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NEW BOUNDS FOR THE SPREAD OF A MATRIX

USING THE RADIUS OF THE SMALLEST DISC

THAT CONTAINS ALL EIGENVALUES

A. FRAKIS

Abstract. Let D denote the smallest disc containing all eigenvalues of the matrix

A. Without knowing the eigenvalues of A, we can estimate the spread of A and the
radius of D. Some new bounds for the radius of D and the spread of A are given.

These bounds involve the entries of A. Also sufficient conditions for equality are

obtained for some inequalities. New proofs of some known results are presented,
too.

1. Introduction

Throughout this paper, we assume that n ≥ 3, A = (aij) is an n× n complex
matrix with eigenvalues λ1, . . . , λn. The spread of the matrix A is defined as
Sp(A) = maxi,j |λi − λj |, introduced by L. Mirsky [10].

Many authors have given several different bounds for the spread (see [13]). We
write SpRe(A) = maxi,j |Re(λi)−Re(λj)| and SpIm(A) = maxi,j | Im(λi)−Im(λj)|.

Let R(A) and c denote the radius and center of the smallest disc D which
contains all eigenvalues of A. Let RRe(A), and RIm(A) denote the radius of two
smallest discs containing all the real parts and the imaginary parts of the eigen-
values of A, respectively.

If all eigenvalues of A are real, then Sp(A) = 2R(A), this is so if A is Hermitian,
i.e., A = A∗ where A∗ is the conjugate transpose of A. In the general case,√

3R(A) ≤ Sp(A), (see [2], [3]).
Let m = trA/n where trA is the trace of A. Let tr2A =

∑
i<j λiλj denote

the sum of all principal 2-rowed minors of A. We denote the ei the column vector
whose i-th component is 1 while all the other components are 0.

The distance of A from scalar matrices is defined by ∆(A) = infz∈C ‖A − zI‖
where ‖ · ‖ is the spectral norm. For any matrix A, we have R(A) ≤ ∆(A), and
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equality holds if A is normal, i.e., AA∗ = A∗A, we refer the reader to [2] for more
details.

For every normal matrix A, the following bound was shown by E. R. Barnes
and A. J. Hoffman [1],

(1) max
i,j

{
|aii − ajj |2 + 2

∑
k 6=i

|aki|2 + 2
∑
k 6=j

|akj |2
}
≤ 4R2(A).

An upper bound for R(A) was given by R. Bhatia and R. Sharma [2], that says
that for any matrix A,

(2) R2(A) ≤ max
‖x‖=1

(
‖Ax‖2 − |〈x,Ax〉|2

)
.

The present work proposes some lower and upper bounds for R(A), and also shows
sufficient conditions for equality.

In [10], L. Mirsky gave an upper bound for the spread of an arbitrary n × n
matrix A,

(3) Sp(A) ≤
{

2‖A‖2F −
2

n
| trA|2

}1/2

,

where ‖A‖F denotes the Frobenius norm. We reobtain this result and prove it by
three different ways.

In [11], L. Mirsky gave some lower bounds for the spread of a Hermitian matrix
A, such as

2 max
i6=j
|aij | ≤ Sp(A)

and

max
i6=j

{
(aii − ajj)2 + 4|aij |2

}1/2 ≤ Sp(A).

Since Sp(A) = 2R(A) when A is Hermitian, then it follows that

max
i 6=j
|aij | ≤ R(A)

and

max
i 6=j

{(aii − ajj
2

)2
+ |aij |2

}1/2

≤ R(A).

In [14], R. A. Smith and L. Mirsky gave the following upper bound for R(A),
2R2(A) ≤

∑n
i=1 |λi|2. Since R(A) is invariant under translation, then

(4) 2R2(A) ≤
n∑
i=1

|λi −m|2.

An upper bound for
∑n
i=1 |λi|2 due to Schur [9], [10] states that

(5)

n∑
i=1

|λi|2 ≤ ‖A‖2F .

