
mination by the data, allowing to estimate also the dispersion parameters, additional
to the porosities related to the advection.
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of the tunnel inflow problem, In: Mathematical Models in Engineering and Computer
Science (Marascu-Klein, ed.), NAUN, 2013, pp. 162-168
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