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DISCRETE LYAPUNOV THEORY FOR EVOLUTION FAMILIES

P. PREDA and C. L. MIHIŢ

Abstract. The aim of this paper is to obtain some necessary and sufficient con-

ditions for the uniform exponential dichotomy of discrete evolution families in

Hilbert spaces. We prove the discrete versions of some theorems from [17], [18]
for C0-semigroups, differential systems and we use them to obtain Lyapunov type

results. Also, we get generalizations for abstract evolution families.

1. Introduction

An important role in the study of asymptotic behavior of evolution families is
represented by the results of Lyapunov type.

The theorem of A. M. Lyapunov states that if A is an n × n complex matrix,
then A has all its characteristic roots with real parts negative if and only if for
any positive definite Hermitian matrix H, there exists a unique positive definite
Hermitian matrix W satisfying the equation

A∗W +WA = −H,

where ∗ denotes the conjugate transpose of a matrix (see [1] for details).
This result was extended by M. G. Krein and J. L. Daleckij in [5]. They proved

that the semigroup T (t) = etA (with A a bounded linear operator) is exponentially
stable if and only if there exists a bounded linear operator W , W � 0 (more
precisely, there exists m > 0 such that 〈Wx, x〉 ≥ m||x|| for all x ∈ X) as a
solution for the autonomous Lyapunov equation

A∗W +WA = −I.

Also, R. Datko [6] showed that a C0-semigroup {Tt}t≥0 on a Hilbert space X
is exponentially stable if and only if there exists a bounded linear operator W ,
W ∗ = W , W � 0 such that

〈Ax,Wx〉+ 〈Wx,Ax〉 ≤ −‖x‖2 for all x ∈ D(A),

where

D(A) = {x ∈ X : ∃ lim
t→0+

T (t)x− x
t

in X} and Ax = lim
t→0+

T (t)x− x
t

.
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Other important results were obtained by C. Chicone, Y. Latushkin [2], L. Pan-
dolfi [13], A. Pazy [14] for the case when A is an unbounded operator.

A generalization of exponential stability is the so-called dichotomic behavior. In
the same paper from 1974 ([5]), the authors showed that the semigroup T (t) = etA

is exponentially dichotomic if and only if the autonomous Lyapunov equation has
a bounded linear self-adjoint solution W .

Other results by exponentially dichotomy for C0-semigroups were obtained by
K. J. Engel, R. Nagel in [8] and P. Preda, M. Megan in [17], more precisely they
generalized the result of exponential stability, obtained by R. Datko [6], to uniform
exponential dichotomy.

The case of linear differential systems

ẋ(t) = A(t)x(t),(A)

was studied by W. A. Coppel who in 1978 obtained that in finite dimensional
spaces, the differential system (A) is exponentially dichotomic if and only if the
non-autonomous Lyapunov inequality

Ẇ (t) +A∗(t)W (t) +W (t)A(t) ≤ −I for all t ≥ 0

has a bounded self-adjoint solution (see [4, page 59, Proposition 1 and Proposi-
tion 2]).

In [11, Chapter 9], J. L. Massera and J. J. Schäffer proved that the existence of
the Lyapunov function ensures a dichotomic behavior for the differential system
(A) if the subspace X2 (which is a complement of the space of initial conditions of
initial solutions for the system (A), denoted X1) is finite dimensional. This fact is
mentioned in terminology [11] in the form of X1 has a finite codimension.

In the literature relating to the asymptotic behavior of solutions of the differ-
ential system (A), the hypotesis A ∈M1(B(X)) is used frequently which means,

sup
t≥0

t+1∫
t

‖A(u)‖du <∞

and according to the references [5], [11], this ensures the uniform exponential
growth property of the evolution family Φ (generated by the differential system
(A)), i.e., exist M,ω > 0 such that

‖Φ(t, t0)‖ ≤M eω(t−t0) for all t ≥ t0 ≥ 0.

The extension of Datko’s result from stability (see [7]) to dichotomy was made
by P.Preda and M. Megan [18] for differential systems and for abstract evolution
families (i.e. not necessary provided by a differential system).

Concerning the discrete-time approach, we can mention the papers of C. V.
Coffman, J. J. Schäffer [3], La Salle [9], M. Megan, B. Sasu, A. L. Sasu [12], M.
Pinto[15], A. Pogan, P. Preda, C. Preda [16] and P. Preda, A. Pogan, C. Preda
[19]. Also, K. M. Przyluski [20] and K. M. Przyluski, S. Rolewicz [21] showed
applications related to the discrete theory of stability for linear infinite-dimensional
continuous-time systems.
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In this paper, our aim is to give new results for uniform exponential dichotomy,
in the discrete case for C0-semigroups, differential systems and abstract evolution
families in Hilbert spaces. We prove firstly the discrete versions of some theorems
from the continuous case from [17], [18], and then use them to obtain the results
of Lyapunov type.

2. Preliminaries

Firstly, we establish the main notations and we recall some definitions used in the
present paper.

Let X be a Hilbert space with the inner product 〈·, ·〉 and B(X) be the Banach
algebra of all linear and bounded operators acting on X. The norms on X and
B(X) are denoted by ‖ · ‖. Also, R+ = [0,∞),N represents the set of nonnegative
integers and N∗ = Nr {0}.

Definition 2.1. A family {Tt}t≥0 of linear and bounded operators on X is
called a C0-semigroup if the following conditions hold:

(i) T (0) = I (where I is the identity on X);
(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0;
(iii) lim

t→0+
T (t)x = x for all x ∈ X.

