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ON ERROR ESTIMATION IN THE CONJUGATE GRADIENT
METHOD: NORMWISE BACKWARD ERROR∗

PETR TICHÝ†

Abstract. Using an idea of Duff and Vömel [BIT, 42 (2002), pp. 300–322 ] we suggest a simple
algorithm that incrementally estimates the 2-norm of Jacobi matrices that are available during the
conjugate gradient (CG) computations. The estimate can be used, e.g., in stopping criteria based
on the normwise backward error. Numerical experiments predict that the estimate approximates the
2-norm of A with a sufficient accuracy.
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1. Introduction. The (preconditioned) Conjugate Gradient (CG) algorithm by
Hestenes and Stiefel [8] is the iterative method of choice for solving linear systems
Ax = b with a real symmetric positive definite matrix A. An important question is
when to stop the iterations.

The choice of the stopping criterion typically depends on the underlying problem.
Ideally, one would like to stop the iterations when some norm of the error x−xk, where
xk are the CG iterates, is small enough. The norm of the error which is particularly
interesting for CG is the A-norm which is minimized at each iteration,

‖x− xk‖A = ((x− xk)TA(x− xk))1/2.

Hestenes and Stiefel [8] considered the A-norm of the error a possible candidate for
measuring the “goodness” of xk as an estimate of x. They showed that though it was
impossible to compute the A-norm of the kth error without knowing the solution x, it
was possible to estimate it. Later, inspired by the connection of CG with the Gauss
quadrature rule for a Riemann-Stieltjes integral, a way of research on this topic was
started by Gene Golub in the 1970s and continued throughout the years with several
collaborators (e.g., Dahlquist, Eisenstat, Fischer, Meurant, Strakoš); see, e.g., [6].
Note that quadrature rules can also be used for estimating the Euclidean norm of
the error ‖x− xk‖ that plays an important role in the applications such as in image
processing; see, e.g., [11, 6].

Denote the matrix 2-norm by ‖A‖. In [12, 1], backward error perturbation theory
was used to derive a family of stopping criteria for iterative methods. In particular,
given xk, one can ask what are the norms of the smallest perturbations ∆A of A
and ∆b of b measured in the relative sense such that the approximate solution xk
represents the exact solution of the perturbed system

(A+ ∆A)xk = b+ ∆b .

In other words, we are interested in the quantity

min {ε : (A+ ∆A)xk = b+ ∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖} .
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It was show by Rigal and Gaches [13] that this quantity, called the normwise backward
error, is given by

(1.1)
‖rk‖

‖A‖‖xk‖+ ‖b‖
.

where rk = b − Axk. This approach can be generalized in order to quantify levels
of confidence in A and b, see [12, 1]. The normwise backward error is, as a base for
stopping criteria, frequently recommended in the numerical analysis literature, see,
e.g. [9, 2].

In this work we concentrate on the question how to efficiently estimate the quan-
tity (1.1) during the CG computations. While ‖b‖, ‖rk‖, and ‖xk‖ are available,
‖A‖ has to be computed or estimated, which could represent an extra work. To
approximate ‖A‖, one can use, for example, matrix norms inequalities, in particular,

1√
n
‖A‖F ≤ ‖A‖ ≤ ‖A‖F

where ‖ · ‖F is the Frobenius norm of a matrix. Having lower and upper bounds on
‖A‖, we obtain lower and upper bounds on the quantity (1.1). However, for large n,
these bounds need not approximate (1.1) well, and it is desirable to get a better
approximation of ‖A‖.

Since A is symmetric and positive definite, ‖A‖ is equal to the maximum eigen-
value of A. Hence, a natural way to approximate ‖A‖ during the CG computations is
to use maximum Ritz values that can be determined from the CG coefficients. Note
that the maximum Ritz value is the maximum eigenvalue of the corresponding Jacobi
matrix. Computing the eigenvalues of Jacobi matrices at each iteration would be
too expensive. Instead of it, one can compute the maximum Ritz value only once at
some iteration k, and use it as an approximation of ‖A‖. This approach requires to
determine the iteration k by monitoring the convergence of the maximum Ritz value
to the maximum eigenvalue of A, and to compute the maximum eigenvalue of the
tridiagonal matrix. All that can be done in O(k2) operations and it works well, in
general. However, the mentioned approach represents an algorithmic complication
for a potential user. In this paper we present a very simple way to approximate the
maximum Ritz value incrementally at a negligible cost. The user needs to add just a
few lines into his code.

