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ON LEONARDO NUMBERS

P. CATARINO and A. BORGES

Abstract. In this paper, we consider the sequence of Leonardo numbers and we

present some properties involving this sequence, including the Binet formula, and

the generating function. Furthermore, Cassini’s identity, Catalan’s identity and
d’Ocagne’s identity for this sequence are given. Also some expressions of sums and

products involving terms of this sequence are established.

1. Introduction and background

In the existing literature, there has been a great interest in the study of sequences of
integers and their applications in various scientific domains. One of the sequences
that has been extensively studied is the Fibonacci sequence {Fn}∞n=0 defined by
the following recurrence relation

(1) Fn = Fn−1 + Fn−2, n ≥ 2,

with F0 = 0 and F1 = 1.
Such sequence has been presented in several math articles inserted in several

areas of mathematics such as group theory, calculus, applied mathematics, algebra,
statistics, and also in physics and computer science articles (see the works [1], [2],
[3], [4], [7], [12], [15], [18], [19], [20], [21], [22], [23], among others).

The first thirty Fibonacci Numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 223, 377, 610, 987, 1597, 2584, 4181,

6765, 10496, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229

and such sequence corresponds to the sequence A000045 in the on-line encyclopedia
of integers sequences in [24].

For n ≥ 0, the Binet formula of Fibonacci numbers is given by

(2) Fn =
Φn −Ψn

Φ−Ψ
,
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where Φ= 1+
√
5

2 and Ψ= 1−
√
5

2 are the roots of the quadratic equation r2−r−1=0.
A variety of generalizations of this sequence has been chosen for the research of

scientists such as [5], [6], [8], [10], [11], [13], [14], [16], [17], [25], among others.
The sequence of Lucas numbers {Ln}∞n=0 is also one of the integers sequence

of great interest in this area. It is a sequence that satisfies the same researchers’
recurrence relation of the Fibonacci sequence

(3) Ln = Ln−1 + Ln−2, n ≥ 2,

but with initial conditions L0 = 2 and L1 = 1.
The first thirty Lucas Numbers are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778,

9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851

and such sequence corresponds to the sequence A000032 in the on-line encyclopedia
of integers sequences in [24].

There are several relationships between this sequence and Fibonacci sequence.
The next result shows two of these relations which are used in the Section 2.

Lemma 1.1. For n ≥ 1,

Fn =
Ln−1 + Ln+1

5
,(4)

Fn+2 =
Ln−1 + Ln+5

10
,(5)

Ln = Fn + 2Fn−1.(6)

Proof. We show the equality of (4) by induction on n. For n = 1, F1 = L0+L2

5 =
2+3
5 = 1, and thus the equality holds. Now, suppose that the equality holds for

1 < k ≤ n. Then we have

Fn+1 = Fn + Fn−1 =

(
Ln−1 + Ln+1

5

)
+

(
Ln−2 + Ln

5

)
=

(Ln−1 + Ln−2) + (Ln+1 + Ln)

5
=

Ln + Ln+2

5
,

and so the equality is true for n + 1, as required.
The identities (5) and (6) can be both proved in a similar way. �

In this paper, we consider Leonardo sequence that is also an integers sequence
which is related to the Fibonacci and also to the Lucas sequences. The structure
adopted in this paper is the following: after this introdutory section, in Section
2, we present the Leonardo sequence and the statement of the respective Binet
formula. Section 3 is dedicated to sums and products formulae for this sequence.
Several identities are presented in Section 4, while in the Section 5, a generating
function is constructed. The paper ends with some concluding notes.



ON LEONARDO NUMBERS 77

2. The Leonardo sequence

This section is devoted to the introduction of Leonardo sequence. In order to be
not confused with Lucas number, throughout this paper, we adopt the expression
Len to denote the nth Leonardo number and consequently the Leonardo sequence
is denoted by {Len}∞n=0. This sequence is defined by the following recurrence
relation

(7) Len = Len−1 + Len−2 + 1, n ≥ 2,

with initial conditions Le0 = Le1 = 1.
Such sequence is the sequence A001595 of the on-line encyclopedia of integers

sequences [24]. The first thirty Leonardo numbers are

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, 753, 1219, 1973, 3193, 5167, 8361, 13529,

21891, 35421, 57323, 92745, 150069, 242815, 392885, 635701, 1028587, 1664289.

It can be easily verified that every Leonard number is odd as we can see in the
following result

Lemma 2.1. For n ≥ 0, Len is an odd number.