Equality occurs in (5) if and only if A is normal.
Let Sp(A) = |λi0 − λj0 |, where i0 6= j0 and i0, j0 ∈ {1, . . . , n}, we say that:
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1. The n eigenvalues satisfy condition H1 if and only if (n − 2) among them
are equal to each other and to the arithmetic mean of the remaining two.

2. The n eigenvalues satisfy condition H2 if and only if n is even, i.e., n = 2k
and k among them are equal to each other and to λi0 , while all the remaining
eigenvalues, (n− k), are also equal to each other and to λj0 .

2. Bounds for R(A) and Sp(A)

Theorem 2.1. Let A be an n× n matrix. Then

(6) R(A) ≤ 1√
2

{
‖A‖2F −

| trA|2

n

}1/2

.

If A is Hermitian and its eigenvalues satisfy condition H1, then equality holds.

Proof. We have

n∑
i=1

|λi −m|2 =

n∑
i=1

(
|λi|2 −mλi −mλi + |m|2

)
=

n∑
i=1

|λi|2 −
| trA|2

n
leq‖A‖2F −

| trA|2

n
.

By applying (4), the statement (6) follows immediately.
For equality, we assume without loss of generality that λ2 = · · · = λn−1 =
1
2 (λ1 + λn) and A is a Hermitian matrix, it follows that 1

2

(
‖A‖2F −

| trA|2
n

)
=(

λn−λ1

2

)2
= R2(A). �

From (6), we conclude the following corollary.

Corollary 2.2. 2R2(A) ≤ ‖A‖2F .

Theorem 2.3. Let A be an n× n normal matrix. Define

M1(A) =

{
‖A‖2F −

| trA|2

n

}1/2

.

Then

(7)
1√
n
M1(A) ≤ R(A) ≤ 1√

2
M1(A).

If A is Hermitian and its eigenvalues satisfy condition H1 [H2], then equality on
the left [right] of (7) occurs.

Proof. The second inequality (the upper bound of R(A)) is proved in the pre-
vious theorem. To prove the first inequality, we have

(8)

n∑
i=1

|λi − c|2 ≤ nR2(A).
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On the other hand,
n∑
i=1

|λi − c|2 =

n∑
i=1

(
|λi|2 − cλi − cλi + |c|2

)
=

n∑
i=1

|λi|2 −
| trA|2

n
+ n

∣∣∣∣c− trA

n

∣∣∣∣2 .
It is clear that the choice c = trA/n gives the smallest possible value for this last
expression. Hence {‖A‖2F − | trA|2/n}/n ≤ R2(A).

For the second equality, it is proved in the previous theorem. For the first
equality, we assume without loss of generality that n is even, λ1 = λ2 = · · · = λk,
λk+1 = · · · = λn, and A is a Hermitian matrix. It follows that

1

n

(
‖A‖2F −

| trA|2

n

)
=
(λn − λ1

2

)2
= R2(A). �

Remark. We can deduce the lower bound from [2, Theorem 1] using inequal-
ity (27) and relationship between ∆(A) and R(A) for normal matrices.

E. Jiang and X. Zhan [8] proposed a slightly simpler proof for the lower bound
of (9). We give here a new simpler proof of (9) using the previous theorem.

Theorem 2.4 ([1]). Let A be an n× n Hermitian matrix. Then

(9)
2√
n
M1(A) ≤ Sp(A) ≤ 2√

2
M1(A).

If the eigenvalues of A satisfy condition H1 [H2], then equality holds on the left
[right] of (9).

Proof. Since A is Hermitian, then A is normal. Using Sp(A) = 2R(A) and (7),
the result (9) is obtained immediately. The proof of equality in (9) is the same as
the previous proof of equality in (7) using Sp(A) = 2R(A). �

When n = 2, both sides of (7) and (9) are equal, so

R(A) =
1√
2

{
‖A‖2F −

| trA|2

n

}1/2

=
|λ2 − λ1|

2

and

Sp(A) =
2√
2

{
‖A‖2F −

| trA|2

n

}1/2

= |λ2 − λ1|.

