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NOTES ON PERFORMANCE OF BIDIAGONALIZATION-BASED
NOISE LEVEL ESTIMATOR IN IMAGE DEBLURRING ∗

IVETA HNĚTYNKOVÁ† , MARIE KUBÍNOVÁ‡ , AND MARTIN PLEŠINGER§

Abstract. Image deblurring represents one of important areas of image processing. When
information about the amount of noise in the given blurred image is available, it can significantly
improve the performance of image deblurring algorithms. The paper [11] introduced an iterative
method for estimating the noise level in linear algebraic ill-posed problems contaminated by white
noise. Here we study applicability of this approach to image deblurring problems with various types
of blurring operators. White as well as data-correlated noise of various sizes is considered.
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1. Introduction. When recording digital images, some form of blurring often
occurs, e.g., when camera lens is out of focus, light conditions are not perfect, the
object is moving etc. In such a case the information from a particular image pixel
is spread to surrounding pixels resulting in a lower-quality image. As an additional
problem, the recorded image can contain unknown errors in form of variations of
pixel density usually referred to as noise with different properties based on its origin.
Image deblurring methods aim to reconstruct the true sharp image while suppressing
the influence of noise, by using a mathematical model of the blurring process; see,
e.g., [8, Chapters 1 and 3].

Let B, X ∈ Rl×m represent the blurred noisy image and its unknown sharp
counterpart, respectively. In many applications, the blurring process is linear or can
be well approximated by a linear model, which is an assumption we will follow. In
that case we can model the blurring process as

(1.1) Ax ≈ b , A ∈ Rn×n , b ∈ Rn ,

where A is a linearized (e.g., discretized) blurring operator, b and x are vectorized
forms of B and X (obtained by stacking the columns of the matrix into a single
vector), respectively, and n = lm. The right-hand side of the linear algebraic problem
above can be formally written as

b = bexact + bnoise,

where bexact is the unknown smooth noise-free right-hand side and bnoise represents
unknown noise. We refer to the quantity

(1.2) δnoise ≡
‖bnoise‖
‖bexact‖
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as the noise level. Since noise is supposed to be small compared to noise-free data,
δnoise � 1 is a realistic assumption.

Properties of this model have been widely analyzed; see [6] for a summary, [14]
and [8] for applications in image processing, and also [11], [3], [10] for the behavior in
the context of Krylov subspace methods. In particular, it is known that the singular
values of A usually decay gradually to zero without a noticeable gap and the singular
vectors of A represent increasing frequencies. The model satisfies the discrete version
of the so-called Picard condition meaning that on average the sizes of projections of
bexact onto the left singular subspaces of A decrease faster than the singular values. On
the other hand, bnoise typically does not satisfy such a condition. Consequently, linear
image deblurring models (1.1) represent a typical example of an ill-posed problem; see
[8, Chapter 5].

It is well known that information about the amount of noise can significantly
improve performance of image deblurring methods; see for example [13], [2], [1], [7],
and also [8, Chapter 6]. Such information is however rarely available. The paper
[11] introduced an inexpensive method for estimating the unknown white noise level
in linear ill-posed algebraic problems with a smoothing operator A. The estimate is
obtained by the Golub–Kahan iterative bidiagonalization [4], a short recurrence based
Krylov subspace method. It relies on the assumptions that the model (1.1) satisfies
the discrete Picard condition, A has the smoothing property, the left singular vectors
of A represent increasing frequencies, and bexact is smooth. Because the method needs
only evaluation of matrix-vector products, it can take advantage of a specific structure
of A often present in image deblurring problems; see [8, Chapter 4].

The paper is organized as follows. Section 2 summarizes the main ideas of the
noise level estimation presented in [11]. Section 3 studies its applicability to image
deblurring problems with various types and amount of noise. Spatially invariant as
well as spatially variant blur is considered. Section 4 concludes the paper.