We suppose that the subspace X1 = {x ∈ X : T (·)x ∈ L∞(X)} is a closed
subspace in X, where L∞(X) represents the Banach space of X-valued functions
f almost defined on R+, f is strongly measurable and essentially bounded. By
X2 we denote a complement of X1 and a projector by P1 (P1 ∈ B(X), P 2

1 = P1,
KerP1 = X2). Also P2 = I − P1.

Definition 2.2. We say that {Tt}t≥0 is exponentially dichotomic if there exist
N1, N2, ν > 0 such that:

(i) ‖T (t)x‖ ≤ N1 e−νt ‖x‖ for all x ∈ X1;
(ii) ‖T (t)x‖ ≥ N2 eνt ‖x‖ for all x ∈ X2.

Definition 2.3. A family of operators Φ: {(n, n0) ∈ N × N, n ≥ n0} → B(X)
is called a discrete evolution family if the following properties hold:

(i) Φ(n, n) = I for all n ∈ N;
(ii) Φ(n,m)Φ(m,n0) = Φ(n, n0) for all n ≥ m ≥ n0, n,m, n0 ∈ N.

Remark 2.1. If in addition to the conditions (i), (ii) from Definition 2.3, there
are M , ω > 0 such that

‖Φ(n, n0)‖ ≤M eω(n−n0) for all n ≥ n0 ≥ 0,

then {Φ(n, n0)}n≥n0≥0 is called a discrete evolution family with uniform exponen-
tial growth.

We assume that for every n0 ∈ N, the vector subspace

X1(n0) = {x ∈ X : Φ(·, n0)x ∈ l∞(X)}
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is closed in X, where

l∞(X) =
{
x : N→ X : sup

n∈N
‖xn‖ <∞

}
.

By X2(n0) we denote a complement of X1(n0) and a projector by P1(n0) (i.e.
P1(n0) ∈ B(X), P 2

1 (n0) = P1(n0)) such that KerP1(n0) = X2(n0) and P2(n0) =
I − P1(n0). Also Pi(0) is denoted by Pi, i = 1, 2.

Definition 2.4. A discrete evolution family {Φ(n, n0)}n≥n0≥0 is uniformly ex-
ponentially dichotomic if there exist the constants N1, N2, ν > 0 such that:

(i) ‖Φ(n, n0)x‖ ≤ N1 e−ν(n−n0) ‖x‖ for all x ∈ X1(n0), n ≥ n0;
(ii) ‖Φ(n, n0)x‖ ≥ N2 eν(n−n0) ‖x‖, for all x ∈ X2(n0), n ≥ n0.

Definition 2.5. A function P1 : N → B(X) is called a dichotomy projector
family if:

• P1(n)Φ(n, n0) = Φ(n, n0)P1(n0) for all n ≥ n0;
• Φ(n, n0) : KerP1(n0)→ KerP1(n) is an isomorphism for all n ≥ n0;
• the discrete evolution family {Φ(n, n0)}n≥n0≥0 is uniformly exponentially

dichotomic with X1(n0) = ImP1(n0).

Also, we present an auxiliary lemma as follows:

Lemma 2.1. Let ψ(n), ρ(n) be two positive functions, n ∈ N.
If inf

n∈N
ρ(n) < 1 and ψ(n) ≤ ρ(n − n0)ψ(n0) for all n ≥ n0 ≥ 0, there exist

N, ν > 0 such that

ψ(n) ≤ N e−ν(n−n0) ψ(n0) for all n ≥ n0 ≥ 0.

If sup
n∈N

ρ(n) > 1, and ψ(n) ≥ ρ(n − n0)ψ(n0) for all n ≥ n0 ≥ 0, there exist

N ′, ν′ > 0 such that

ψ(n) ≥ N ′ eν
′(n−n0) ψ(n0) for all n ≥ n0 ≥ 0.

Proof. Is similar to that of [10, Lemma 5.3]. �

Definition 2.6. The differential system (A) ẋ(t) = A(t)x(t) is said to be
uniformly exponentially dichotomic if there exist N, ν > 0 such that:

‖U(t)P1U
−1(s)‖ ≤ N e−ν(t−s) for all t ≥ s ≥ 0;

‖U(t)P2U
−1(s)‖ ≤ N e−ν(s−t) for all s ≥ t ≥ 0.

In the following we recall characterizations for the dichotomy of a C0-semigroup
and differential systems in Banach spaces, results that will be used in our discrete
researches into the dichotomy of a C0-semigroup and differential systems.

Theorem 2.1. ([17], Corrolary 3.2) Let T (t) be a C0-semigroup of linear oper-
ators defined on a Banach space X. Then T (t) is exponentially dichotomic if and
only if there exist m, c > 0 and p > 0 such that:

•
∞∫
t

‖T (u− t)P1x‖pdu ≤ cp · ‖P1x‖p,
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•
t∫

0

‖T (s)P2x‖pds ≤ cp · ‖T (t)P2x‖p,

• ‖T (1)P2x‖ ≥ m‖P2x‖
for all t ≥ 0 and x ∈ X.

Theorem 2.2. ([18], Corollary 3.2 and Corollary 3.3) The differential system
(A) ẋ(t) = A(t)x(t) is uniformly exponentially dichotomic if and only if there exist
N, p > 0 such that:

(i) ‖U(t)P1U
−1(t)‖ ≤ N for all t ≥ 0;

(ii)
( ∞∫
t

‖U(τ)P1U
−1(t)x‖pdτ

)1/p
+
( t∫

0

‖U(τ)P2U
−1(t)x‖pdτ

)1/p
≤ N‖x‖

for all t ≥ 0, x ∈ X.