Proof. We prove by induction on n. The statement is true for n = 0, 1. Now
suppose that the statement is true for 2 < k ≤ n. Then, we can verify it for n+ 1.
Since by (7) we have Len+1 = Len+Len−1+1 and as the sum of two odd numbers
which are Len and Len−1 by induction hypothesis is even and, in turn, the sum of
an even number with the number 1 is an odd number, the proof is complete. �

Moreover, we can also observe that the sequence of the units digits of Leonardo
numbers is periodic with period 20.

Note that from the relation (7) and since this recurrence relation is inhomoge-
neous, substituting n by n + 1 in (7), we obtain the new form

(8) Len+1 = Len + Len−1 + 1.

Now, subtracting (7) to (8), we obtain Len − Len+1 = Len−2 − Len, and then

(9) Len+1 = 2Len − Len−2, n ≥ 2.

The relation between Leonardo and Fibonacci numbers is expressed in the fol-
lowing proposition.

Proposition 2.2. For n ≥ 0,

(10) Len = 2Fn+1 − 1.

Proof. We prove by induction on n. For n = 0 and n = 1 the identity (7) is
easily verified. Now, we suppose that (10) is true for all 1 < k ≤ n, and we prove
that equality (10) remains valid for k = n + 1.
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In fact, from the recurrence relation (7), using the induction hypothesis and the
recurrence relation (1) we can successively write

Len+1 = Len + Len−1 + 1 = (2Fn+1 − 1) + (2Fn − 1) + 1

= 2 (Fn+1 + Fn)− 1 = 2Fn+2 − 1,

and thus the result is verified. �

According to this proposition and using (4), (5) and (6), we can establish the
next result, which can be easily proved and we omit the proof that shows possible
relationships between Leonardo, Lucas, and Fibonacci numbers.

Proposition 2.3. For the nth Leonardo number Len, the following identities
hold:

Len = 2
(Ln + Ln+2

5

)
− 1, n ≥ 0,(11)

Len+3 =
Ln+1 + Ln+7

5
− 1, n ≥ 0,(12)

Len = Ln+2 − Fn+2 − 1, n ≥ 0,(13)

where Ln is the nth Lucas number and Fn is the nth Fibonacci number.

Now, using the Binet formula of Fibonacci numbers (2) and Proposition 2.2,
the Binet formula for Leonardo numbers can be easily established as we can see
in the following result.

Proposition 2.4 (Binet’s formula). For n ≥ 0,

(14) Len = 2
(Φn+1 −Ψn+1

Φ−Ψ

)
− 1 =

Φ (2Φn − 1)−Ψ (2Ψn − 1)

Φ−Ψ
,

where Len is the nth Leonardo number, Φ = 1+
√
5

2 and Ψ = 1−
√
5

2 .

3. Sums and products

In this section, we present some results concerning sums and products of terms of
the Leonardo sequence by using some results of Fibonacci and Lucas sequences.
From (1), Proposition 2.2, and some results for Fibonacci and Lucas numbers
in [9], we can obtain the following results for sums of Leonardo Numbers.

Proposition 3.1 (Sums formulae). For n ≥ 0,

1.
∑

j = 0nLej = Len+2 − (n + 2),

2.

n∑
j=0

Le2j = Le2n+1 − n,

3.

n∑
j=0

Le2j+1 = Le2n+2 − (n + 2).
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Proof. The proof of i) follows from (1), Proposition 2.1 i) with k = 1 of the
work [9] and Proposition 2.2, by performing some calculations. In fact, we have

n∑
j=0

Lej =

n∑
j=0

(2Fj+1 − 1) = 2

n∑
j=0

Fj+1 − (n + 1)

= 2

n+1∑
j=0

Fj − (n + 1) = 2 (Fn+2 + Fn+1 − 1)− (n + 1)

= (2Fn+3 − 1)− (n + 2) = Len+2 − (n + 2) .

To prove ii), we use again (1), Proposition 2.2, and Proposition 2.3 i) with k = 1
[9] in the following way

n∑
j=0

Le2j =

n∑
j=0

(2F2j+1 − 1) = 2

n∑
j=0

F2j+1 − (n + 1)

= 2

n+1∑
j=1

F2j−1 − (n + 1) = 2F2n+2 − (n + 1)

=
(
2F(2n+1)+1 − 1

)
− n = Le2n+1 − n.

