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UNSTABLE MAPS

G. A. JONES

This article was contributed by authors who participated in GEMS 2017.

Abstract. A map which is non-orientable or has non-empty boundary has a canon-
ical double cover which is orientable and has empty boundary. The map is called

stable if every automorphism of this cover is a lift of an automorphism of the map.
This note describes several infinite families of unstable maps, and relates them to

similar phenomena for graphs, hypermaps and Klein surfaces.

1. Introduction

If a mapM is non-orientable or has a non-empty boundary, then it has a canonical

orientable double cover M̃, the unique double cover ofM which is orientable and

has an empty boundary. ThenM is the quotient of M̃ by an orientation-reversing

automorphism a ∈ AutM̃ of order 2. In particular, if M has empty boundary

then the covering M̃ → M is unbranched, with characteristic χ(M̃) = 2χ(M).
For example, the non-orientable regular embedding M of the complete graph K6

in the real projective plane, shown in Figure 1, lifts to the icosahedral map M̃ on

the sphere, and M is the quotient of M̃ by its antipodal automorphism a.

Each automorphism of M lifts to two automorphisms of M̃, differing by and

commuting with a, so that AutM̃ has a subgroup AutM× 〈a〉 ∼= AutM× C2.

We will say that M is stable or unstable as this subgroup is the whole of AutM̃
or a proper subgroup. (This terminology is borrowed from graph theory, where
it is used in a similar situation concerning bipartite double coverings of graphs
[12, 13, 19].) While it appears that most maps are stable, the aim of this note is
to give some examples of unstable maps, exhibiting various degrees of instability.
These examples are based on the following result, proved in §2:

Theorem 1.1. Let K be an orientable map without boundary, let a be an
orientation-reversing involution in AutK, and let M be the quotient map K/〈a〉.
Then M̃ ∼= K. Moreover, M is stable if and only if a is in the centre of AutK,
and M has empty boundary if and only if a is fixed-point-free.
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Figure 1. Regular embedding of K6 in the real projective plane.

The following example shows that ifM has a non-empty boundary then |AutM̃|
can be arbitrarily large while |AutM| is bounded above.

Example 1. Let K be the regular spherical map {2, n}, in the notation of
Coxeter and Moser [7]: this has two vertices, joined to each other by n edges,
with AutK ∼= Dn × C2 of order 4n. Let a be the reflection of K in one of its
edges (an orientation-reversing involution in AutK), and let M = K/〈a〉, a map

on the closed disc. Then M̃ = K, and |AutM| = 2 or 4 as n is odd or even. For
a more extreme example, take K to be a semi-star map on the sphere, with one
vertex, one face and n semi-edges, so that AutK ∼= Dn; if M = K/〈a〉 where a is

a reflection of K, then K = M̃ and |AutM| = 1 or 2 as n is odd or even.

One can easily find similar examples of higher genus, whereM has a non-empty
boundary. However, examples with an empty boundary are not so obvious. In
order to investigate these, in §3, we will use a more algebraic approach, developed
in §2. An open problem is posed in §3, and connections with related ideas in other
areas are considered in §4.

2. Algebraic map theory

As shown, for example, in [2, 9, 11], maps (always assumed to be connected) can
be identified with transitive permutation representations of the group

Γ = 〈Ri (i = 0, 1, 2) | R2
i = (R0R2)2 = 1〉 ∼= V4 ∗ C2.

Given any map M, Γ acts transitively on the set Φ of flags (incident vertex-
edge-face triples) of M, with Ri changing the i-dimensional component of each
flag (whenever possible) while preserving its other two components, as shown in
Figure 2; flags incident with the boundary are fixed by some Ri, as shown in
Figure 3 where the broken line represents the boundary of the map. Conversely,
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given a transitive permutation representation of Γ, one can define a map M by
taking the vertices, edges and faces to be the orbits of the dihedral subgroups
〈R1, R2〉, 〈R2, R0〉 and 〈R0, R1〉, with incidence given by non-empty intersection.

v
e

f

φ φR0

φR1

φR2 φR0R2

Figure 2. Generators Ri of Γ acting on a flag φ = (v, e, f).