3. The discrete Lyapunov method for the dichotomy
of C0-semigroups

Firstly, we obtain the discrete version of the Theorem 2.1 as follows:

Proposition 3.1. If there exists L, p > 0 such that:

(i)
∞∑
k=0

‖T (k)x‖p <∞ for all x ∈ X1;

(ii)
( n−1∑
k=0

‖T (k)x‖p
) 1

p ≤ L‖T (n)x‖ for all n ≥ 1, x ∈ X2

then {Tt}t≥0 is exponentially dichotomic.

Proof. Let x ∈ X1, t ≥ 0, k = [t], (where [·] represents the largest integer less
than or equal to t). We have that

‖T (t)x‖ = ‖T (t− k)T (k)x‖ ≤M eω ‖T (k)x‖,
and then

∞∑
k=0

k+1∫
k

‖T (t)x‖pdt ≤ (M eω)p
∞∑
k=0

‖T (k)x‖p <∞.

It follows that
∞∫
0

‖T (t)x‖pdt <∞ for all x ∈ X1.(1)

Taking now x ∈ X2, t ≥ 0, τ ∈ [0, t], n = [t], k = [τ ], we get

‖T (τ)x‖ = ‖T (τ − k)T (k)x‖ ≤M eω ‖T (k)x‖.
Proceeding similarly as above, we obtain

n∑
k=0

k+1∫
k

‖T (τ)x‖pdτ ≤ (M eω)p
n∑
k=0

‖T (k)x‖p ≤ (M eω L)p‖T (n+ 1)x‖p,
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which implies

n+1∫
0

‖T (τ)x‖pdτ ≤ (M eω L)p‖T (n+ 1− t)‖p‖T (t)x‖p.

Thus, ( t∫
0

‖T (τ)x‖pdτ
) 1

p ≤ (M eω)2L‖T (t)x‖ for all t ≥ 0, x ∈ X2.(2)

By (ii), it results that

‖T (1)x‖ ≥ 1

L
‖x‖ for all x ∈ X2.(3)

From the relations (1), (2), (3) and Theorem 2.1, we obtain that {Tt}t≥0 is expo-
nentially dichotomic. �

Proposition 3.2. If T (n)P1 = P1T (n) for all n ∈ N, where P1X = X1, then
{Tt}t≥0 is exponentially dichotomic if and only if there exist L, p > 0 such that

(i)
∞∑
k=0

‖T (k)x‖p <∞ for all x ∈ X1;

(ii)
( n−1∑
k=0

‖T (k)x‖p
) 1

p ≤ L‖T (n)x‖ for all n ≥ 1, x ∈ X2.

Proof. Necessity. We assume that {Tt}t≥0 is exponentially dichotomic. By
Definition 2.2, we have

∞∑
k=0

‖T (k)x‖p ≤ Np
1

∞∑
k=0

e−νpt ‖x‖p =
Np

1

1− e−νp
‖x‖p <∞

for all x ∈ X1, p > 0. Let now x ∈ X2, n ≥ 1, k ∈ {0, 1, . . . , n− 1}. Then

‖T (n)x‖ = ‖T (n− k)T (k)x‖ ≥ N2 eν(n−k) ‖T (k)x‖,
which implies

n−1∑
k=0

‖T (k)x‖p ≤ 1

Np
2

n−1∑
k=0

e−νp(n−k) ‖T (n)x‖p ≤ 1

Np
2 (1− e−νp)

‖T (n)x‖p.

We obtain( n−1∑
k=0

‖T (k)x‖p
) 1

p ≤ 1

N2(1− e−νp)
1
p

‖T (n)x‖ for all n ≥ 1, x ∈ X2.

Sufficiency. It follows from Proposition 3.1. �

Theorem 3.1. Let {Tt}t≥0 be a C0-semigroup. If there exists W = W ∗ ∈ B(X)
such that:

(i) T ∗(n)WT (n) +
n−1∑
k=0

T ∗(k)T (k) ≤W for all n ∈ N∗;

(ii) 〈Wx, x〉 ≥ 0 for all x ∈ X1;
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(iii) 〈Wx, x〉 ≤ 0 for all x ∈ X2,

then {Tt}t≥0 is exponentially dichotomic.

Proof. Let x ∈ X1. From (i), we have

〈WT (n)x, T (n)x〉+

n−1∑
k=0

‖T (k)x‖2 ≤ 〈Wx, x〉.

Thus
n−1∑
k=0

‖T (k)x‖2 ≤ |〈Wx, x〉| ≤ ‖W‖ · ‖x‖2 for all n ≥ 1.