Finally, to prove iii), we use once more (1), the Proposition 2.2, and the Proposition
2.2 i) with k = 1 from [9]

n∑
j=0

Le2j+1 =

n∑
j=0

(2F2j+2 − 1) = 2

n∑
j=0

F2j+2 − (n + 1)

= 2

n+1∑
j=0

F2j − (n + 1) = 2 (F2n+3 − 1)− (n + 1)

=
(
2F(2n+2)+1 − 1

)
− (n + 2) = Le2n+2 − (n + 2)

and the proof is completed. �

For the sum of the homologous terms of Fibonacci, Lucas, and Leonardo se-
quences, we can state the result bellow.

Proposition 3.2. For n ≥ 0, the following identities hold:

1.

n∑
j=0

(Fj + Lej) = Fn+2 + Len+2 − (n + 3),

2.

n∑
j=0

(Fj + Lej) = Fn+5 − (n + 4),

3.

n∑
j=0

(Lj + Lej) = Ln+2 + Len+2 − (n + 3),

4.

n∑
j=0

(Lj + Lej) =
7Ln+2 + 2Ln+4

5
− (n + 4),
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5.

n∑
j=0

(Lj + Lej) = 2Fn+3 + Ln+2 − (n + 4),

where Lj is the jth Lucas number, Fj is the jth Fibonacci number, and Lej is the
jth Leonardo number.

Proof. 1. The result easily follows from (1), Proposition 2.1 i) with k = 1
from [9], and the item 1 of Proposition 3.1 as follows:

n∑
j=0

(Fj + Lej) = Σn
j=0Fj + Σn

j=0Lej = (Fn+1 + Fn − 1) + (Len+2 − (n + 2))

= Fn+2 + Len+2 − (n + 3) .

2. For the proof of this identity, we use Proposition 2.2, the relation (1), and
also the previous identity of this proposition

n∑
j=0

(Fj + Lej) = Fn+2 + Len+2 − (n + 3) = Fn+2 + (2Fn+3 − 1)− (n + 3)

= Fn+4 + Fn+3 − 1− (n + 3) = Fn+5 − (n + 4) .

3. We use (ii) [9, Proposition 2.1] with k = 1, the item 1. of Proposition 3.1,
the relation (3), and we obtain

n∑
j=0

(Lj + Lej) =

n∑
j=0

Lj + Σn
j=0Lej = (Ln+1 + Ln − 1) + (Len+2 − (n + 2))

= Ln+2 + Len+2 − (n + 3) .

4. Using the previous item and the relation (11) of Proposition 2.3, we obtain

n∑
j=0

(Lj + Lej) = Ln+2 + Len+2 − (n + 3)

= Ln+2 + 2

(
Ln+2 + Ln+4

5

)
− 1− (n + 3) ,

and a simple calculation completes the proof.
5. Finally, we use again the previous item 3, the relation (12) of Proposition 2.3,

and (4) of Lemma 1.1, obtaining

n∑
j=0

(Lj + Lej) = Ln+2 + Len+2 − (n + 3) = Ln+2 +
Ln + Ln+6

5
− (n + 4)

=
Ln + Ln+6 + 5Ln+2

5
− (n + 4) = 2Fn+3 + Ln+2 − (n + 4) .

�

The next result is about the sum of the square of the first n terms of Leonardo
numbers, and the expression is given by Fibonacci numbers.
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Proposition 3.3. For n ≥ 0, the following identity holds

(15)

n∑
j=0

(Lej)
2

= 4 (Fn+1 − 1) (Fn+2 − 1) + (n + 1) ,

where Lej is the jth Leonardo number and Fj is the jth Fibonacci number.

Proof. The result follows from the Propositions 2.1 i) and 4i) with k = 1
from [9], and the Proposition 2.2. In fact, we have

n∑
j=0

(Lej)
2

=

n∑
j=0

(2Fj+1 − 1)
2

=

n∑
j=0

(
4 (Fj+1)

2 − 4Fj+1 + 1
)

= 4

n∑
j=0

(Fj+1)
2 − 4

n∑
j=0

Fj+1 + (n + 1)

= 4 (Fn+1Fn+2)− 4

n+1∑
j=1

Fj + (n + 1)

= 4Fn+1Fn+2 + 4 (Fn+1 + Fn+2 − 1) + (n + 1)

= 4 (Fn+1 − 1) (Fn+2 − 1) + (n + 1) ,

as required. �

According the previous result and by the use of the sum of the square of the
first n terms of Lucas and Fibonacci numbers given in Proposition 4 with k = 1
[9] we easily prove the following result involving square terms of Fibonacci, Lucas,
and Leonardo numbers. Note that in the result of Proposition 3.3, we also can use
the expression using of Leonardo numbers and in this case the expression, is given
by

n∑
j=0

(Lej)
2

= (Len − 1) (Len+1 − 1) + (n + 1) .

