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MODELLING AND NUMERICAL STUDIES OF DISCRETE
DISLOCATION DYNAMICS∗

MIROSLAV KOLÁŘ† , MICHAL BENEŠ‡ , AND JAN KRATOCHVÍL§

Abstract. We investigate a possible inaccuracy in discrete dislocation dynamics (DDD) sim-
ulations. As a model problem we consider two distinct dislocations of the opposite signs, gliding
and bowing out in parallel slip planes in a channel of persistent slip band (PSB). Dislocations are
pushed by the applied stress and when overlap, they either pass or form a dipole. The objective of
our study is to determine the lower and upper estimate of the passing stress needed to escape each
other. In our simulations, we consider two loading regimes - the stress controlled and the total strain
controlled regime. The motion law is described by the mean curvature flow of planar curves and
treated by the parametric method. Results of our numerical experiments indicate that the upper
and lower estimate of the passing stress differ less than 10%.
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1. Introduction. Crystal structure of real material samples contain disloca-
tions, i.e., defects and imperfections in its crystal lattice. These imperfections occur
from nanoscale to microscale, and their evolution in slip planes of the crystal can give
a rise to macroscopic plastic deformation. Thus, the dislocations are the key element
to understanding the crystal plasticity. The comprehensive theoretical framework on
dislocations theory can be found in the literature, such as [1, 2].

Recently, standard tool in an investigation of deformation microstructure has
become the Discrete Dislocation Dynamics (DDD) simulations. The objective of
DDD simulations is to assist theoretical modelling by filling the gap between atomic
scale and fully continuum scale. The recent review of the present state of the art and
computational aspects of DDD can be found in, e.g., [3, 4].

There are several ways to treat the DDD simulations. Kubin et al [5] made
first pioneering works in dislocations modelling. They represent a dislocation as a
sequence of straight segments of elementary length. At present, many studies employ
and modify their original approach. Using large computational resources, they mainly
focus on large scale and massively parallel simulations [6, 7].

Another approach was proposed by Ghoniem et al [9, 10], where a dislocation was
described by a small set of segments represented by splines chosen in such a way to
ensure the second-order continuity.

Our approach to DDD modelling presented in this article is based on mathemat-
ical theory of evolving planar curves. To capture the motion of curves or interfaces,
we employ the mean curvature motion law, whose general dimensionless form reads
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as

(1.1) normal velocity = curvature + force.

The basis of this approach is given in, e.g., [11]. Its objective is mainly focused on
detailed modelling of elementary dislocation processes, such as topological changes
where dislocations merge or split [12], cross-slip where evolving dislocation changes
its slip plane [13], or local interaction of evolving dislocations, e.g., in the channel of
the persistent slip bands [14].

The aim of this article is to investigate a possible inaccuracy in DDD simulations.
In standard DDD, it is assumed that the only external factor of the mathematical
model is the external stress applied on the crystal volume, which is considered to
be uniform. This is called the stress controlled regime. This concept is basically a
simplification of reality, because the elastic strain linked to the stress through Hooke’s
law remains uniform as well. This elastic strain is not able to adjust to the gener-
ally nonuniform plastic strain generated by dislocation glide, and the compatibility
condition for total strain is violated. This artificial rigidity causes the stress to be
higher than in reality. Other possible approach is to require that the total strain
is uniform, whereas the stress does not have to satisfy the stress equilibrium. And
similarly, the resulting applied stress is smaller than in reality. This is called the total
strain controlled regime, and the reality is between these limit cases.

For the investigation of the inaccurate behavior of the standard DDD, we study
the following model problem: two distinct dislocations moving in the opposite di-
rection in two parallel slip planes in the channel of the Persistent Slip Band (PSB).
Dislocations are exposed to the applied stress evaluated for the two above described
loading regimes, stress exerted by the walls of the PSB channel, and affect one an-
other by the interaction stress field. The geometry of the model is chosen in such a
way (compare to [7, 8]) that two initially straight dislocations Γ(1) and Γ(2) of the
opposite signs with Burgers vector b = (b, 0, 0) (vector describing the distorsion of
the crystal lattice, see [1, 2]) are initially parallel to the x-axis of the x, y, z coordi-
nate system. The endpoints of both dislocations are fixed at the channel walls, and
the dislocations glide in two slip planes of distance h, parallel to the y = 0 plane.
Only two-dimensional motion restricted to the slip planes is considered. In proposed
simulations, the cross-slip and effects of topological changes are excluded. We refer
the reader to, e.g., [13] where cross-slip and annihilation are discussed.