The outline of the paper is as follows. Section 2 recalls some basic facts about the
Lanczos and CG algorithms. In Section 3 we show how to incrementally estimate the
maximum Ritz value, and formulate the algorithm. Finally, in Section 4 we present
numerical experiments.

2. CG and Lanczos algorithms. In this section we briefly recall the Lanczos
and Conjugate Gradient algorithms as well as their relationships; see, for instance
[7, 10].

Given a starting vector v and a symmetric matrix A ∈ RN×N , one can consider
a sequence of nested subspaces

Kk(A, v) ≡ span{v,Av, . . . , Ak−1v}, k = 1, 2, . . . ,

called Krylov subspaces. The dimension of these subspaces is increasing up to an
index n called the grade of v with respect to A, at which the maximum dimension is
attained, and Kn(A, v) is invariant under multiplication with A. Assuming that k < n
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Algorithm 1 Lanczos algorithm

1: input A, v
2: β0 = 0, v0 = 0
3: v1 = v/‖v‖
4: for k = 1, . . . do
5: w = Avk − βk−1vk−1

6: αk = vTk w
7: w = w − αkvk
8: βk = ‖w‖
9: vk+1 = w/βk

10: end for

the Lanczos algorithm (Algorithm 1) computes an orthonormal basis v1, . . . , vk+1 of
the Krylov subspace Kk+1(A, v). The basis vectors vj satisfy the matrix relation

AVk = VkTk + βk+1vk+1e
T
k

where Vk = [v1 · · · vk] and Tk is the k × k symmetric tridiagonal matrix of the recur-
rence coefficients computed in Algorithm 1:

Tk =


α1 β1

β1
. . .

. . . βk−1

βk−1 αk

 .
The coefficients βj being positive, Tk is a Jacobi matrix. The Lanczos algorithm works
for any symmetric matrix, but if A is positive definite, then Tk is positive definite as
well.

Algorithm 2 Conjugate gradients

1: input A, b, x0

2: r0 = b−Ax0

3: p0 = r0

4: for k = 1, . . . , n do

5: γk−1 =
rTk−1rk−1

pTk−1Apk−1

6: xk = xk−1 + γk−1pk−1

7: rk = rk−1 − γk−1Apk−1

8: δk =
rTk rk

rTk−1rk−1

9: pk = rk + δkpk−1

10: end for

When solving a system of linear algebraic equations Ax = b with symmetric and
positive definite matrix A, the CG method (Algorithm 2) can be used. CG computes
iterates xk that are optimal since the A-norm of the error is minimized over the
manifold x0 +Kk(A, r0),

‖x− xk‖A = min
y∈x0+Kk(A,r0)

‖x− y‖A.
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The residual vectors rk are proportional to the Lanczos basis vectors vj and hence
mutually orthogonal,

vj+1 = (−1)j
rj
‖rj‖

, j = 0, . . . , k.

Therefore, the residual vectors rj yield an orthogonal basis of the Krylov subspace
Kk+1(A, r0). In this sense, CG can be seen as an algorithm for computing an or-
thogonal basis of the Krylov subspace Kk+1(A, r0) and there is a close relationship
between the CG and Lanczos algorithms. It is well-known (see, for instance [10]) that
the recurrence coefficients computed in both algorithms are connected via

βk =

√
δk

γk−1
, αk =

1

γk−1
+
δk−1

γk−2
, δ0 = 0, γ−1 = 1,

writing these formulas in a matrix form, we get

Tk = RTkRk

where

Rk =



1√
γ0

√
δ1
γ0

. . .
. . .

. . .
√

δk−1

γk−2

1√
γk−1

 .

In other words, CG computes implicitly the Cholesky factorization of the Jacobi
matrix Tk generated by the Lanczos algorithm. Since for any y ∈ Rk we have yTTky =
‖Rky‖2, it holds that

‖Tk‖ = ‖Rk‖2.

We can see that to approximate the maximum eigenvalue of Tk, one can use algorithms
that incrementally approximate the maximum singular value of the upper triangular
matrix Rk.

3. The incremental approximation of ‖Tk‖. As mentioned above, ‖A‖ can
be approximated using ‖Tk‖ = ‖Rk‖2. To approximate the maximum singular value
of Rk, we use the incremental estimator for tridiagonal matrices proposed in [4], and
specialize the algorithm for the case when Rk is only bidiagonal. The algorithm in
[4] is based on incremental improvement of an approximation of the right singular
vector that corresponds to the maximum singular value. In [5] it has been shown that
this technique tends to be superior, with respect to approximating maximum singular
values, to the original incremental technique proposed in [3]. As we will see, in our
case, we need to store just the last component of the approximate maximum right
singular vector.