φR0 = φ

φR1 = φ φR2 = φ

Figure 3. Flags fixed by R0, R1 and R2.

In this situation the automorphisms ofM are the permutations of Φ commuting
with those induced by Γ; these form a group AutM ∼= NΓ(M)/M , where M is
the stabiliser in Γ of a flag, called a map subgroup for M. The most symmetric
maps are the regular maps, those for which AutM acts transitively on the flags;
equivalently, Γ induces a regular permutation group on Φ, so that M is a normal
subgroup of Γ and AutM∼= Γ/M .

A map M is orientable and with empty boundary if and only if M is con-
tained in the even subgroup Γ+ of index 2 in Γ, consisting of the words of even
length in the generators Ri; it is then orientably regular if M is normal in Γ+,
so that the orientation-preserving subgroup Aut+M ∼= NΓ+(M)/M of AutM
is arc-transitive. If M 6≤ Γ+, then the canonical double cover M̃ of M is the
map with map subgroup M+ := M ∩ Γ+, corresponding to the transitive action

of Γ on Φ̃ := Φ × {±1} given by Ri : (φ, δ) 7→ (φRi,−δ). Then M is the quo-

tient of M̃ by the automorphism group of order 2 corresponding to the inclusion

M/M+ ≤ NΓ(M+)/M+ ∼= AutM̃.
Since M and Γ+ are both normalised by NΓ(M), so is their intersection M+,

giving NΓ(M+) ≥ NΓ(M). The group AutM̃ ∼= NΓ(M+)/M+ therefore has a
subgroup corresponding to

NΓ(M)+/M+ ×M/M+ ∼= NΓ(M)/M ×M/M+ ∼= AutM× C2
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obtained by lifting each automorphism of M to two automorphisms of M̃. Then

M is stable if and only if this subgroup is the whole of AutM̃, or equivalently
NΓ(M+) = NΓ(M).

Proof of Theorem 1.1. Let K be an oriented map without boundary, with an
orientation-reversing involution a ∈ G := AutK, and let M = K/〈a〉. If K is
a map subgroup of Γ for K, then there is a map subgroup M for M containing
K with index 2, corresponding to the subgroup 〈a〉 ≤ G ∼= NΓ(M)/M . Since a
reverses orientation we have M 6≤ Γ+, and since K ≤ Γ+ with |M : K| = 2 we

must have K = M+ so that K = M̃.
The map M has a non-empty boundary if and only if a has a fixed point in K

(and is thus a reflection); otherwise, M is non-orientable and without boundary.
Now NΓ(M) ≤ NΓ(K), so NΓ(M)/M (and hence AutM) can be identified with
CG(a)/〈a〉, where CG(a) is the centraliser of a in G. ThusM is stable if and only
if CG(a) = G, that is, a is in the centre Z(G) of G. �

In order to find an unstable mapM without boundary, we therefore need G to
have a non-central orientation-reversing involution a, which is not a reflection. In
this case,M is non-orientable, having the same type as K and having genus g+ 1
if K has genus g.

3. Examples of unstable maps

The following trivial observation indicates one area where we should not look for
unstable maps.

Lemma 3.1. If M is regular then M is stable.

Proof. If M is regular then M is normal in Γ, so NΓ(M) = Γ and hence
NΓ(M+) = Γ. Thus NΓ(M+) = NΓ(M), so M is stable. �

The map in Figure 1 illustrates this, with AutM ∼= PSL2(5) ∼= A5. It is
natural to ask whether weaker symmetry conditions also imply stability. A map
M is edge-transitive if AutM acts transitively on its edges. As shown in [9],
this is equivalent to the condition Γ = NΓ(M)E, where E is the Klein four-group

〈R0, R2〉 ≤ Γ. In this case, since NΓ(M+) ≥ NΓ(M), M̃ is also edge-transitive.
Since E acts transitively on the cosets of NΓ(M), it follows that |Γ : NΓ(M)|
divides 4. We therefore have

|AutM+ : AutM| = 2|NΓ(M+) : NΓ(M)| = 2, 4 or 8.

The most frequent value is 2, equivalent to M being stable. However, as the
following example shows, there are also unstable edge-transitive maps.