Proposition 3.4. For n ≥ 0, the following identities are true:

n∑
j=0

(
(Lej)

2
+ (Fj)

2
)

= 4 (Fn+1 − 1) (Fn+2 − 1) + (n + 1) + FnFn+1,(16)

n∑
j=0

(
(Lej)

2
+ (Lj)

2
)

= 4 (Fn+1 − 1) (Fn+2 − 1) + (n + 1) + LnLn+1 + 2,(17)

where Lj is the jth Lucas number, Fj is the jth Fibonacci number, and Lej is the
jth Leonardo number.

The next result is related with the sum of the product of the terms of the
Fibonacci and Lucas with Leonardo sequence.
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Proposition 3.5. For n ≥ 0, the following identities are true:
n∑

j=0

LejFj+1 = Fn+1Len+1 − Fn+2 + 1,(18)

n∑
j=0

LejLj+2 = Ln+3 (Ln+2 − 1)− Ln+2 − F2n+5 + 3,(19)

where Li is the ith Lucas number, Fi is the ith Fibonacci number and Lei is the
ith Leonardo number.

Proof. For the proof of (18,) we use the relation of Proposition 2.2 and the
expressions of the sum of the squares of the terms, and the sums of first n terms
of Fibonacci sequence in Propositions 2 and 4 with k = 1 from [9]. We have

n∑
j=0

LejFj+1 =

n∑
j=0

(2Fj+1 − 1)Fj+1 = 2

n∑
j=0

(Fj+1)
2 −

n∑
j=0

Fj+1

= 2Fn+1Fn+2 − (Fn + Fn+1 − 1 + Fn+1)

= 2Fn+1Fn+2 − (Fn+2 − 1 + Fn+1)

= Fn+1 (2Fn+2 − 1)− (Fn+2 − 1) = Fn+1Len+1 − Fn+2 + 1,

as required.
The relation (19) is proved by the use of relation (13) of Proposition 2.3, and

the results of the sum of the first n terms of Lucas numbers, the sum of the product
of Lucas and Fibonacci numbers, and also the sum of the squares of the terms of
Lucas numbers in Propositions 2, 4, and 5 with k = 1 [9]. Hence we have

n∑
j=0

LejLj+2 =

n∑
j=0

(Lj+2 − Fj+2 − 1)Lj+2

=
n∑

j=0

(Lj+2)
2 −

n∑
j=0

Fj+2Lj+2 −
n∑

j=0

Lj+2

=
(
Ln+2Ln+3 + 2− (L0)

2 − (L1)
2
)
− (F2n+5 − 1− F1L1)

− (Ln+3 + Ln+2 − 1− L0 − L1)

= (Ln+2Ln+3 − 3)− (F2n+5 − 2)− (Ln+3 + Ln+2 − 4)

= Ln+2Ln+3 − F2n+5 − Ln+3 − Ln+2 + 3,

and the results follows. �
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4. Some identities

In this section, we deduce Catalan’s, Cassini’s, and d’Ocagne’s identities for Leo-
nardo numbers. For that purpose we start recalling Catalan’s identity for Fi-
bonacci numbers, that is, for n > r, r ≥ 0,

(20) Fn−rFn+r − (Fn)
2

= (−1)
n+1−r

(Fr)
2
.

The next result shows the expression of Catalan’s identity for Leonardo sequence.

Proposition 4.1 (Catalan’s identity). For n > r, r ≥ 1,

(21) (Len)
2 − Len−rLen+r = Len−r + Len+r − 2Len − (−1)

n−r
(Ler−1 + 1)

2
,

where Lei is the ith Leonardo number.

Proof. The proof follows from the relation (10) of Proposition 2.2 and Catalan’s
identity for Fibonacci numbers, after some calculations. In fact, we have

(Len)
2 − Len−rLen+r = (2Fn+1 − 1)

2 − (2Fn−r+1 − 1) (2Fn+r+1 − 1)

= 4
(

(Fn+1)
2 − Fn+1−rFn+1+r

)
− 4Fn+1

+ 2Fn−r+1 + 2Fn+r+1

= 4 (−1)
n+1−r

(Fr)
2 − 4Fn+1 + 2Fn−r+1 + 2Fn+r+1

= 4 (−1)
n+1−r

(Fr)
2 − 2 (2Fn+1 − 1) + Len−r + Len+r

= 4 (−1)
n+1−r

(Fr)
2 − 2Len + Len−r + Len+r

= Len−r + Len+r − 2Len + 4 (−1)
n+1−r

(Fr)
2

and the result follows. �

Taking r = 1 in the previous identity, we obtain Cassini’s identity for the
Leonardo sequence. In fact, we have

(Len)
2 − Len−1Len+1 = Len−1 + Len+1 − 2Len − (−1)

n−1
(Le0 + 1)

2
,

and taking account that Le0 = 1, we obtain the expression of Cassini’s identity as
expressed in the next result.