We obtain

∞∑
k=0

‖T (k)x‖2 ≤ ‖W‖ · ‖x‖2 <∞ for all x ∈ X1.(4)

Setting now x ∈ X2, n ≥ 1 and proceeding similarly as above we obtain

n−1∑
k=0

‖T (k)x‖2 ≤ 〈Wx, x〉 − 〈WT (n)x, T (n)x〉

≤ |〈WT (n)x, T (n)x〉| ≤ ‖W‖ · ‖T (n)x‖2,

which implies( n−1∑
k=0

‖T (k)x‖2
) 1

2 ≤
√
‖W‖ · ‖T (n)x‖ for all n ≥ 1, x ∈ X2.(5)

From (4), (5) and Proposition 3.1, it follows that {Tt}t≥0 is exponentially di-
chotomic. �

Theorem 3.2. Let {Tt}t≥0 be a C0-semigroup with T (n)P1 = P1T (n) for all
n ∈ N, and there exist n ∈ N such that T (n) restricted to X2 is surjective. If
{Tt}t≥0 is exponentially dichotomic, then there exists W = W ∗ ∈ B(X) such that:

(i) T ∗(n)WT (n) +
n−1∑
k=0

T ∗(k)T (k) ≤W for all n ∈ N∗;

(ii) 〈Wx, x〉 ≥ 0 for all x ∈ X1;
(iii) 〈Wx, x〉 ≤ 0 for all x ∈ X2.

Proof. Let W = 2
∞∑
k=0

(T (k)P1)∗T (k)P1 − 2
∞∑
k=1

(T−1(k)P2)∗T−1(k)P2.

Using Definition 2.2, we obtain

‖W‖ ≤ 2

∞∑
k=0

N2
1 e−2νk +2

∞∑
k=1

1

N2
2

e−2νk ≤ 2

1− e−2ν

(
N2

1 +
1

N2
2

)
,
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so W ∈ B(X) and from the properties of the self-adjoint, we obtain W = W ∗.
Then

T ∗(n)WT (n)

= 2

∞∑
k=0

T ∗(n)(T (k)P1)∗T (k)P1T (n)− 2

∞∑
k=1

T ∗(n)(T−1(k)P2)∗T−1(k)P2T (n)

= 2

∞∑
k=0

(T (k + n)P1)∗T (k + n)P1 − 2

∞∑
k=1

(T−1(k)T (n)P2)∗T−1(k)T (n)P2

= 2

∞∑
i=n

(T (i)P1)∗T (i)P1 − 2

n∑
k=1

(T−1(k)T (k)T (n− k)P2)∗T (n− k)P2

− 2

∞∑
k=n+1

((T (n)T (k − n))−1T (n)P2)∗T−1(k − n)P2

= 2

∞∑
i=n

(T (i)P1)∗T (i)P1 − 2

n−1∑
i=0

(T (i)P2)∗T (i)P2 − 2

∞∑
i=1

(T−1(i)P2)∗T−1(i)P2

= W − 2

n−1∑
i=0

(T (i)P1)∗T (i)P1 − 2

n−1∑
i=0

(T (i)P2)∗T (i)P2.

We get

T ∗(n)WT (n) + 2

n−1∑
i=0

(T (i)P1)∗T (i)P1 + 2

n−1∑
i=0

(T (i)P2)∗T (i)P2 = W.

But

2
〈 n−1∑
i=0

(T (i)P1)∗T (i)P1x, x
〉

+ 2
〈 n−1∑
i=0

(T (i)P2)∗T (i)P2x, x
〉

= 2

n−1∑
i=0

‖T (i)P1x‖2 + 2

n−1∑
i=0

‖T (i)P2x‖2.

Therefore,

〈Wx, x〉 = 〈WT (n)x, T (n)x〉+ 2

n−1∑
i=0

(
‖T (i)P1x‖2 + ‖T (i)P2x‖2

)
≥ 〈WT (n)x, T (n)x〉+

n−1∑
i=0

‖T (i)(P1 + P2)x‖2

= 〈WT (n)x, T (n)x〉+

n−1∑
i=0

〈T ∗(i)T (i)x, x〉 for all x ∈ X, n ≥ 1.

It results that

T ∗(n)WT (n) +

n−1∑
i=0

T ∗(i)T (i) ≤W for all n ∈ N∗.
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For x ∈ X1, we obtain

〈Wx, x〉 = 2

∞∑
k=0

‖T (k)x‖2 ≥ 0

and if x ∈ X2, then

〈Wx, x〉 = −2

∞∑
k=1

‖T (k)x‖2 ≤ 0.

�

4. The discrete Lyapunov method for the dichotomy
of evolution families

Proposition 4.1. Let {Φ(n, n0)}n≥n0≥0 be a discrete evolution family such
that there exist L,m > 0 and p ≥ 1 such that:

(i)
( ∞∑
k=n0

‖Φ(k, n0)x‖p
) 1

p ≤ L‖x‖ for all x ∈ X1(n0), n0 ∈ N;

(ii)
( n−1∑
k=n0

‖Φ(k, n0)x‖p
) 1

p ≤ L‖Φ(n, n0)x‖ for all x ∈ X2(n0), n ≥ n0 + 1;

(iii) ‖Φ(n+ 1, n)x‖ ≥ m‖x‖ for all x ∈ X2(n), n ∈ N.

Then {Φ(n, n0)}n≥n0≥0 is uniformly exponentially dichotomic.

Proof. Let x ∈ X1(n0), n ≥ n0 and k ∈ {n0, n0 + 1, . . . , n}. We have

‖Φ(n, n0)x‖ = ‖Φ(n, k)Φ(k, n0)x‖ ≤ L‖Φ(k, n0)x‖,
and then

(n− n0 + 1)‖Φ(n, n0)x‖p ≤ Lp
n∑

k=n0

‖Φ(k, n0)x‖p ≤ L2p‖x‖p.

We deduce that

‖Φ(n, n0)x‖ ≤ L2

(n− n0 + 1)
1
p

‖x‖ for all n ≥ n0, x ∈ X1(n0).