Example 2. Let K be the regular torus map {4, 4}2,2 (see [7, §8.3]), shown
in Figure 4 as the dotted square |x ± y| ≤ 2 with identifications of its sides indi-
cated by the arrows. Then AutK is the semidirect product of an abelian normal
translation group of order 8 by the stabiliser of a vertex, isomorphic to D4; in
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Figure 4. A map M with |AutM+| = 8|AutM|.

particular, |AutK| = 64. Let a be the glide reflection (x, y) 7→ (y + 1, x+ 1) of K,
an orientation-reversing, fixed-point-free, non-central involution in AutK, and let
M = K/〈a〉, a map of type {4, 4} on the Klein bottle represented by either of the
two dotted rectangles with the indicated side-pairings. ThenM is not regular, as
it admits no rotations of order 4. (There are, in fact, no regular maps on the Klein
bottle, see [7, §8.8].)

NowM admits reflections in the diagonals of each of its faces, so it easily follows
thatM is edge-transitive. However, no reflection or non-identity rotation fixes the
midpoint of an edge, so AutM acts regularly on the edges, with |AutM| = 8,

the number of edges. By Theorem 1.1 we have M̃ = K, a regular map with

|AutM̃| = 8|AutM|. Thus M is unstable.

Example 3. One can extend Example 2 to an infinite series of examples by
replacing K with an m2-sheeted unbranched cover, namely the regular torus map
{4, 4}2m,2m, corresponding to the subgroup mM+ < M+ < Z2, for any integer
m ≥ 2, and taking a to be the glide reflection (x, y) 7→ (y+m,x+m). The diagram
corresponding to Figure 4 is the same, except that the square tessellation in the
background is now finer, each square being subdivided into m2 smaller squares.
There is a similar construction using the torus map K = {4, 4}2m,0 and the glide-
reflection a : (x, y) 7→ (x+m,−y), but in this case the resulting unstable map M
is not edge-transitive.

Problem. Do other surfaces provide examples of edge-transitive maps M for

which |AutM̃| = 8|AutM|? Are there examples with |AutM̃| = 4|AutM|?
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The following example shows that there are unstable maps of each genus
g ≥ 2. (There are none on the real projective plane, since an orientation-reversing
involution of a spherical map is either central or a reflection.)

Example 4. Let K be the regular orientable map {n, n}2 where n = 2m is
even (see [7, §8.6 and Table 8]). This map is the Petrie dual of the spherical map
{2, n} in Example 1, obtained by replacing the faces of that map with its Petrie
polygons, closed zig-zag paths turning alternately first left and first right. Then
K has genus m− 1 and automorphism group

G = 〈ri (i = 0, 1, 2) | r2
i = (r0r1)n = (r2r0)2 = (r1r2)n = (r0r1r2)2 = 1〉

of order 4n, a semidirect product of the orientation-preserving subgroup

G+ = Aut+K = 〈x = r1r2, y = r2r0 | xn = y2 = [x, y] = 1〉 ∼= Cn × C2

by 〈r2〉 ∼= C2, with r2 inverting all elements of Aut+K by conjugation. The
involution a = r0r1r2 reverses orientation, and it is not conjugate to any ri since
these four involutions have different images in the abelianisation C2 × C2 × C2 of

G, soM = K/〈a〉 is a non-orientable map with empty boundary and with M̃ = K.
It has type {n, n} and genus m. The centraliser of a in G+ is the Klein four-group

〈xm, y〉, so |CG(a)| = 8 and hence |AutM| = 4. Since |AutM̃| = 8m, this shows
that M is unstable for each m ≥ 2.

This example can be generalised as follows.

Example 5. Let L be an orientable map which is bipartite (equivalently, its
map subgroups are contained in the normal closure of R1 and R2 in Γ), so that the
Petrie dual K of L is also orientable. Suppose that AutL contains a non-central
orientation-preserving involution a which leaves no vertex or edge of L invariant,
and which reverses the orientation of K. If a had a fixed point on K, it would
have to be a reflection of K, fixing a vertex or the midpoint of an edge. However,
the vertices and edges of K are also those of L, so this is impossible. Thus a
is fixed-point-free on K, so Theorem 1.1 implies that M := K/〈a〉 is unstable.
We can ensure that a reverses the orientation of K by taking it to be the half-
turn of L about the centre of a face of valency l ≡ 2 mod (4). Since a then
transposes the vertex-colours it fixes no vertices; we can ensure that it leaves no
edges invariant, for instance either by replacing any invariant edge of L with a
pair of edges enclosing a digon, or by choosing L to be orientably regular with
y = r2r0 not conjugate in Aut+L to a power of z = r0r1. There are many suitable
examples, such as L = {2, n} in Example 4, with l = 2, or the orientably regular
embeddings of complete bipartite graphs Kn,n classified in [8], with n odd and
l = 2n.