Proposition 4.2 (Cassini’s identity). For n ≥ 2,

(22) (Len)
2 − Len−1Len+1 = Len−1 − Len−2 + 4 (−1)

n
.

The use of d’Ocagne’s identity for Fibonacci numbers, that is, for m > n,

(23) FmFn+1 − Fm+1Fn = (−1)
n
Fm−n,

Proposition 2.2, and also the relation (8) allow us to deduce d’Ocagne’s identity
for Leonardo numbers.

Proposition 4.3 (d’Ocagne’s identity). If m > n, n ≥ 1, then

(24) LemLen+1 − Lem+1Len = 2 (−1)
n+1

(Lem−n−1 + 1) + Lem−1 − Len−1.
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Proof. The result follows from the relation (8), Proposition 2.2, and d’Ocagne’s
identity (23) for Fibonacci numbers, after some calculations. In fact, we have,

LemLen+1 − Lem+1Len

= (2Fm+1 − 1) (2Fn+2 − 1)− (2Fm+2 − 1) (2Fn+1 − 1)

= 4 (Fm+1Fn+2 − Fm+2Fn+1)− 2 (Fm+1 + Fn+2 − Fm+2 − Fn+1)

= 4
(

(−1)
n+1

Fm+1−(n+1)

)
+ 2 (Fm+2 − Fm+1) + 2 (Fn+1 − Fn+2)

= 4 (−1)
n+1

Fm−n + (Lem+1 − Lem) + (Len − Len+1)

= 2 (−1)
n+1

(Lem−n−1 + 1) + Lem−1 + 1− Len−1 − 1

= 2 (−1)
n+1

(Lem−n−1 + 1) + Lem−1 − Len−1,

as required. �

5. Generating function

Next we give the generating functions for the Leonardo sequence. Consider the
Leonardo sequence {Lej}∞j=0. By the definition of generating functions of a se-
quence, the generating associated function gLe(t) is defined by

(25) gLe(t) =

∞∑
n=0

Lent
n.

We obtain the following result

Proposition 5.1. For 1−2t+ t3 6= 0, the generating function for the Leonardo
sequence is given by

(26) gLe(t) =
1− t + t2

1− 2t + t3
.

Proof. Taking account, the identity (25), the initial condition of the Leonardo
sequence, and the relation (9), we have

gLe(t) = Le0 + Le1t + Le2t
2 +

∞∑
n=3

Lent
n

= 1 + t + 3t2 +

∞∑
n=3

Lent
n

= 1 + t + 3t2 +

∞∑
n=3

(2Len−1 − Len−3) tn

= 1 + t + 3t2 + 2t

∞∑
n=3

Len−1t
n−1 − t3

∞∑
n=3

Len−3t
n−3

= 1 + t + 3t2 + 2t
( ∞∑

n=0

Lent
n − Le0 − Le1t

)
− t3

∞∑
n=0

Lent
n
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= 1 + t + 3t2 + 2t
( ∞∑

n=0

Lent
n − 1− t

)
− t3

∞∑
n=0

Lent
n

= 1 + t + 3t2 − 2t− 2t2 + 2t

∞∑
n=0

Lent
n − t3

∞∑
n=0

Lent
n

= 1− t + t2 + 2t

∞∑
n=0

Lent
n − t3

∞∑
n=0

Lent
n

= 1− t + t2 + 2tgLe(t)− t3gLe(t).

Therefore,

gLe(t)− 2tgLe(t) + t3gLe(t) = 1− t + t2

⇐⇒
gLe(t)

(
1− 2t + t3

)
= 1− t + t2,

and the result immediately follows. �

6. Conclusion and remarks

In this paper, the sequence of Leonardo numbers was introduced. Some proper-
ties involving this sequence, including the Binet formula, a generating function
and some identities, were presented. Also several expressions involving sums and
products with the terms of this sequence were established.
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