2. Iterative noise level estimate. The Golub–Kahan iterative bidiagonaliza-
tion starting with the vectors w0 ≡ 0, s1 ≡ b/β1, where β1 ≡ ‖b‖ 6= 0, computes for
j = 1, 2, . . .

w̃j = AT sj − βjwj−1 (orthogonalization step)

αj = ‖w̃j‖ , wj =
1

αj
w̃j (normalization step)

s̃j+1 = Awj − αjsj (orthogonalization step)

βj+1 = ‖s̃j+1‖ , sj+1 =
1

βj+1
s̃j+1 (normalization step)

until αj = 0 or βj+1 = 0, or the dimension n of the problem is reached. Assume
that the process does not terminate before the step k. Then the left bidiagonalization
vectors s1, . . . , sk represent an orthonormal basis of the Krylov subspace

Kk(AAT , b) ≡ span{b, AAT b, . . . , (AAT )k−1b},

and the right bidiagonalization vectors w1, . . . , wk represent an orthonormal basis of
the Krylov subspace

Kk(ATA,AT b) ≡ span{AT b, ATAAT b, . . . , (ATA)k−1AT b}.
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Denote

(2.1) Lk ≡


α1

β2 α2

. . .
. . .

βk αk

 ∈ Rk×k

the bidiagonal matrix of the normalization coefficients, representing a projection (re-
striction) of the operator A onto the above defined k-dimensional Krylov subspaces,

Lk = [s1, . . . , sk]TA [w1, . . . , wk];

see [4], [15]. Let p
(k)
1 be the left singular vector corresponding to the smallest singular

value of Lk.1

In [11] it was described how white noise from the right-hand side b propagates in
the Golub–Kahan iterative bidiagonalization, particularly in the left bidiagonalization
vectors; see also [10], [12]. While the starting vector s1 is smooth (since it is dominated
by the scaled bexact), during the bidiagonalization process, as k increases, the left
bidiagonalization vectors sk become more and more dominated by the high-frequency
part of propagated noise bnoise. This is caused by projecting out the low-frequency
components (arising mostly from bexact and partly also from the low-frequency part
of bnoise) in order to achieve orthogonality among the bidiagonalization vectors. The
iteration where the most high-frequency dominated vector is obtained is called the
noise revealing iteration and is denoted by knoise. After this iteration, a part of noise
is projected out resulting in a smoother left bidiagonalization vector. Analysis of this
phenomenon in [11] allowed to derive two quantities estimating the noise level: The
cumulative (amplification) ratio

(2.2) ϕk ≡
k∏
j=1

αj
βj+1

and the size of the first entry of p
(k)
1 , i.e.,

(2.3) |(p(k)1 , e1)|,

where ( · , · ) denotes the standard inner product and e1 = [1, 0, . . . , 0]T ∈ Rk. It
was proved that (2.2) and (2.3) both (on average) decrease until knoise. After this

iteration, the cumulative ratio increases while the size of the first entry of p
(k)
1 begins

to almost stagnate. This allows to detect the iteration knoise in which the best noise
level approximation is obtained; see [11] and also [17]. Note that both estimators
are relatively cheap to compute. Since noise usually propagates rapidly, knoise is very
small in comparison to n. The bidiagonalization coefficients αj , βj+1 are directly

available, computation of the singular vector p
(k)
1 for a small bidiagonal matrix Lk

can be performed efficiently.

We now use the example from [11] to illustrate the behavior of both estimators
on the problem shaw from the Regularization Toolbox [5] in MATLAB. This prob-
lem represents a one-dimensional image restoration model obtained as a quadrature

1Note that we use the notation introduced in [11].
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Fig. 2.1. Illustration of the violation of the discrete Picard condition for the problem shaw(400)

with white noise and the noise levels δnoise = 10−4, 10−8, and 10−12 (left). Increasing frequencies
in the first six left singular vectors of A for the problem shaw(400) (right).
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Fig. 2.2. Comparison of several left bidiagonalization vectors sk computed by the Golub–Kahan
iterative bidiagonalization implemented with (left) and without (right) reorthogonalization, for the
problem shaw(400) with white noise and the noise level δnoise = 10−4.
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Fig. 2.3. Estimates obtained by cumulative amplification ratios (left), and sizes of the first

entry of p
(k)
1 (right), for the problem shaw(400) with white noise and the noise level δnoise = 10−4.