As the dislocations approach each other, their attraction given by the interaction
field becomes stronger and speeds up their gliding. In their proximity, their glid-
ing slows down since the mutual interaction becomes repulsive. Depending on the
slip plane distance h and the exerted applied stress, dislocations either stop moving,
forming a steady state solution at dipole position, or escape each other and gradually
accelerating. The objective of our study is to estimate the critical value of the applied
stress needed for passing in both loading regimes.

2. Model Description. Mathematical theory of moving curves provides very
robust framework to model complex dynamics of dislocation curves (see, e.g., [11]).
In this article, we investigate the problem, where a dislocation curve is driven by the
following form of the mean curvature flow (1.1)

(2.1) BvΓ = −TκΓ + F.

Here vΓ is the velocity of the curve Γ = Γt in the outer normal direction, κΓ is its
curvature, and F is the sum of all external forces. The parameter B is the drag
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coefficient and T denotes the line tension depending on the tangential angle ξ. In
accordance with [1], we approximate it as T ≈ E(e)(1 − 2ν + 3ν cos2 ξ), where E(e)

is the dislocation edge energy and ν is the Poisson ratio. All model parameters can
be found in Table 6.1. The product −TκΓ approximates the self force generated by
dislocation [15].

Our objective is to find a family {Γt : t ∈ [0, Tmax]} of closed or open nonselfin-
tersecting planar curves evolving from initial curve Γini and satisfying (2.1).

Our approach is based on on parametric description of the smooth time-dependent
curve Γt (t ≥ 0) by means of the vectorial mapping

(2.2) X = X(t, u) = (X1(t, u), X2(t, u)), u ∈ [0, 1],

where u is dimensionless parameter in a fixed interval. For closed curves, parametriza-
tion is chosen to be orientated counter-clockwise and the periodic boundary conditions
at u = 0 and u = 1 are imposed. In case of open curves, we prescribe fixed ends bound-
ary conditions at u = 0 and u = 1, i.e., X(t, 0) = X0(t) and X(t, 1) = X1(t), and the
orientation of the normal vector nΓ is chosen in such a way, that det(nΓ, tΓ) = 1 holds
for the tangential vector tΓ. The geometrical quantities of interest are prescribed by
means of the parametrization X. The unit tangent and normal vectors are given as
follows

tΓ =
∂uX

|∂uX|
, nΓ =

∂uX⊥

|∂uX|
,

where X⊥ = (X2,−X1). This is in accordance with the rule det(nΓ, tΓ) = 1. From
Frenet formulae, the curvature is expressed as

κΓ = − 1

|∂uX|
∂u

(
∂uX

|∂uX|

)
· nΓ.

Note that in our case the curvature of the unit circle is κΓ = 1. The normal velocity
(the projection of the point velocity vΓ = ∂tX to the normal direction nΓ) is

vΓ = vΓ · nΓ.

Evolution of the curve Γt is driven by equation (2.1) provided the parametrization
(2.2) satisfies the following system

∂tX =
1

|∂uX|
∂u

(
∂uX

|∂uX|

)
+ F

∂uX⊥

|∂uX|
,

X|t=0 = Xini,

(2.3)

for t ∈ (0, Tmax) and u ∈ [0, 1]. This is known as the parametric description of (2.1)
[11, 16]. The main advantage of this approach is that it offers easy and straightforward
way to the numerical modeling of the curve evolution problems. Another noticeable
advantage is the computational cost of this approach. While other interface capturing
methods, such as level set method or phase-field method require large computational
resources and tend to become too slow, parametric method treats one-dimensional
problem to obtain one-dimensional approximate solution. And finally, parametric
approach is able (compared to level set or phase-field method) to treat dynamics of
open curves as well. On the other hand, this approach cannot handle topological
changes (like merging or splitting) intrinsically. However, separate algorithms to deal
with such a task were developed [12].
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3. Tangential Effects. It is known that when tracking a curve motion driven by
normal velocity as in motion law (2.1), tangential terms do not affect the shape of the
curve. Therefore, they are not important from the analytical point of view. However,
considering the numerical solution of (2.3), nonzero tangential terms can significantly
affect its quality. It is caused by the fact that the parametrically described evolving
curve is approximated by finite number of linear segments, each consisting of a pair
of discretization points. Depending on the character of the driving force and on
the time-scale of the computation, discretization nodes may tend to accumulate in
certain segments of the curve, leaving the rest to be sparsely distributed. One way
to overcome this problem is to employ so called tangential redistribution, originally
proposed by Dziuk and Deckelnick in [17], and studied, e.g., by Ševčovič and Yazaki
in [18]. The idea is to introduce a tangential term in equation (2.3)

B∂tX = T

(
1

|∂uX|
∂u

(
∂uX

|∂uX|

)
+ α

∂uX

|∂uX|

)
+ F

∂uX⊥

|∂uX|
.(3.1)

By the suitable choice of a possibly nonlocal term α, one can control the distribution
of the discretization points, which can positively affects the behavior of the numerical
algorithm, convergence and stability issues, and it can even allows to use a coarser
discretization to capture a possibly complex dynamics of the evolved curve.

