
Acta Math. Univ. Comenianae
Vol. LXXXIX, 1 (2020), pp. 109–122

109

SOME NEW RESULTS ON EQUITABLE COLORING

PARAMETERS OF GRAPHS

N. K. SUDEV

Abstract. An equitable coloring of a graph G is a proper vertex coloring C of G

such that the cardinalities of any two color classes in G with respect to C differ by
at most one. Coloring the vertices of a graph G subject to given conditions can be

considered as a random experiment. In this context, a discrete random variable X

can be defined as the color of a vertex chosen at random, with respect to the given
type of coloring of G and a probability mass function for this random variable can

be defined accordingly. In this paper, we discuss two statistical parameters of the

powers of certain graph classes with respect to their equitable colorings.

1. Introduction

For all terms and definitions, not defined specifically in this paper, we refer to
[2, 8, 25] and for the terminology of graph coloring, we refer to [3, 9, 10]. For
the terminology in Statistics, see [16, 17]. Unless mentioned otherwise, all graphs
considered in this paper are simple, finite, connected, and undirected.

Graph coloring is an assignment of colors or labels, or weights to the vertices,
edges and faces of a graph under consideration. Unless stated otherwise, the graph
coloring, is meant to be an assignment of colors to the vertices of a graph subject
to certain conditions. A proper coloring of a graph G is a coloring with respect
to which vertices of G are colored in such a way that no two adjacent vertices G
have the same color. The chromatic number of graphs is the minimum number
of colors required in a proper coloring of the given graph. The set of vertices of
a graph G having a particular color ci is called the color class of ci in G and the
cardinality of this color class is called the strength or the weight of the color ci
and denoted by θ(ci). The general coloring sums with respect to different classes
were studied in [11, 18].

Coloring of the vertices of a given graph G can be considered as a random
experiment. For a proper k-coloring with color set C = {c1, c2, c3, . . . , ck} of G, we
can define a random variable (r.v.) X which denotes the color (or precisely, the
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subscript i of the color ci) of any arbitrary vertex in G. As the sum of all weights
of colors of G is the order of G, the real valued function f(i) defined by

f(i) =


θ(ci)

|V (G)|
, i = 1, 2, 3, . . . , k,

0, elsewhere.

is the probability mass function (p.m.f.) of the random variable (r.v.) X (see [19]),
where θ(ci) is strength of the color ci.

If the context is clear, we can also say that f(i) is the probability mass function
of the graph G with respect to the given coloring C. Further results on certain
related coloring parameters of certain graph classes were investigated in [20, 22,
23].

An equitable coloring of a graph G is a proper coloring C of G which assigns
colors to the vertices of G such that the numbers of vertices in any two color classes
differ by at most one (see [4, 5, 12, 14] for some related studies on equitable
coloring of graphs). The equitable chromatic number of a graph G is the smallest
number k such that G has an equitable coloring with k colors. Throughout this
paper, we denote the equitable chromatic number of a graph by k.

Some studies on equitable coloring parameters of certain graph classes were
conducted in [6, 15, 21]. Motivated by the studies on different types graph
colorings, coloring parameters and their applications, we discuss the concepts of
arithmetic mean and variance, two statistical parameters, to equitable coloring of
certain graph classes in this paper. Throughout the paper, we follow the convention
that 0 ≤ θ(ci)− θ(cj) ≤ 1 when i < j.

The chromatic means and variances corresponding to an equitable coloring of
a graph G are defined in [21] as follows.

Definition 1.1 ([21]). Let C = {c1, c2, c3, . . . , ck} be a color set corresponding
to an equitable k-coloring of a given graph G and X be the random variable which
denotes the number of vertices having a particular color in C, with the p.m.f. f(i).
Then

(i) the equitable coloring mean of a coloring C of a given graph G, denoted by

µχe
(G), is defined to be µχe

(G) =
k∑
i=1

i f(i),

(ii) equitable coloring variance of a coloring C of a given graph G, denoted by

σ2
χe

(G), is defined to be σ2
χe

(G) =
n∑
i=1

i2 f(i)−
( k∑
i=1

i f(i)
)2

.

If the context is clear, the above-defined parameters can be called the equitable
coloring mean and equitable coloring variance of the graph G with respect to
the coloring C. Some interesting studies on the equitable coloring parameters of
certain graph classes can be seen in [6, 15, 21]. Motivated by these studies, in
this paper, we discuss the equitable chromatic parameters for certain wheel related
graph classes.
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2. New results

Recall that the k-th power of a graph G, denoted by Gk, is the graph obtained
by adding edges between the vertices which are at a distance at most k (see [24]).
It is proved in [24] that the power graph Gd is a complete graph, where d is the
diameter of the graph G. The chromatic number of graph powers was studied
in [1].