Taking now n ≥ k ≥ n0, x ∈ X1(n0), we get

‖Φ(n, n0)x‖ = ‖Φ(n, k)Φ(k, n0)x‖ ≤ L2

(n− k + 1)
1
p

‖Φ(k, n0)x‖

and by Lemma 2.1, it follows that there exist N1, ν > 0 such that

‖Φ(n, n0)x‖ ≤ N1 e−ν(n−k) ‖Φ(k, n0)x‖ for all n ≥ k ≥ n0, x ∈ X1(n0).

Thus,

‖Φ(n, n0)x‖ ≤ N1 e−ν(n−n0) ‖x‖ for all n ≥ n0, x ∈ X1(n0).(6)

Let n ≥ n0 + 1, x ∈ X2(n0). We denote

ϕ(n) =

n−1∑
k=n0

‖Φ(k, n0)x‖p
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and by (ii), we obtain

ϕ(n) ≤ Lp‖Φ(n, n0)x‖p for all n ≥ n0 + 1.

Thus,

(n− n0 − 1)‖x‖p ≤
n−1∑

k=n0+1

ϕ(k) ≤ Lp
n−1∑

k=n0+1

‖Φ(k, n0)x‖p ≤ L2p‖Φ(n, n0)x‖p,

which implies

‖Φ(n, n0)x‖ ≥ (n− n0 − 1)
1
p

L2
‖x‖ for all n ≥ n0 + 1, x ∈ X2(n0).

We deduce that ‖Φ(n, n0)x‖ ≥ (n−k−1)
1
p

L2 ‖Φ(k, n0)x‖ for all n ≥ k ≥ n0 + 1,
x ∈ X2(n0).

Applying Lemma 2.1, we obtain that there exist N2, ν > 0 such that

‖Φ(n, n0)x‖ ≥ N2 eν(n−n0) ‖x‖ for all x ∈ X2(n0), n ≥ n0.(7)

From relations (6), (7) and Definition 2.4, we obtain that the discrete evolution
family {Φ(n, n0)}n≥n0≥0 is uniformly exponentially dichotomic. �

Theorem 4.1. If there exist m > 0 and W : N → B(X) bounded, W (n) =
W ∗(n) for all n ∈ N, such that:

(i) Φ∗(n, n0)W (n)Φ(n, n0)+
n−1∑
k=n0

Φ∗(k, n0)Φ(k, n0)≤W (n0) for all n ≥ n0+1;

(ii) 〈W (n)x, x〉 ≥ 0 for all x ∈ X1(n), n ∈ N;
(iii) 〈W (n)x, x〉 ≤ 0 for all x ∈ X2(n), n ∈ N;
(iv) ‖Φ(n+ 1, n)x‖ ≥ m‖x‖ for all x ∈ X2(n), n ∈ N.

Then the discrete evolution family {Φ(n, n0)}n≥n0≥0 is uniformly exponentially
dichotomic.

Proof. Let x ∈ X1(n0), n ≥ n0 + 1. According to the hypothesis, we have

n−1∑
k=n0

‖Φ(k, n0)x‖2 ≤ 〈W (n0)x, x〉 − 〈W (n)Φ(n, n0)x,Φ(n, n0)x〉

≤ |〈W (n0)x, x〉| ≤ ‖W (n0)‖ · ‖x‖2 ≤ L‖x‖2,

where L = sup
n∈N
‖W (n)‖. It follows that

( ∞∑
k=n0

‖Φ(k, n0)x‖2
) 1

2 ≤
√
L‖x‖ for all n0 ∈ N, x ∈ X1(n0).(8)

Let x ∈ X2(n0), n ≥ n0 + 1. Then

n−1∑
k=n0

‖Φ(k, n0)x‖2 ≤ 〈W (n0)x, x〉 − 〈W (n)Φ(n, n0)x,Φ(n, n0)x〉

≤ |〈W (n)Φ(n, n0)x,Φ(n, n0)x〉| ≤ L‖Φ(n, n0)x‖2,
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which implies

( n−1∑
k=n0

‖Φ(k, n0)x‖2
) 1

2 ≤
√
L‖Φ(n, n0)x‖ for all n≥n0+1, x∈X2(n0).(9)

From (8), (9), (iv) and Proposition 4.1, it follows that the discrete evolution family
{Φ(n, n0)}n≥n0≥0 is uniformly exponentially dichotomic. �

Theorem 4.2. If P1 : N→ B(X) is a dichotomy projector family associated to
a discrete evolution family {Φ(n, n0)}n≥n0≥0, then there exist m > 0 and W : N→
B(X) bounded, W (n) = W ∗(n) for all n ∈ N such that:

(i) Φ∗(n, n0)W (n)Φ(n, n0)+
n−1∑
k=n0

Φ∗(k, n0)Φ(k, n0) ≤W (n0) for all n ≥ n0+1;

(ii) 〈W (n)x, x〉 ≥ 0 for all x ∈ X1(n), n ∈ N;
(iii) 〈W (n)x, x〉 ≤ 0 for all x ∈ X2(n), n ∈ N;
(iv) m‖x‖ ≤ ‖Φ(n+ 1, n)x‖ for all x ∈ X2(n), n ∈ N.