Computations were performed with and without reorthogonalization.

discretization of a first kind Fredholm integral equation on the integration intervals
[−π2 ,

π
2 ]. Here, the smoothing kernel is given by

K(s, t) =
(

cos(s) + cos(t)
)2( sin(u)

u

)2

, where u = π
(

sin(s) + sin(t)
)

;

see [16] for the description of the model. The linear problem with the size n = 400 is
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contaminated by white noise generated by randn(400,1) rescaled to obtain a partic-
ular noise level δnoise. Figure 2.1 (left) shows the sizes of the projections (b, uj), where
uj are the left singular vectors of the matrix A corresponding to the singular values
ordered in the nonincreasing order. We see how the presence of noise of various noise
level results in the violation of the discrete Picard condition for the subspaces corre-
sponding to smaller singular values. Figure 2.1 (right) presents increasing frequencies
in the left singular vectors of A.

Figure 2.2 illustrates how white noise reveals in the left bidiagonalization vectors
for δnoise = 10−4. The vectors in the left part are computed with full double reorthog-
onalization in the Golub–Kahan iterative bidiagonalization in order to simulate exact
arithmetic. Clearly, the frequencies increase before they become maximal in s8, com-
puted in the iteration knoise = 7; see the algorithm above. The right part shows the
delay in noise revealing caused by reappearance of a smooth vector, as a result of the
loss of orthogonality in the bidiagonalization implemented without reorthogonaliza-
tion. However, the effect is still present and knoise = 8. Figure 2.3 compares estimates
obtained by cumulative amplification ratios (left) and by sizes of the first entry of

p
(k)
1 (right). We see that both estimators give very accurate and comparable results

for computation with as well as without reorthogonalization. It is worth noting that
oscillations in the cumulative ratio computed without reorthogonalization can cause
difficulties in automatic detection of knoise. Thus, in the following we restrict ourselves
only to the estimate (2.3). Analysis of the methods detecting the point of stagnation
is out of the scope of this paper; see [17] for some ideas.

3. Performance for 2D image deblurring problems. Robustness of the
estimator (2.3) is studied on a sharp testing picture X of size 167 × 250 pixels, i.e.,
n = 41 750; see Figure 3.1. The experiments are performed in MATLAB, with the
use of functions from the Image Processing Toolbox.

3.1. Spatially invariant blur. First we consider a standard spatially invariant
blurring model, where blurring of each individual pixel in X is characterized by a given
point-spread-function (PSF); see [8, Chapter 3]. Presented results include models for a
Gaussian blur, motion blur, and disc blur. Using the function fspecial, we construct
two PSFs with smaller and larger support for each type of blur, giving in total six
testing PSFs; see Figure 3.2. Note that since we only need to perform matrix-vector
multiplications, we do not form the corresponding blurring matrix A explicitly. The
blurred images B are computed by the 2D convolution using the function conv2 with
the parameter valid, i.e., only the part computed without the zero-padded edges is
returned. Multiplication by the matrix A in the bidiagonalization is performed by the
function conv2 with the parameter same representing zero boundary conditions. For
testing purposes, the image B is contaminated by noise using the function imnoise

with four different parameter settings. We consider two types of noise: white noise
with Gaussian distribution (parameter gaussian), and uniformly distributed data-
correlated noise (parameter speckle). Variances σ2 = 10−2 and σ2 = 5 · 10−6 give
two different noise levels δnoise for each type of noise.

Figure 3.3 provides similar information as Figure 2.1, here for the matrix A cor-
responding to the larger Gaussian PSF and white noise. Again we see the violation of
the discrete Picard condition. The so-called left singular images (reshaped left singu-
lar vectors) of the blurring matrix A tend to be dominated by higher frequencies, i.e.,
more oscillations appear in both vertical and horizontal directions, as k increases; see
[8] for details.
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Fig. 3.1. Sharp testing image X of size 167 × 250 pixels.
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Fig. 3.2. Considered PSFs defining the blurring matrix A. From the left: two Gaussian, two
motion and two disc PSFs.
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Fig. 3.3. Illustration of violation of the discrete Picard condition for the 2D image deblurring
problem with larger Gaussian blur and white noise of various noise levels (left). Increasing frequen-
cies in the first six left singular vectors of the corresponding blurring matrix A printed as 2D images
(right).