Remark. When n is odd, then A. Brauer, A. C. Mewborn [4], and Popovi-
ciu [12] showed that the lower bound in (9) may be strengthened to√

4n

n2 − 1

( n∑
i=n

λ2i −
(
∑n
i=1 λi)

2

n

)1/2
≤ Sp(A),

and equality holds if and only if λ1 = · · · = λk+1 and λk+2 = · · · = λn with
n = 2k + 1, see ([7]).
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Lemma 2.5 ([6]). Let z1, z2, . . . , zn be complex numbers. Then

1

n

∑
1≤i<j≤n

|zi − zj |2 =

n∑
i=1

|zi|2 −
1

n

∣∣∣ n∑
i=1

zi

∣∣∣2.
The proof is left to the reader.

The upper bound in the following theorem was given by L. Mirsky in [10].

Theorem 2.6. Let A be an n× n normal matrix. Then

(10)

√
2

n− 1
M1(A) ≤ Sp(A) ≤ 2√

2
M1(A).

If the eigenvalues of A satisfy condition H1, then equality holds on the left of (10).

Proof. The second inequality (upper bound of Sp(A)) follows from Sp(A) ≤
2R(A) and (6).

To prove the first inequality, let λ1, λ2, . . . , λn be the eigenvalues of A. Taking
zi = λi and zj = λj in the previous lemma, it follows that

1

n

∑
1≤i<j≤n

|λi − λj |2 =

n∑
i=1

|λi|2 −
| trA|2

n
.

On the other hand, we have∑
1≤i<j≤n

|λi − λj |2 ≤
n(n− 1)

2
Sp2(A),

where 1
2n(n − 1) is the number of |λi − λj |2 when 1 ≤ i < j ≤ n. By (5) the

assertion follows immediately.
Furthermore, for equality we assume without loss of generality that λ2 = · · · =

λn−1 = 1
2 (λ1 + λn) and A is normal. Then

2
(
‖A‖2F − | trA|2/n

)
= |λn − λ1|2 = Sp2(A). �

Theorem 2.7. Let A be an n× n matrix. Define M2(A) =
{(

1− 1
n

)
(trA)2−

2 tr2A
}1/2

. If all eigenvalues of A are real, then

(11)
1√
n
M2(A) ≤ R(A) ≤ 1√

2
M2(A).

If the eigenvalues of A satisfy condition H1 [H2], then equality on the left [right]
of (11) occurs.

Proof. We have
n∑
i=1

(λi −m)2 =

n∑
i=1

(
λ2i − 2mλi +m2

)
=

n∑
i=1

λ2i −
(trA)2

n
=
(

1− 1

n

)
(trA)2 − 2 tr2A.
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By (4), and (8) the required result follows immediately.
The proof of equality is similar to that of (7). �

The upper bound in the following corollary was proved by L. Mirsky in [10].

Corollary 2.8. Let A be ann×n matrix. If all eigenvalues ofA are real, then

(12)
2√
n
M2(A) ≤ Sp(A) ≤ 2√

2
M2(A).

If the eigenvalues of A satisfy condition H1 [H2], then equality on the left [right]
of (12) occurs.

Proof. Using Sp(A) = 2R(A) and (11), the result (12) is obtained immediately.
The proof of equality is similar to that of (9). �

It may be noted that the upper bound of (12) was obtained for the first time
by J. v. Sz. Nagy [4] on algebraic equations and later by L. Mirsky [10].

3. Bounds for RRe(A), RIm(A),SpRe(A) and SpIm(A)

For any normal matrix A, the eigenvalues of 1
2 (A + A∗) are Re(λ1), . . . ,Re(λn).