Proof. Let W : N→ B(X),

W (n) = 2

∞∑
k=n

(Φ(k, n)P1(n))∗Φ(k, n)P1(n)

− 2

n−1∑
k=0

(Φ−1(n, k)P2(n))∗Φ−1(n, k)P2(n)

It follows easily that W is bounded and W (n) = W ∗(n) for all n ∈ N, Thus,

Φ∗(n, n0)W (n)Φ(n, n0)

= 2

∞∑
k=n

Φ∗(n, n0)(Φ(k, n)P1(n))∗Φ(k, n)P1(n)Φ(n, n0)

− 2

n−1∑
k=0

Φ∗(n, n0)(Φ−1(n, k)P2(n))∗Φ−1(n, k)P2(n)Φ(n, n0)

= 2

∞∑
k=n

(Φ(k, n0)P1(n0))∗Φ(k, n0)P1(n0)

− 2

n0−1∑
k=0

(Φ−1(n, k)Φ(n, n0)P2(n0))∗Φ−1(n, k)Φ(n, n0)P2(n0)

− 2

n−1∑
k=n0

(Φ−1(n, k)Φ(n, n0)P2(n0))∗Φ−1(n, k)Φ(n, n0)P2(n0)
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= 2

∞∑
k=n0

(Φ(k, n0)P1(n0))∗Φ(k, n0)P1(n0)−2

n−1∑
k=n0

(Φ(k, n0)P1(n0))∗Φ(k, n0)P1(n0)

− 2

n0−1∑
k=0

(Φ−1(n0, k)P2(n0))∗Φ−1(n0, k)P2(n0)−2

n−1∑
k=n0

(Φ(k, n0)P2(n0))∗Φ(k, n0)P2(n0)

= W (n0) − 2

n−1∑
k=n0

(Φ(k, n0)P1(n0))∗Φ(k, n0)P1(n0)

− 2

n−1∑
k=n0

(Φ(k, n0)P2(n0))∗Φ(k, n0)P2(n0).

But

2
〈 n−1∑
k=n0

(Φ(k, n0)P1(n0))∗Φ(k, n0)P1(n0)x, x
〉

+ 2
〈 n−1∑
k=n0

(Φ(k, n0)P2(n0))∗Φ(k, n0)P2(n0)x, x
〉

= 2

n−1∑
k=n0

‖Φ(k, n0)P1(n0)x‖2 + 2

n−1∑
k=n0

‖Φ(k, n0)P2(n0)x‖2.

We obtain

〈W (n0)x, x〉 = 〈W (n)Φ(n, n0)x,Φ(n, n0)x〉

+ 2

n−1∑
k=n0

(‖Φ(k, n0)P1(n0)x‖2 + ‖Φ(k, n0)P2(n0)x‖2)

≥ 〈W (n)Φ(n, n0)x,Φ(n, n0)x〉+

n−1∑
k=n0

‖Φ(k, n0)x‖2 for all x ∈ X.

It results that

Φ∗(n, n0)W (n)Φ(n, n0) +

n−1∑
k=n0

Φ∗(k, n0)Φ(k, n0) ≤W (n0) for all n ≥ n0 + 1.

If x ∈ X1(n), then

〈W (n)x, x〉 = 2

∞∑
k=n

‖Φ(k, n)x‖2 ≥ 0

and for x ∈ X2(n), we have

〈W (n)x, x〉 = −2

n−1∑
k=0

‖Φ−1(n, k)x‖2 ≤ 0.
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By Definition 2.4, we obtain

‖Φ(n0 + 1, n0)x‖ ≥ N2 eν ‖x‖ for all n0 ∈ N, x ∈ X2(n0).

�

Theorem 4.3. If there exist m > 0 and W : N → B(X) bounded, W (n) =
W ∗(n) for all n ∈ N such that:

(i) Φ∗(n, n0)W (n)Φ(n, n0)+
n−1∑
k=n0

Φ∗(k, n0)Φ(k, n0) ≤W (n0) for all n ≥ n0+1;

(ii) 〈W (n)x, x〉 ≥ 0 for all x ∈ X1(n), n ∈ N;
(iii) 〈W (n)x, x〉 ≤ −m‖x‖2 for all x ∈ X2(n), n ∈ N.

Then the discrete evolution family {Φ(n, n0)}n≥n0≥0 is uniformly exponentially
dichotomic.

Proof. Denoting L = sup
n∈N
‖W (n)‖, we obtain in a similar way as in Theorem 4.1

that ( ∞∑
k=n0

‖Φ(k, n0)x‖2
) 1

2 ≤
√
L‖x‖ for all n0 ∈ N, x ∈ X1(n0)(10)

and ( n−1∑
k=n0

‖Φ(k, n0)x‖2
) 1

2 ≤
√
L‖Φ(n, n0)x‖ for all n≥n0+1, x∈X2(n0).(11)

Now we take x ∈ X2(n0), n0 ∈ N. By (i) and (iii), we obtain

〈W (n0 + 1, n0)Φ(n0 + 1, n0)x,Φ(n0 + 1, n0)x〉 ≤ 〈W (n0)x, x〉 ≤ −m‖x‖2

and then

m‖x‖2 ≤ −〈W (n0 + 1, n0)Φ(n0 + 1, n0)x,Φ(n0 + 1, n0)x〉 ≤ L‖Φ(n0 + 1, n0)x‖2.
It follows that

‖Φ(n0 + 1, n0)x‖ ≥
√
m

L
‖x‖ for all x ∈ X2(n0), n0 ∈ N.(12)

From the relations (10), (11), (12) and Proposition 4.1, we deduce that the discrete
evolution family {Φ(n, n0)}n≥n0≥0 is uniformly exponentially dichotomic. �

5. The discrete Lyapunov method
for the dichotomy of differential systems

In the following we consider A : R+ → L1
loc(R+,B(X)), where L1

loc(R+,B(X)) is
the space of strongly measurable and locally Bochner integrable functions with

supt≥0
∫ t+1

t
‖A(τ)‖dτ <∞. It is known that the differential equation

(A)ẋ(t) = A(t)x(t),

has the general solution given by

x(t) = Φ(t, t0)x0,
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where Φ(t, t0) = U(t)U−1(t0) and U is the solution of the operatorial Cauchy
problem {

U̇(t) = A(t)U(t)
U(0) = I,

x0 ∈ X (see [5], [11] for details). We obtain a similar result to that one in
Theorem 2.2 for the discrete case, by replacing the Lebesgue measure with the
counting measure.