In this paper, we consider a tangential redistribution originally proposed by
Ševčovič and Yazaki in [18] for closed curves. They designed the tangential term
α to either asymptotically distribute the discretization points uniformly along the
curve, or to adjust their position to keep their density higher in segments with higher
curvature κΓ. This tangential term is given as the solution of the following differential
equation

(3.2)
∂u(ϕ(κΓ)α)

|∂uX|
= f − ϕ(κΓ)

〈ϕ(κΓ)〉
〈f〉+ ω

(
L(Γt)

|∂uX|
〈ϕ(κΓ)〉 − ϕ(κΓ)

)
,

which is uniquely determined due to the renormalization constrained

〈α(t, ·)〉 = 0.

The modification of this approach for open curves with fixed endpoints can be done
easily (see [14]). One just have to ensure that

α(t, 0) = α(t, 1) = 0

for all t > 0.
Here, L(Γt) is the curve length in time t, ω is a given positive constant, 〈g〉 denotes

the average of a function g(t, u) along the curve Γt:

〈g〉 =
1

L(Γt)

∫ 1

0

g(t, u)|∂uX|du,

and the function f is prescribed as follows

f = ϕ(κΓ)κΓ(−TκΓ +F )−ϕ′(κΓ)

(
∂u
|∂uX|

(
∂u
|∂uX|

(−TκΓ + F )

)
+ κ2

Γ(−TκΓ + F )

)
.

Finally, the function ϕ = ϕ(κΓ) is a heuristically chosen to control the intensity of
redistribution according to the curvature κΓ. In our computational studies we use

ϕ(κΓ) = 1− ε+ ε
√

1− ε+ εκ2
Γ, where ϕ′(κΓ) =

d

dκΓ
ϕ(κΓ).
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The particular choice of ε = 0, i.e., ϕ(κΓ) = 1 provides the uniform redistribution
of discretization points. Considering ε ∈ (0, 1), we obtain the curvature adjusted
tangential redistribution, taking into account deviations of the curvature. For more
details, we refer the reader to, e.g., [14, 18].

4. Forces Acting on Dislocations. Here we recall the force description of
model (2.1). Firstly, let us analyze the curvature term −Tκ. As already stated, this
term approximates the self force generated by the dislocation and is responsible for
its bowing. The line tension T is calculated as T ≈ E(e)(1− 2ν + 3ν cos2 ξ), where ξ
is the tangential angle to the dislocation segment, E(e) is the dislocation edge energy,
and ν is the Poisson ratio. Notice that the sign convention of the curvature term is in
accordance with the curve orientation and the choice of the outer unit normal vector,
as explained in Section 2.

The all other externally acting forces are included in force term F , where F is
expressed as

F = bτres,

where τres is the local resolved shear stress and b is the Burgers vector magnitude. In
this paper, we study the effect of three stress contributions, i.e.,

τres = τwall + τint + τapp,

where τwall is the stress exerted by walls of the PSB channel, τint is the stress field
caused by mutual interaction of dislocation, and τapp is the stress externally applied
to the crystal.

Wall stress. The motion of a dislocation curve is constrained to the channel
of persistent slip band (PSB, see [1, 2]) of the width dc. Dislocation gliding inside
the channel interacts with the walls created by closed dislocation dipolar loops. This
interaction is simulated as elastic fields of infinite edge dipoles. The resolved shear
stress in the slip plane produced by the edge dipole can be approximated by analytical
formulas for τwall given in [14]. In this paper, our simulations are performed under
the same configuration of the channel as in the [14].

Interaction stress. As dislocations glide, they interacts each other. As we
approximate the dislocation as a polygonal curve, the force interaction is expressed
as a sum of contribution of every single straight segment. The problem of interacting
dislocations was analyzed by Devincre, who proposed the analytical formula for 3D
stress tensor field at a given position and generated by the defined dislocation half line
(see [19]). From the knowledge of this 3D tensor, well known Peach-Koehler formula
(see [20]), and the geometrical settings of our model (discussed in Section 1), we are
able to produce the analytical formula for the interaction stress τint acting in our
model. For the detailed calculations and formulas, we refer the reader to [14].