Hence RRe(A) = R{ 12 (A + A∗)} and SpRe(A) = Sp{ 12 (A + A∗)}. Also the eigen-

values of 1
2 (A − A∗)/i are Im(λ1), . . . , Im(λn). Hence RIm(A) = R{ 12 (A − A∗)/i}

and SpIm(A) = Sp{ 12 (A−A∗)/i}.
We propose some bounds for RRe(A), SpRe(A), RIm(A) and SpIm(A).

Theorem 3.1. Let A be an n× n normal matrix. Define M3(A) =
{
‖A‖2F +

Re(tr(A2))− 2
n (Re(trA))2

}1/2

. Then

(13)
1√
2n
M3(A) ≤ RRe(A) ≤ 1

2
M3(A).

If A is Hermitian and the real parts of its eigenvalues satisfy condition H1 [H2],
then equality on the left [right] of (13) occurs.

Proof. Using (6), it follows that

RRe(A) ≤ 1√
2

{∥∥∥A+A∗

2

∥∥∥2
F
−
∣∣ tr (A+A∗

2

)∣∣2
n

}1/2

=
1√
2

{
1

4
tr(A+A∗)(A∗ +A)− (Re(trA))

2

n

}1/2

=
1

2
M3(A).

Since the matrix 1
2 (A+A∗) is Hermitian, then it is normal. Using the lower bound

of (7), it follows that

RRe(A) ≥ 1√
n

{∥∥∥A+A∗

2

∥∥∥2
F
−
∣∣ tr (A+A∗

2

)∣∣2
n

}1/2

=
1√
2n
M3(A).
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Equality on the left and on the right in (13), is a consequence of equality given
in (7). �

The upper bound in the following corollary was given by L. Mirsky [10].

Corollary 3.2. Let A be an n× n normal matrix. Then

(14)

√
2

n
M3(A) ≤ SpRe(A) ≤M3(A).

If the real parts of the eigenvalues of A satisfy condition H1, then equality on the
left of (14) occurs and if A is Hermitian and the real parts of its eigenvalues satisfy
condition H2, then equality on the right of (14) occurs.

Proof. Since the matrix 1
2 (A + A∗) is Hermitian then it is normal. Using

SpRe(A) = 2RRe(A) and (13), we obtain the desired result.
Equality on the left [right] in (14) is a consequence of equality on the left [right]

in (9). �

Theorem 3.3. Let A be an n× n normal matrix. Define M4(A) =
{
‖A‖2F −

Re(tr(A2))− 2
n (Im(trA))2

}1/2

. Then

(15)
1√
2n
M4(A) ≤ RIm(A) ≤ 1

2
M4(A).

If A is skew-Hermitian and the imaginary parts of its eigenvalues satisfy condition
H1 [H2], then equality on the left [right] of (15) occurs.

Proof. The proof is similar to the proof of Theorem 3.1. �

Corollary 3.4. Let A be an n× n normal matrix. Then

(16)

√
2

n
M4(A) ≤ SpIm(A) ≤M4(A).

If the imaginary parts of the eigenvalues of A satisfy condition H1, then equality
on the left of (16) occurs and if A is skew-Hermitian and the imaginary parts of
its eigenvalues satisfy condition H2, then equality on the right of (16) occurs.

Proof. The proof is also similar to that of Corollary 3.2. �

Theorem 3.5. Let A = (aij) be an n× n matrix. Then

(17) R(A) ≤
√
R2

Re(A) +R2
Im(A).

Proof. Let the eigenvalues of 1
2 (A + A∗) and 1

2 (A − A∗)/i be α1 ≤ α2 ≤
· · · ≤ αn and β1 ≤ β2 ≤ · · · ≤ βn, respectively. So all eigenvalues of A lie
in the interior or on the boundary of the rectangle G constructed by the lines
x = α1, x = αn; y = β1, y = βn. We have 1

2 d(G) = 1
2

√
(αn − α1)2 + (βn − β1)2 =√

R2
Re(A) +R2

Im(A), where d(G) denotes the diameter of the rectangle G. On the
other hand, all eigenvalues of A lie in the interior or on the circle C with radius
equals to 1

2 d(G) and center lies where two diagonals of G intersect each other.
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Since R(A) is the radius of the smallest disc that contains all eigenvalues of A,
then R(A) ≤ 1

2 d(G). �

Corollary 3.6. Let A = (aij) be an n× n matrix. Then

(18) Sp(A) ≤
√

Sp2
Re(A) + Sp2

Im(A).