3.1. The eigenvalues and eigenvectors of a 2× 2 symmetric matrix. An
important ingredient of incremental norm estimation is the fact that the eigenvalues
and eigenvectors of a 2× 2 symmetric matrix are known explicitly. Let

(3.1) B =

[
α β
β γ

]
,
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then the eigenvalues of B are given by, see, e.g., [4, p. 306],

λ+ =
1

2
(α+ γ + ω) , λ− =

1

2
(α+ γ − ω)

where

ω2 = (α− γ)2 + 4β2.

If β 6= 0, the matrix of unnormalized eigenvectors is given by[
α− γ + ω α− γ − ω

2β 2β

]
.

3.2. Incremental estimation of the maximum singular value of R. Let
R ∈ Rk be an upper triangular matrix and let z be its approximate (or exact) maxi-
mum right singular vector. Let

(3.2) R̂ =

[
R v

µ

]
, v ∈ Rk, µ ∈ R,

and consider the new approximate maximum right singular vector in the form

(3.3) ẑ =

[
sz
c

]
,

where s2 + c2 = 1 are chosen such that the norm of the vector

R̂ẑ =

[
sRz + cv

cµ

]
is maximum. It holds that

‖R̂ẑ‖2 = s2α+ 2scβ + c2γ =

[
s
c

]T [
α β
β γ

] [
s
c

]
where

(3.4) α = ‖Rz‖2, β = vTRz, γ = vT v + µ2.

Hence, to maximize ‖R̂ẑ‖2, we need to determine the maximum eigenvalue of the 2×2
matrix (3.1), and the corresponding eigenvector. Using the previous results,[

s
c

]
=

u

‖u‖
, u =

[
α− γ + ω

2β

]
and

λmax =
α+ γ + ω

2
, ω2 = (α− γ)

2
+ 4β2.

Note that if β = 0, the formula for the eigenvector that corresponds to λmax is still
valid. Next, it holds that

‖u‖2 = 2(ω2 + (α− γ)ω),
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and, therefore,

c2 =
2β2

ω2 + (α− γ)ω
=

1

2

ω2 − (α− γ)
2

ω2 + (α− γ)ω
=

1

2

(
1− α− γ

ω

)
.

We can also express ‖R̂ẑ‖2 in a more convenient form,

‖R̂ẑ‖2 =
α+ γ + ω

2
= α+

ω

2

(
1− α− γ

ω

)
= α+ ωc2.

In summary,

(3.5) c2 =
1

2

(
1− α− γ

ω

)
, ‖R̂ẑ‖2 = α+ ωc2 .

3.3. Specialization to upper bidiagonal matrices . We now apply the tech-
nique from the previous subsection to the bidiagonal matrices Rk which are available
in CG. The previous technique requires to store the vector z and to perform O(k)
operations per update. We will show that the incremental estimate of ‖Rk‖ can be
computed without storing the vector z, and in O(1) operations.

Consider the iteration k+1 of the CG algorithm and suppose that the approximate
maximum right singular vector zk of Rk is known. The new matrix Rk+1 arises from
Rk by adding one column and one row. Comparing the form of Rk+1 with (3.2) and
taking R = Rk, we see immediately that

(3.6) v =

√
δk
γk−1

ek, µ =
1

γk

and from (3.4) and (3.6),

α = ‖Rkzk‖2, γ =
δk
γk−1

+
1

γk
= αk+1, β =

√
δk

γk−1
ck = β2

kc
2
k

where ck is the last component of the vector zk (see (3.3)), and αk+1 and βk are the
Lanczos coefficients. Denote

∆k = ‖Rkzk‖2.

We show how to efficiently compute ∆k+1 and ck+1. With the above notation, and
using (3.5) we get

c2k+1 =
1

2

(
1− ∆k − αk+1

ωk

)
, ∆k+1 = ∆k + ωkc

2
k+1,

where

ω2
k = (∆k − αk+1)

2
+ 4β2

kc
2
k.

In summary, we can easily compute the estimate ∆k+1 of ‖Tk+1‖ from the coefficients
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γk and δk generated by the CG algorithm, using the folowing recurrences

αk+1 =
δk
γk−1

+
1

γk

β2
k =

δk
γ2
k−1

ωk =

√
(∆k − αk+1)

2
+ 4β2

kc
2
k

c2k+1 =
1

2

(
1− ∆k − αk+1

ωk

)
∆k+1 = ∆k + ωkc

2
k+1.