First, recall the following result proved in [21].

Proposition 2.1 ([21]). For a complete graph Kn, we have µχe
(Kn) = n+1

2

and σ2
χe

(Kn) = n2−1
12 .

We first discuss the equitable coloring parameters of various powers of a path Pn.

Theorem 2.2. For the r-th power of a path Pn, we have

µχe
(P rn) =

n3 − (k − 1)n2 − kn+ k(k + 1)(r + 1)

2n(r + 1)
.

Proof. Note that for r ≤ n, corresponding to every Pr+1 in Pn, P rn contains a
complete graph Kr+1 (see Figure 1). Hence, r + 1 distinct colors are required for
coloring the vertices of P rn .

c1
v1

c2
v2

c3
v3

c4
v4

c1
v5

c2
v6

c3
v7

c4
v8

c1
v9

c2
v10

Figure 1. Equitable coloring of the graph P 3
10.

From Figure 1, it can be observed that θ(ci)=b n
r+1c+1= n−k+r+1

r+1 for 1≤ i≤k,

and θ(ci) = b n
r+1c = n−k

r+1 for k + 1 ≤ i ≤ n, where n ≡ k(mod r + 1), 1 ≤ k ≤ r.
Therefore, the corresponding probability mass function is given by

f(i) = P (X = i) =


n− k + r + 1

n(r + 1)
, 1 ≤ i ≤ k,

n− k
n(r + 1)

, k + 1 ≤ i ≤ n.
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Therefore,

µχe
=
( k∑
i=1

i
)
·
(n− k + r + 1

n(r + 1)

)
+
( n∑
i=k+1

i
)
·
( n− k
n(r + 1)

)
=
(k(k + 1)

2

)
·
(n− k + r + 1

n(r + 1)

)
+
(n− k

2

)
(n+ k + 1) ·

( n− k
n(r + 1)

)
=
k2r + k2 − kn+ kr + k − kn2 + n3 + n2

2n(r + 1)

=
n3 − (k − 1)n2 − kn+ k(k + 1)(r + 1)

2n(r + 1)
.

Computation of variance, in this case, is complex, and hence we leave the calcula-
tion unattempted. �

Note that the diameter d of the cycle Cn is bn2 c. If r = bn2 c, then C
bn2 c
n is a

complete graph. Therefore, the p.m.f. of the corresponding coloring is given by

f(i) =


1
n if 1 ≤ i ≤ n,

0, elsewhere.

Hence, in view of Proposition 2.1, we have µχe
= n+1

2 and σ2
χe

= n2−1
12 for all such

graphs.
The following theorem determines the chromatic parameters of the powers of a

cycle Cn for the remaining cases.

Theorem 2.3. For the r-th power of a cycle Cn, where 1 < r < bn2 c, we have

µχe(Crn) =


r+2
2 if n ≡ 0 (mod r + 1),

n+2
4 if n ≡ k (mod r + 1)and n is even, k 6= 0,

(n+1)2

4n if n ≡ k (mod r + 1)and n is odd, k 6= 0.

and

σ2
χe

(Crn) =


r2−10r−12

12 if n ≡ 0 (mod r + 1).

n2−4
12 if n ≡ k (mod r + 1)and n is even, k 6= 0.

(n+1)(n3−n2+3n−3)
48n2 if n ≡ k (mod r + 1)and n is odd, k 6= 0.

Proof. Given that 1 < r < bn2 c. Then, we have to consider the following cases:

Case-1: Let n ≡ 0 (mod r + 1). Then, we can color the vertices of C
bn2 c
n in

an equitable manner using r + 1 colors, each of strength θ(ci) = n
r+1 , where

1 ≤ i ≤ r + 1 (see Figure 2, for example).
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c5

c4

c3
c2

c1

c5

c4

c3

c2

c1
c5

c4

c3

c2

c1

Figure 2. Equitable coloring of C4
15

Then the corresponding p.m.f. is given by

f(i) =

{
1
r+1 if i = 1, 2, 3, . . . , r, r + 1,

0, elsewhere.

Then

µχe
=

r+1∑
i=1

i
1

r + 1
=

(r + 1)(r + 2)

2
· 1

r + 1
=
r + 2

2

and

σ2
χe

=
( r+1∑
i=1

i2
1

r + 1

)
−
(r + 2

2

)2
=
r(r + 1)(2r + 1)

6
· 1

r + 1
−
(r + 2

2

)2
=
r(2r + 1)

6
−
(r + 2

2

)2
=
r2 − 10r − 12

12
.