Applied stress. The only externally controlled factor of the model (2.1) is the
value of the shear stress applied on the crystal. In this contribution, we focus on
investigation of two simplified loading conditions – limit cases, which provide upper
and lower estimates of the real passing stress.

The first case is the stress controlled regime. This control regime provides the
upper estimate of the passing stress, and because of its simplicity, it is widely used in
discrete dislocation dynamics simulations (see [8, 11]). We suppose the applied stress
τapp to be uniformly distributed in the channel, and constant in time, i.e., τapp = const
as in [14].
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The second case is the total strain controlled regime (studied, e.g., in [8]), which
should provide the lower estimate of the passing stress. Here we consider the total
shear strain εtot to be uniform in the channel, and linearly depending on time with the
time rate ε̇, i.e., εtot(t) = ε̇t. Then, we can obtain the numerical value of the applied
stress by decomposition of the total shear strain into the elastic and the plastic part

(4.1) εtot(t) = ε̇t =
τapp
µ

+ %b

∫ t

0

v(t̂, u)dt̂,

where µ is the shear modulus, % is the dislocations density in the PSB channel, and
v is the normal velocity of the dislocation from (2.1). The integral term

∫ t

0
v(t̂, u)dt̂

is the area slipped by the dislocation segment, and in numerical experiments, it is
approximated by the area of parallelograms constructed on dual grid. Technical details
of this approach can be found in [21].

5. Numerical Solution. We treat governing equations (3.1) by means of the
semi-implicit flowing finite volumes method, which was proposed, and successfully
applied to DDD problems in, e.g., [8, 11, 14, 22]. For the spatial discretization,
the discrete nodes Xi = X(t, ui) for i = 0, . . . ,M and discrete dual nodes Xi± 1

2
=

X(t, ui± 1
2
) for i = 1, . . . ,M − 1 are placed along the curve Γt. Here ui± 1

2
= ui ± h/2

and h = 1/M . We integrate the governing equations along the dual segment around
the node Xi resulting into

∫ ui+
1
2

ui− 1
2

B∂tX|∂uX|du =

∫ ui+
1
2

ui− 1
2

[
T

(
∂u

(
∂uX

|∂uX|

)
+ α∂uX

)
+ F∂uX⊥

]
du.(5.1)

We denote the following discrete quantities

dj = |Xj −Xj−1| for j = 1, . . . ,M,

where X0 and XM are the fixed ends boundary conditions, and

κj = − 2

dj + dj+1

(
Xj+1 −Xj

dj+1
− Xj −Xj−1

dj

)
·
X⊥j+1 −X⊥j−1

dj+1 + dj
.

The integral terms with first spatial derivative with respect to u in (5.1) are approx-
imated as follows ∫ ui+

1
2

ui− 1
2

B∂tX|∂uX|du ≈ B dXi

dt

di+1 + di
2

,

∫ ui+
1
2

ui− 1
2

α∂uXdu ≈ αi
Xi+1 −Xi−1

2
,

∫ ui+
1
2

ui− 1
2

F∂uX⊥du ≈ Fi

X⊥i+1 −X⊥i−1

2
,

where Fi = F (Xi) and αi = α(t, ui). One can get the approximate value of the
tangential term αi by integrating (3.2) (for technical details we refer the reader to
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Table 6.1
Parameters of the numerical experiment

Burgers vector magnitude b = 0.256 nm

Dislocation edge energy E(e) = 2.35 nN
Drag coefficient B = 1.0 × 10−5 Pa · s
Plane distance h = 50 nm
Channel width dc = 1200 nm
Shear modulus µ = 42.1 GPa
Poisson ratio ν = 0.43

Density of glide dislocations % = 1 × 10−5 nm−2

Total strain time rate ε̇ = 1.9 × 10−3 s−1

[14, 22, 23]), which yields recurrent formulas as the following

fi =ϕ(κi)κi [−Tκi + F ((Xi + Xi−1)/2)]− ϕ′(κi)
(
κ2
i [−Tκi + F ((Xi + Xi−1)/2)]

)
− ϕ′(κi)

di

(
−2T

[
κi+1 − κi
di+1 + di

− κi − κi−1

di + di−1

]
+
Fi+1 − Fi

di+1
− Fi − Fi−1

di

)
,(5.2)

ψi =fidi −
ϕ(κi)