Proposition 5.1. If A ∈ M1(B(X)), then (A) is uniformly exponentially di-
chotomic if and only if there exist L, p > 0 such that:

(i) ‖U(n)P1U
−1(n)‖ ≤ L for all n ∈ N;

(ii)
( ∞∑
k=n

‖U(k)P1U
−1(n)x‖p

)1/p
+
( n∑
k=0

‖U(k)P2U
−1(n)x‖p

)1/p
≤ L‖x‖

for all n ∈ N, x ∈ X.

Proof. The necessity is a simple verification of the inequalities (i) and (ii), using
Definition 2.6.
For the sufficiency, we take t ≥ 0, n = [t] . Then

‖U(t)P1U
−1(t)‖ = ‖U(t)U−1(n)U(n)P1U

−1(n)U(n)U−1(t)‖ ≤ L(M eω)2.

Putting now L1 = L(M eω)2, we obtain

‖U(t)P1U
−1(t)‖ ≤ L1 for all t ≥ 0.(13)

Let t ≥ 0, τ ≥ t+ 1, n = [t], k = [τ ] and x ∈ X. We get k ≥ n+ 1 and

‖U(τ)P1U
−1(t)x‖ = ‖U(τ)U−1(k)U(k)P1U

−1(n+ 1)U(n+ 1)U−1(t)x‖
≤ (M eω)2‖U(k)P1U

−1(n+ 1)‖ · ‖x‖.
Therefore

k+1∫
k

‖U(τ)P1U
−1(t)x‖pdτ ≤ (M eω)2p‖U(k)P1U

−1(n+ 1)‖p · ‖x‖p

and

∞∑
k=n+1

k+1∫
k

‖U(τ)P1U
−1(t)x‖pdτ ≤ (Meω)2p

∞∑
k=n+1

‖U(k)P1U
−1(n+ 1)‖p‖x‖p

≤ Lp1‖x‖p.
We obtain( ∞∫

t

‖U(τ)P1U
−1(t)x‖pdτ

)1/p
≤ L1‖x‖ for all t ≥ 0, x ∈ X.(14)

Taking now τ ≥ 0, t ≥ τ + 1, n = [t], k = [τ ] and x ∈ X, we have n ≥ k+ 1 and

‖U(τ)P2U
−1(t)x‖ = ‖U(τ)U−1(k + 1)U(k + 1)P2U

−1(n)U(n)U−1(t)x‖
≤ (M eω)2‖U(k + 1)P2U

−1(n)‖ · ‖x‖.
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Proceeding similarly as above, we obtain

n−1∑
k=0

k+1∫
k

‖U(τ)P2U
−1(t)x‖pdτ ≤ (M eω)2p

n−1∑
k=0

‖U(k + 1)P2U
−1(n)‖p · ‖x‖p

≤ (M eω)2p
n∑
i=1

‖U(i)P2U
−1(n)‖p‖x‖p ≤ Lp1‖x‖p,

that is equivalent to
n∫

0

‖U(τ)P2U
−1(t)x‖pdτ ≤ Lp1‖x‖p.

But
t∫

0

‖U(τ)P2U
−1(t)x‖pdτ =

n∫
0

‖U(τ)P2U
−1(t)x‖pdτ +

t∫
n

‖U(τ)P2U
−1(t)x‖pdτ

≤ Lp1‖x‖p +

t∫
n

‖U(τ)U−1(t)U(t)P2U
−1(t)x‖pdτ

≤ (Lp1 + (M eω)p(L+ 1)p)‖x‖p, for all t ≥ 1, x ∈ X.

If t ∈ [0, 1), then

t∫
0

‖U(τ)P2U
−1(t)x‖pdτ ≤ (M eω)p(L+ 1)p‖x‖p ≤ L2‖x‖p,

where L2 = Lp1 + (Meω)p(L+ 1)p. Finally, we have

( t∫
0

‖U(τ)P2U
−1(t)x‖pdτ

)1/p
≤ L1/p

2 ‖x‖ for all t ≥ 0, x ∈ X.(15)

By (13), (14), (15) and Theorem 2.2, it follows that (A) is uniformly exponentially
dichotomic which completes the proof. �

Theorem 5.1. Let A ∈M1(B(X)). The differential system (A) is exponentially
dichotomic if and only if there exist L > 0 and W : N → B(X) bounded, W (n) =
W ∗(n) for all n ∈ N with the following properties:

(i) ‖U(n)P1U
−1(n)‖ ≤ L for all n ∈ N;

(ii) Φ∗(n, n0)W (n)Φ(n, n0)x+
n−1∑
k=n0

Φ∗(k, n0)Φ(k, n0)x = W (n0)x

for all n, n0 ∈ N, n ≥ n0 + 1, x ∈ X;
(iii) 〈W (n)x, x〉 ≥ 0 for all x ∈ X1(n) = P1(n)X and n ∈ N,

where P1(n) = U(n)P1U
−1(n);

(iv) 〈W (n)x, x〉 ≤ 0 for all x ∈ X2(n) = P2(n)X, and n ∈ N,
where P2(n) = U(n)P2U

−1(n).
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Proof. Necessity. By Definition 2.6, we have that there exist N, ν > 0 such that

‖U(n)P1U
−1(m)‖ ≤ N e−ν(n−m) for all n,m ∈ N, n ≥ m.

