%A Liebenau, Anita
%A Mattos, Letícia
%A Mendonça, Walner
%A Skokan, Jozef
%D 2019
%T Asymmetric Ramsey properties of random graphs involving cliques and cycles
%K
%X We prove that for every $\ell,r \geq 3$, there exists $c>0$ such that for $p \leq cn^{-1/m_2(K_r,C_{\ell})}$, with high probability there is a 2-edge-colouring of the random graph $\gnp$ with no monochromatic copy of $K_r$ of the first colour and no monochromatic copy of $C_\ell$ of the second colour. This is a progress on a conjecture of Kohayakawa and Kreuter.
%U http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1311
%J Acta Mathematica Universitatis Comenianae
%0 Journal Article
%P 917-922%V 88
%N 3
%@ 0862-9544
%8 2019-08-01