Proof. The inequality follows from Sp(A) ≤ 2R(A), SpRe(A) = 2RRe(A),
SpIm(A) = 2RIm(A), and (17). �

Theorem 3.7. Let A = (aij) be a normal matrix. Then

max
i 6=j
|aij | ≤ R(A),(19)

max
i 6=j

|aij + aji|
2

≤ RRe(A),(20)

max
i 6=j

|aij − aji|
2

≤ RIm(A),(21)

max
i 6=j

|aii − ajj |
2

≤ R(A).(22)

Proof. The statements (19) and (22) follow from (1).
– By (19), it follows that maxi 6=j

1
2 |aij + aji| ≤ R{ 12 (A + A∗)} = RRe(A) and

maxi 6=j
1
2 |aij − aji| ≤ R{

1
2 (A−A∗)/i} = RIm(A). �

4. Other proofs of L. Mirsky’s theorem for Sp(A)

In [5], E. Deutsch gave a new simpler proof of the theorem due to L. Mirsky [10].
For our part, we propose three slightly simpler proofs of this theorem.

Theorem 4.1 ([10]). Let A be an n× n complex matrix. Then

Sp(A) ≤
{

2‖A‖2F −
2

n
| trA|2

}1/2

.

Proof. 1) We have Sp(A) ≤ 2R(A), by (6), it follows that

Sp(A) ≤
{

2‖A‖2F −
2

n
| trA|2

}1/2

. �

Proof. 2) Using (18) and the upper bound in (16), (14), we obtain

Sp(A) ≤
√
M2

4 (A) +M2
3 (A) ≤

√
2‖A‖2F −

2

n
| trA|2. �

Proof. 3) We have Sp(A) ≤ 2R(A) and 2R2(A) ≤ ‖A‖2F , thus Sp2(A) ≤ 2‖A‖2F .
The spread of A is invariant under translation, so we have

Sp2(A) = Sp2(A−m) ≤ 2‖A−m‖2F .
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On the other hand,

‖A−m‖2F = tr(A−m)(A∗ −m) = tr
(
AA∗ −mA∗ −mA+ |m|2

)
= ‖A‖2F −

2

n
| trA|2 +

1

n
| trA|2 = ‖A‖2F −

| trA|2

n
.

Then the desired result is obtained. �

5. The circumferential spread of matrices

Theorem 5.1. Let Γ(A) denote the circumference of the smallest disc D which
contains all eigenvalues of the matrix A. Then

(23) sup
(Sp(A)

Γ(A)

)
=

1

π

and

(24) sup
( Γ(A)

Sp(A)

)
=

2√
3
π,

where the supremum is taken over all nonzero n× n matrices A.

Proof. Since Γ(A) = 2πR(A), it is sufficient to prove for the first assertion
that sup(Sp(A)/R(A)) = 2. We have Sp(A) ≤ 2R(A). On the other hand, tak-
ing A = diag(−1, 0, . . . , 0, 1), it follows that R(A) = 1 and Sp(A) = 2. Hence
sup Sp(A)/R(A) = 2.

The second assertion of the theorem is equivalent to sup(R(A)/Sp(A)) = 1/
√

3.

We have
√

3R(A) ≤ Sp(A). On the other hand, the solutions of the equation
z3 = 1 are z0 = 1, z1 = e2πi/3, and z2 = e4πi/3. We see that z0, z1, z2 lie on
the unit circle. Taking the matrix A = diag(z0, z1, z2, 0, . . . , 0), it follows that

R(A) = 1 and Sp(A) =
√

3. Hence sup(R(A)/Sp(A)) = 1/
√

3, this completes the
proof. �
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