Case-2: Let k 6= 0, n ≡ k (mod r + 1), and n is even. Here, the minimum

number of colors is required for coloring C
bn2 c
n . But, if we color C

bn2 c
n using r + 1

colors, all its final k vertices must have different colors, all different from the above
r + 1 colors (see Figure 3a for illustration).

Hence, with respect to an equitable coloring of C
bn2 c
n , every color class can

have at most 2 elements. Therefore, the required equitable coloring must have n
2

distinct colors (see Figure 3b), and hence the corresponding pm.f. is given by

f(i) =

{
2
n if i = 1, 2, 3, n2 ,

0, elsewhere.
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c1

c7

c6
c5

c4

c3

c2

c1

c5
c4

c3

c2

(a) A minimal coloring of C4
12

c1

c6

c5
c4

c3

c2

c1

c6

c5
c4

c3

c2

(b) An equitable coloring of C4
12

Figure 3

Therefore, we have

µχe
=

n
2∑
i=1

i
2

n
=
n(n+ 2)

8
· 2

n
=
n+ 2

4

and

σ2
χe

=
( n

2∑
i=1

i2
2

n

)
−
(n+ 2

4

)2
=
n(n+ 1)(n+ 2)

24
· 2

n
−
(n+ 2

4

)2
=
n2 + 3n+ 2

12
− n2 + 4n+ 4

16
=
n2 − 4

12
.

Case-3: Let k 6= 0, n ≡ k (mod r + 1), and n is odd. Here, as mentioned in

the previous case, if we color C
bn2 c
n using r + 1 colors, all its final k vertices must

have different colors, all different from the above r + 1 colors (see Figure 4a for
illustration).

Hence, in this case, with respect to an equitable coloring of C
bn2 c
n , every color

class can have at most 2 elements. Therefore, the required equitable coloring must
have n+1

2 distinct colors (see Figure 3b) such that the color classes of the first
n−1
2 colors have exactly 2 elements and the color class of the last color cn+1

2
is a

singleton set. Hence the corresponding pm.f. is given by

f(i) =


2
n if i = 1, 2, 3, n−12 ,

1
n if i = n+1

2 ,

0, elsewhere.
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(a) A minimal coloring of C4
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c5c4

c3

c2

c1

c6

c5 c4

c3

c2

(b) An equitable coloring of C4
13

Figure 4

Therefore, we have

µχe =
( n−1

2∑
i=1

i
2

n

)
+
n+ 1

2
· 1

n
=

(n− 1)(n+ 1)

8
· 2

n
+
n+ 1

2n
=

(n+ 1)2

4n

and

σ2
χe

=
[( n−1

2∑
i=1

i2
2

n

)
+

(n+ 1)2

4
· 1

n

]
−
( (n+ 1)2

4n

)2
=
n(n− 1)(n+ 1)

24
· 2

n
+

(n+ 1)2

4

1

n
−
( (n+ 1)2

4n

)2
=
n2 − 1

12
+

(n+ 1)2

4n
− n2 + 4n+ 4

16n2
=

(n+ 1)(n3 − n2 + 3n− 3)

48n2
.

This completes the proof. �

3. Equitable chromatic parameters of the powers
of certain cycle related graphs

The equitable chromatic parameters of certain cycle related graphs were deter-
mined in [6]. Among them, wheel graphs, double wheel graphs, djembe graphs,
flower graphs, and blossom graphs (see [6, 7] for definitions of these cycle related
graph classes) are those graphs whose squares are complete graphs. Hence, their
square graphs have the p.m.f.

f(i) =

{
1
|V | if i = 1, 2, 3, . . . , |V |,

0, elsewhere,
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the equitable chromatic mean µχe = 1+|V |
2 , and the equitable chromatic variance

σ2
χe

= |V |2−1
12 (Refer Proposition 2.1). We consider some other cycle related (wheel

related) graphs in our following discussion.
A helm graph Hn is a graph obtained by attaching a pendant edge to every

rim vertex of a wheel graph Wn. Next, we consider the case of the powers helm
graph Hn to determine the equitable chromatic parameters. Equitable chromatic
parameters of helm graphs were found out in [6]. We also note that the diameter of
a helm graph is 4, and hence H4

n is a complete graph on 2n+1 vertices. Therefore,

by the above remark, µχe
(H4

n) = n + 1 and σ2
χe

(H4
n) = n(n+1)

3 . Now, we need to
consider the cube and fourth power of Hn. Therefore, we have tne following
theorem.