Putting m := n, we obtain the first assertion.
We consider W : N→ B(X), n ≥ n0 + 1,

W (n)x =

∞∑
k=n

Φ∗1(k, n)Φ1(k, n)x−
n−1∑
k=0

Φ∗2(k, n)Φ2(k, n)x,

where Φi(n, n0) = U(n)PiU
−1(n0), i = 1, 2.

Using the Definition 2.6, we have

‖W (n)x‖ ≤ 2N2‖x‖
∞∑
i=0

e−2νi =
2N2

1− e−2ν
‖x‖,

and from the properties of the self-adjoint, we get W (n) = W ∗(n) for all n ∈ N.
Thus

Φ∗(n, n0)W (n)Φ(n, n0)x+

n−1∑
k=n0

Φ∗(k, n0)Φ(k, n0)x

=

∞∑
k=n

Φ∗(n, n0)Φ∗1(k, n)Φ1(k, n)Φ(n, n0)x

−
n−1∑
k=0

Φ∗(n, n0)Φ∗2(k, n)Φ2(k, n)Φ(n, n0)x

+

n−1∑
k=n0

Φ∗(k, n0)Φ(k, n0)x

=

∞∑
k=n

(U−1(n0))∗P1U
∗(k)U(k)P1U

−1(n0)x

−
n−1∑
k=0

(U−1(n0))∗P2U
∗(k)U(k)P2U

−1(n0)x

+

n−1∑
k=n0

(U−1(n0))∗P1U
∗(k)U(k)P1U

−1(n0)x

+

n−1∑
k=n0

(U−1(n0))∗P2U
∗(k)U(k)P2U

−1(n0)x

=

∞∑
k=n0

(U(k)P1U
−1(n0))∗U(k)P1U

−1(n0)x

−
n0−1∑
k=0

(U(k)P2U
−1(n0))∗U(k)P2U

−1(n0)x = W (n0)x

for all n, n0 ∈ N, n ≥ n0 + 1, x ∈ X.
It is easily seen that the conditions (iii) and (iv) are satisfied.
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Sufficiency. Let x ∈ X1(n0), n ≥ n0 + 1. From (ii) we have

n−1∑
k=n0

‖Φ(k, n0)x‖2 = 〈W (n0)x, x〉 − 〈W (n)Φ(n, n0)x,Φ(n, n0)x〉

≤ |〈W (n0)x, x〉| ≤ ‖W (n0)‖ · ‖x‖2 ≤ sup
n∈N
‖W (n)‖ · ‖x‖2.

But x ∈ X1(n0) implies that x = U(n0)P1U
−1(n0)y, y ∈ X and Φ(k, n0)x =

U(k)P1U
−1(n0)y, y ∈ X. We obtain

n−1∑
k=n0

‖U(k)P1U
−1(n0)y‖2 ≤ L1 · L2‖y‖2,

where L1 = sup
n∈N
‖W (n)‖ and

( ∞∑
k=n0+1

‖U(k)P1U
−1(n0 + 1)y‖2

) 1
2 ≤
√
L1 · L‖y‖ for all n0∈N, y∈X.(16)

Let x ∈ X2(n0), n ≥ n0 + 1. From the hypothesis we have

n−1∑
k=n0

‖Φ(k, n0)x‖2 = 〈W (n0)x, x〉 − 〈W (n)Φ(n, n0)x,Φ(n, n0)x〉

≤ |〈W (n)Φ(n, n0)x,Φ(n, n0)x〉| ≤ L1 · ‖Φ(n, n0)x‖2.

Putting x = P2(n0)U(n0)U−1(n)y, y ∈ X, we get x ∈ X2(n0) and

Φ(k, n0)x = U(k)P2U
−1(n)y.

Therefore,

n−1∑
k=n0

‖U(k)P2U
−1(n)y‖2 ≤ L1 · ‖P2(n)‖2 · ‖y‖2 ≤ L1 · (L+ 1)2 · ‖y‖2

and
n∑

k=n0

‖U(k)P2U
−1(n)y‖2 ≤ L2 · ‖y‖2 for all n ≥ n0 + 1, y ∈ X,

where L2 = L1(L+ 1)3.
Putting now n := n0 + 1 and n0 := 0 in the last inequality, we have( n0+1∑

k=0

‖U(k)P2U
−1(n0 + 1)y‖2

) 1
2 ≤

√
L2 · ‖y‖ for all n0 ∈ N, y ∈ X.(17)

By (16), (17) and Proposition 5.1, we have (A) is uniformly exponentially di-
chotomic. �
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References

1. Bellmann R., Introduction to matrix analysis, McGrew-Hill, New-York, 1960.
2. Chicone C., and Latushkin Y., Evolution Semigroups in Dynamical Systems and Differential

Equations, Mathematical Surveys and Monographs, vol 70, RO: American Mathematical

Society, Providence, 1999.
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300223, Timişoara, România, e-mail : preda@math.uvt.ro
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