The following example shows that a single map K can have the form M̃ for
arbitrarily many non-isomorphic maps M.

Example 6. Choose any integer n ≡ 3 mod (4) with n ≥ 11, and define
involutions ri ∈ Sn for i = 0, 1 and 2 by

r0 = (1, 2), r1 = (1)(2, n)(3, n− 1) . . . , r2 = (1, 2)(3, n)(4, n− 1) . . . ,
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so that r0 and r2 commute. Since r1r2 = (1, 2, . . . , n) we have 〈r0, r1r2〉 = Sn,
giving an epimorphism θ : Γ → Sn, Ri 7→ ri. Let K be its kernel and let K be
the corresponding regular map, with AutK ∼= Sn. Each ri is an odd permuta-
tion, so K ≤ Γ+ and hence K is orientable and without boundary. Since r0r1 =

(1, n, 2)(3, n− 1)(4, n− 2) . . ., K has type {6, n} and genus 1 + (n−1)!(n−3)
6 ∼ n!/6.

Now letM = K/〈a〉 where a = (1, 2)(3, 4) . . . (m−1,m) for some m ≡ 2 mod (4)
with 6 ≤ m ≤ n − 5. The cycle structure of a differs from that of each ri, so M
has empty boundary. Since a is an odd permutation, M is non-orientable, with

K = M̃. Since CSn(a) ∼= (S2 o Sm/2) × Sn−m, where o denotes a wreath product,
we have

|AutM| = 2m/2(m/2)!(n−m)!/2 .

We thus obtain (n − 7)/4 unstable maps M for m = 6, 10, . . . , n − 5. Any
isomorphism between two of them would lift to an automorphism of K, implying
a conjugation between the corresponding involutions a. However, these all have
different cycle structures, so the maps are mutually non-isomorphic.

4. Connections

Here we relate the ideas considered above to similar ideas in other areas.

4.1. Edge-labelled graphs

For any map M, the dual of its barycentric subdivision is an embedding, in the
same surface, of a permutation diagram D for the action of Γ on Φ, or equivalently
of a coset diagram for M in Γ: this graph has vertices corresponding bijectively to
the flags of M (or cosets of M), and undirected edges labelled Ri indicating the
action on them of the generators of Γ. It is bipartite if and only ifM is orientable
and without boundary; otherwise, it has a connected bipartite double, namely the

corresponding permutation diagram D̃ for M̃.

We have AuteD = AutM and Aute D̃ = AutM̃, where the groups on the left
consist of the graph automorphisms preserving the edge-labelling; this is because
in either case each group consists of the permutations of the flags commuting with
the actions of Γ. It follows that the stability properties of maps are reflected in
the corresponding properties of their associated edge-labelled graphs.

However, if we ignore the edge-labelling, the automorphism groups of the un-
labelled graphs could be larger. For instance, the self-duality of the maps in
Example 4 implies that there are graph automorphisms transposing the sets of
edges labelled R0 and R2, corresponding to an outer automorphism Ri 7→ R2−i
of Γ preserving the map subgroups M+ and M (see [11] for this interpretation of
duality and other map operations such as Petrie duality).

Nevertheless, it is easily seen that if AutD = AutM and M is unstable, then

D is also unstable, and that the converse holds if Aut D̃ = AutM̃.
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4.2. Hypermaps

This concept of stability extends naturally to hypermaps, regarded as objects
in their own right or as bipartite maps via the Walsh construction [18]. For
an algebraic approach, we can simply omit the relation (R0R2)2 = 1 from the
presentation of Γ, giving a group ∆ ∼= C2 ∗ C2 ∗ C2 whose transitive permutation
representations correspond to connected hypermaps [10]. The preceding ideas and
constructions then carry over to hypermaps in the obvious way.