We have not specified yet, how to start the algorithm for computing the esti-
mate ∆k. For k = 2, we are able to determine the maximum eigenvalue of T2 and the
corresponding eigenvector exactly. Using results of Subsection 3.1, it holds that

c22 =
1

2

(
1− α1 − α2

ω1

)
, where ω2

1 = (α1 − α2)
2

+ 4β2
1 ,

and

∆2 = ‖R2‖2 = ‖T2‖ =
α1 + α2 + ω1

2
= α1 + ω1c

2
2.

We can see that the formulas for k = 2 will be consistent with formulas for a general k,
if we define

∆1 = α1, and c1 = 1.

Finally, we get Algorithm 3 that computes the estimates ∆k of ‖Tk‖ almost for free.
This estimate can be used to approximate ‖A‖ and the normwise backward error. In
particular, since ∆k ≤ ‖Tk‖ ≤ ‖A‖, we get an upper bound

(3.7) %k ≡
‖rk‖

‖A‖‖xk‖+ ‖b‖
≤ ‖rk‖

∆k‖xk‖+ ‖b‖
≡ ηk .

4. Numerical experiments. In the following numerical experiments performed
in Matlab 8.0 (R2012b) we test the quality of the upper bound

(4.1) ηk ≡
‖rk‖

∆k‖xk‖+ ‖b‖

on the normwise backward error. We solve two systems of linear algebraic equations
Ax = b, the first one with the matrix bcsstk03 of order n = 112, and the second
one with the matrix bcsstk16 of order n = 4884. Both matrices can be found in
the Harwell-Boeing collection. The right-hand side b has been chosen such that b has
equal components in the eigenvector basis, and such that ‖b‖ = 1. We choose x0 = 0.
Results plotted in Figure 4.1 and Figure 4.2 correspond to the matrix bcsstk03 and
bcsstk16, respectively.

In both figures we observe that the normwise backward error %k (1.1) and its
estimate ηk (4.1) computed by Algorithm 3 visually coincide. We know from (3.7)
that ηk represents an upper bound on %k. Hence, when stopping the algorithm if ηk
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Algorithm 3 CG with incremental norm estimation

1: input A, b, x0

2: r0 = b−Ax0, p0 = r0

3: δ0 = 0, γ−1 = 0
4: for k = 1, . . . , do

5: γk−1 =
rTk−1rk−1

pTk−1Apk−1
,

6: xk = xk−1 + γk−1pk−1

7: rk = rk−1 − γk−1Apk−1

8: δk =
rTk rk

rTk−1rk−1

9: pk = rk + δkpk−1

10: αk = 1
γk−1

+ δk−1

γk−2

11: β2
k = δk

γ2
k−1

12: if k = 1 then
13: c21 = 1
14: ∆1 = α1

15: else

16: ωk−1 =
√

(∆k−1 − αk)
2

+ 4β2
k−1c

2
k−1

17: c2k = 1
2

(
1− ∆k−1−αk

ωk−1

)
18: ∆k = ∆k−1 + ωk−1c

2
k

19: end if
20: end for
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Fig. 4.1. Normwise backward error in CG and its estimate for the matrix bcsstk03 of order
n = 112. The normwise backward error (solid line) and its estimate (dashed line) visually coincide.
By the dash-dotted line we plot the relative error of the estimate given by the quantity (4.2).
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Fig. 4.2. Normwise backward error in CG and its estimate for the matrix bcsstk16 of order
n = 4884. The normwise backward error (solid line) and its estimate (dashed line) visually coincide.
By the dash-dotted line we plot the relative error of the estimate given by the quantity (4.2).

is less than a given tolerance, then also %k is less than this tolerance. Moreover, since
both quantities have the same order of magnitude, the CG algorithm will be stopped
using ηk at the right iteration.

The two quantities ηk and %k are not only of the same magnitude, but they even
agree to 2 or 3 valid digits, which is demonstrated by plotting the ratio

(4.2)
ηk − %k
%k

that provides information about the relative accuracy of the estimate (dash-dotted
line). When increasing the number of iterations, the relative accuracy of the estimate
ηk stagnates. This can be explained by the fact that the estimator of the matrix 2-
norm has been suggested to be computationally cheap and efficient, but, on the other
hand, one cannot expect a very high relative accuracy of the matrix norm estimate in
general. If one needs from some reason to improve the accuracy of the estimate ηk,
one can compute the maximum eigenvalue of Tk and the corresponding eigenvector
for some larger value of k, and then start the incremental estimation of the matrix
2-norm using the formulas presented in Subsection 3.3.
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