Figure 3.4 shows blurred noisy images together with the corresponding noise level
estimates obtained for models with the smaller Gaussian blur, for the four above
described noise settings. Bidiagonalization with and without reorthogonalization is
used. First, we observe that the overall behavior of the estimator does not significantly
depend on the reorthogonalization, except for the fact that for lower noise levels the
delay in noise revealing results in the increase of the computational cost, since more
iteration steps are required to obtain a reasonable estimate (note the different scaling
of the x axis in the second and fourth row). This problem is not present in experiments
with more realistic higher noise level (the first and third row), where noise propagates
quickly. This is a positive message since for larger images, reorthogonalization cannot
be performed because of its enormous computational cost and memory requirements.
Furthermore, we see that the expected stagnation in the estimator allowing to detect
the noise revealing iteration is more significant for higher noise levels. Figure 3.5 is
the counterpart of Figure 3.4 for larger Gaussian blur. We observe clear stagnation
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in all curves. The behavior of the estimator for higher noise levels is generally very
similar to Figure 3.4, however we see that in Figure 3.5 the lower noise levels are
overestimated.

Summarizing, the best results are obtained for large blur and large noise levels,
shown in the first and third row of Figure 3.5 making the estimator more successful
on complicated problems. However, for noise below a certain level problems appear.
For smaller amount of blur the noise revealing iteration can not be perfectly detected,
while for larger amount of blur the noise level is overestimated. This is more significant
in experiments with data-correlated noise, which is not surprising as the estimator
is based on revealing of the high-frequency part of noise in the vectors sk, thus it
does not take into account the smooth part of noise. For white noise, this does not
represent a complication. However, even though data-correlated noise is white-noise
like, its behavior partly resembles behavior of the smooth noise-free data in b.

Figure 3.6 gives noise level estimates for two variants of the motion and disc blur
(specified on the top) with four different noise settings (specified on the left). All
results were obtained by the Golub–Kahan iterative bidiagonalization implemented
without reorthogonalization. We see similar results as in experiments with the Gauss-
ian blur. Consequently, the blur type has generally minor impact on the performance
of the estimator.

3.2. Spatially variant blur. In addition to spatially invariant blur, we inves-
tigate the behavior of the estimator (2.3) for a special type of spatially variant blur:
a rotational blur recently studied in the context of image deblurring in [9]. Consider
a sharp image represented by the central part of size 167 × 167 of the image from
Figure 3.1 in order to avoid the large black areas appearing at the edges when ro-
tating the whole rectangular image. The code to construct the rotational blurring
operator has been provided by Per Christian Hansen, and it is identical to the code
used in [9]. We consider three different blurs: rotation by 10◦, rotation by 20◦, and
tilt by 10◦. All the resulting blurred images are corrupted by additive white noise
with two different variances σ2 = 10−3 and σ2 = 5 · 10−6. The noisy images together
with noise level estimates computed by the Golub–Kahan iterative bidiagonalization
without reorthogonalization for all settings are shown in Figure 3.7.

The results are very similar to results for the spatially invariant blurring. The
estimates for large noise level are accurate (left). Especially in case of strong blurring
(rotation by 20◦), the curve stagnates very close to the actual noise level. For the
smaller noise level, the stagnation is not so significant.

4. Conclusions. Presented paper has studied performance of the noise level
estimator proposed in [11], which is based on the iterative Golub–Kahan bidiagonal-
ization, on image deblurring problems. Implementations with and without reorthogo-
nalization have been compared. We have demonstrated that reorthogonalization does
not improve the quality of the estimate, although for small noise levels we would need
more iterations to obtain estimate of the same accuracy as by the algorithm with
reorthogonalization. We have shown that the performance of the estimator does not
significantly depend on the particular type of blur but it is generally more successful
on problems with higher noise levels. For smaller noise levels, the expected stagnation
of the estimator has been rather slow, making the detection of the noise revealing iter-
ation (where the best estimate should be obtained) complicated. For data-correlated
noise of lower noise level, the estimator has not been reliable, as it underestimated
some noise levels while it overestimated the others. Further analysis of the observed
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Fig. 3.4. Blurred noisy images and the corresponding noise level estimates for smaller Gauss-
ian blur and four considered noise settings (specified on the left). Computed by the Golub–Kahan
bidiagonalization (GKB) with and without reortogonalization (ReOG) (specified on the top). Red
line represents the exact noise level.
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Fig. 3.5. Results similar as in Figure 3.4 computed for the model with the larger Gaussian blur.
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Fig. 3.6. Noise level estimates for models with the motion and disc blur (specified on the top)
and four considered noise settings (specified on the left), computed without reortogonalization.
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behavior and related issues is out of the scope of this paper and will be presented
elsewhere.
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