Example 7. If we redefine r0 in Example 6 to be the involution (2, 3), then
r1r2, r2r0 and r0r1 have orders n, 4 and 4, so K is now an orientable hypermap of
type (n, 4, 4). Factoring out the subgroups 〈a〉 of AutK = Sn as before, we obtain
(n− 7)/4 unstable hypermaps with canonical double cover K.

This concept of stability can be extended further to any permutational cate-
gory [10] in which the parent group Γ has a subgroup Γ+ of index 2. For instance,
this is a natural extension in the theory of abstract polytopes [15], where one can
take Γ to be the string Coxeter group of a given Schläfli type, with Γ+ its even
subgroup.

4.3. Klein surfaces and Riemann surfaces

The ideas and examples discussed here have close analogues in the theories of
Klein surfaces and Riemann surfaces [1, 4, 6]. If a Klein surface S is not a
Riemann surface, that is, it is non-orientable or has a non-empty boundary, then

it has a canonical double cover S̃ which is a Riemann surface, called its complex

double. The group Aut S̃ of conformal and anti-conformal automorphisms of S̃ has
a subgroup AutS×C2, which may or may not be the whole group. Special cases of
these two possibilities have been considered in several papers such as [3, 5, 14, 16].
It may seem impertinent to suggest a name for a concept which has been studied,
apparently without a name, for several decades, but it would be consistent with

the rest of this paper to call S stable or unstable as Aut S̃ = AutS × C2 or not.
If a map M has type {n,m}, the action of Γ on Φ can be factored through

the extended triangle group ∆ = ∆[m, 2, n] obtained by adding the relations
(R1R2)m = (R0R1)n = 1 to the presentation of Γ. This group acts on a sim-
ply connected Riemann surface U , namely the Riemann sphere, complex plane or
hyperbolic plane, as a group of isometries generated by reflections in the sides of a
triangle with internal angles π/m, π/2 and π/n. If M is a map subgroup of ∆ for
M, the underlying surface ofM can be identified with the Klein surface S = U/M ,
which is a Riemann surface in the case of a subgroup of ∆+ = ∆(m, 2, n). In par-
ticular, ifM is not a Riemann surface then applying this to M+ = M ∩∆+ shows

that the surface underlying the canonical double M̃ of M is the complex double

S̃ of S.
However, this analogy is not exact: we have AutM ≤ AutS and AutM̃ ≤

Aut S̃, but these inclusions could be proper. This is most obvious in cases where
the underlying surfaces are the sphere, torus, real projective plane or Klein bot-
tle (see Examples 1, 2 and 3), since these have uncountable automorphism groups
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whereas the maps they support all have finite automorphism groups. Even in com-
pact cases of higher genus, where the surfaces have finite automorphism groups,
there are examples of proper inclusions, with the surface having automorphisms
which do not preserve the map.

Example 8. It follows from the self-duality of the maps M and M̃ of type
{n, n} in Example 4 that their automorphism groups have index 2 in the automor-

phism groups of their medial mapsM∗ and M̃∗: these are maps of type {n, 4} on

the same surfaces S and S̃ as M and M̃, but with a vertex ve at the mid-point

of each edge e of M or M̃, and edges between vertices ve and ve′ on consecu-

tive edges e and e′ of a face of M or M̃. Thus AutM < AutM∗ ≤ AutS and

AutM̃ < AutM̃∗ ≤ Aut S̃. The medial construction arises from the index 2
inclusion [17] of ∆[n, 2, n] in ∆[4, 2, n].

As was the case with the graphs in §4.1, if Aut S̃ = AutM̃ and M is stable,
then S is stable, and if AutS = AutM and M is unstable, then S is unstable.
The latter applies in Example 6, for instance, since the maximality of ∆(n, 2, 6)
among Fuchsian groups for n ≥ 7 (see [17]) implies that AutS = AutM. It also
applies in Example 8, since M∗ is unstable and the maximality of ∆(4, 2, n) for
n ≥ 5 implies that AutS = AutM∗.
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