〈ϕ(κ)〉
〈f〉di + ω

(
L

M
〈ϕ(κ)〉 − ϕ(κi)di

)
,

Ψi =

i∑
k=2

ψk,

α1 =− 1

ϕ((κ2 + κ1)/2)

∑M
i=2(di+1 + di)Ψi/ϕ((κi+1 + κi)/2)∑M
i=1(di+1 + di)/ϕ((κi+1 + κi)/2)

,

where we set α0 = αM = 0. Notice that in [14], the definition of function fi is
slightly different because of the different sign convention of the curvature. Finally,
discretization in time is done by means of the standard forward difference

dXi

dt
≈ Xj+1

i −Xj
i

∆t
,

where the superscript j denotes the j-th time level tj , i.e., tj = j∆t. The time step ∆t
is chosen in such a way that ∆t = 1/h2 where h = 1/M . The resulting semi-implicit
scheme for i = 1, . . . ,M − 1 is the following

Xj+1
i −Xj

i

∆t

dji+1 + dji
2

=
T

B

[(
Xj+1

i+1 −Xj+1
i

djj+1

−
Xj+1

i −Xj+1
i−1

djj

)
+ αj

i

Xj+1
i+1 −Xj+1

i−1

2

]

+
F j
i

B

X⊥,ji+1 −X⊥,ji−1

2
,(5.3)

Xi(0) =Xini(ui).(5.4)

6. Computational Study. We present the results of numerical experiments of
two dislocation curves of the opposite sign, gliding in the PSB channel and inter-
acting each other. The qualitative behavior of the numerical solution is depicted in
Figure 7.2. Here one can also see the effect of the curvature adjusted redistribution.
Discretization points are accumulated in segments with higher curvature as intended.
Our numerical experiments were performed for copper with the physical parameters
listed in Table 6.1.
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Our numerical experiments are performed under different loading conditions, i.e.,
stress controlled and strain controlled regime, both discussed above. The objective
of our investigation is to estimate the critical value of the passing stress, i.e., the
magnitude of the applied stress τapp, for which dislocations break the steady state
and escape each other.

For the stress controlled regime, the idea is very simple. We use the approach
similar to the interval bisection. We perform a sequence of simulations, where we
increase and decrease the value of the applied stress step by step and observe, when
the dislocations form a steady state solution, i.e., the dipole position. Here, the
quantity of interest is the rate of the area swept by the dislocation, see Figure 7.1,
right. When the swept area rate reaches zero, it indicates the reaching of steady
state and the dipole formation. For our numerical experiments, we observe, that the
τapp = 25 MPa is the maximal stress of the dipole formation, and the passing stress
is about τapp = 26 MPa.

Considering the strain controlled regime, such simple approach fails (see Figure
7.1, left). It is caused by the fact that the total shear strain increases, and even if the
dislocations are surpassed by the plastic term in (4.1), by the time, they always pass.
Instead, one possibility is to use the method proposed by Mughrabi and Pschenitzka
in [24]. According to their approach, the quantity of interest is so called overall stress
τ defined as

τ(t, u) = Bv(t, u)− τapp(t, u),

where the parameter u belongs to [0, 1]. To minimize the effect of the stress exerted by
the walls of the PSB channel, we measure this quantity in the middle of the channel,
i.e., for u = 0.5. Then the passing stress is identified with the local maximum of the
overall stress τ . In Figure 7.1, left, we can see the passing stress is about τpass ≈ 24.2
MPa (the black line). This is in agreement with our expectations, that the strain
controlled regime provides the lower estimate of the passing stress. We applied this
method also on the stress controlled regime and as seen in Figure 7.1, left, and it
provides satisfactory estimates as well. The blue curve representing the overall stress
for τapp = 34 MPa reaches its local maximum of approximately 26.2 MPa. Notice
that red overall stress curve for τapp = 25 MPa reaches even its global maximum of
25 MPa, indicating the steady state position.

7. Conclusion. We proposed the mathematical model of multiple dislocations
evolving in the PSB channel and interacting each other. We enhanced the model
by employing the curvature adjusted tangential redistribution. Qualitative compu-
tational studies showed it works as intended. The main objective of our study was
to compute upper and lower estimates of a passing stress under different loading
conditions, and investigate a possible inaccuracy in DDD simulations. In the stress
controlled regime, we determined the passing stress by very simple bisection method
as τpass ≈ 26 MPa. In the strain controlled regime, the analysis of the overall stress
provided the lower estimate as τpass ≈ 24.2 MPa. The results of our numerical exper-
iments confirm the expectation that the stress controlled regime provides the upper
estimate of the passing stress and vice versa, and that these upper and lower estimates
differ in less than 10%.
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