Theorem 3.1. The chromatic parameters of Hr
n is given by

µχe
(Hr

n) =


n+ 1 if r = 2,

5n2+10n+4
4(2n+1) if r = 3 and n is even,

5n2+11n+5
4(2n+1) if r = 3 and n is odd.

and

σ2
χe

(Hr
n) =


(n+1)2(2n2+7n+6)

3(2n+1) if r = 2,

37n4+200n3+374n2+286n+72
48(2n+1)2 if r = 3 and n is even,

37n4+158n3+263n2+190n+45
48(2n+1)2 if r = 3 and n is odd.

Proof. Let u be the central vertex, V = {v1, v2, v3, . . . , vn} the set of rim ver-
tices, and U = {u1, u2, u3, . . . , un} the pendant vertices of the helm graph Hn.
Then, we have the following cases:

Case-1: When r = 2, it can be noted that the induced graph 〈U ∪ {u}〉 is a
clique on n+1 vertices in H2

n. Hence, n+1 distinct colors are required to color the
vertices in the induced graph 〈U ∪{u}〉. Now, it can be noted that for every vertex
v ∈ V , there exists at least one vertex in U which is not adjacent to v. Therefore,
v and this vertex can have the same color. Therefore, the above-mentioned n+ 1
colors are required in an equitable coloring of H2

n (see Figure 5 for illustration).
Hence, the first n colors have strength 2 and the color cn+1 has strength 1.

Therefore, the corresponding p.m.f. is given by

f(i) =


2

2n+1 if i = 1, 2, 3, . . . n,

1
2n+1 if i = n+ 1,

0, elsewhere.
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c7 c1

c6c5

c4

c3 c2

c3

c2c1

c6

c5 c4

Figure 5. A minimal coloring of H2
6

Therefore, we have

µχe
=

[
n∑
i=1

i
2

2n+ 1
+ (n+ 1) · 1

2n+ 1

]

=
2n(n+ 1)

2n+ 1
+

n+ 1

2n+ 1
,= n+ 1

σ2
χe

=

[
n∑
i=1

i2
2

2n+ 1
+ (n+ 1)2 · 1

2n+ 1

]
− (n+ 1))

2

=
n(n+ 1)(2n+ 1)

6
· 2

2n+ 1
+

(n+ 1)2

2n+ 1
− (n+ 1)2

=
(n+ 1)2

2n+ 1

[
1− 2n− 3

3(n+ 1)(2n+ 1)

]
=

(n+ 1)2(2n2 + 7n+ 6)

3(2n+ 1)
.

Case-2: When r = 3, as mentioned above, the induced subgraph graph 〈U∪{u}〉
of H3

n is a clique on n + 1 vertices in H2
n. Also, note that every vertex v ∈ V is

adjacent to all vertices of U , and hence no vertices in V can have the same color
of a vertex in U ∪ {u}. Therefore, we have to consider the following subcases:

Subcase-2.1: If n is even, then n
2 + n + 1 = 3n

2 + 1 colors are required in an

equitable coloring of H2
n (see Figure 6 for illustration).

Note that the first n
2 colors have strength 2 and the remaining n+1 colors have

strength 1. Therefore, the corresponding p.m.f. is given by

f(i) =


2

2n+1 if i = 1, 2, 3, . . . , n2 ,

1
2n+1 if i = n

2 + 1, n2 + 2, 3n2 + 1,

0, elsewhere.
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c10 c4

c9c8

c7

c6 c5

c1

c3c2

c1

c3 c2

Figure 6. An equitable coloring of H3
6

Then, we have

µχe
=

n
2∑
i=1

2i

2n+ 1
+

3n
2 +1∑

i=n
2 +1

i

2n+ 1

=
n+ 2

4
+

(n+ 1)2

n
=

5n2 + 10n+ 4

4(2n+ 1)
,

σ2
χe

=

n
2∑
i=1

2i2

2n+ 1
+

3n
2 +1∑

i=n
2 +1

i2

2n+ 1
−
(

5n2 + 10n+ 4

4(2n+ 1)

)2

=
n(n+ 1)(n+ 2)

24
· 2

2n+ 1
+

26n3 + 105n2 + 139n+ 60

24
· 1

2n+ 1

−
(

5n2 + 10n+ 4

4(2n+ 1)

)2

=
28n3 + 111n2 + 143n+ 60

24(2n+ 1)
−
(

5n2 + 10n+ 4

4(2n+ 1)

)2

=
37n4 + 200n3 + 374n2 + 286n+ 72

48(2n+ 1)2
.

Subcase-2.2: If n is odd, then n+1
2 + n + 1 = 3(n+1)

2 colors are required in an

equitable coloring of H2
n.

Note that the first n−1
2 colors have strength 2 and the remaining n + 2 colors

have strength 1. Therefore, the corresponding p.m.f. is given by

f(i) =


2

2n+1 if i = 1, 2, 3, . . . , n−12 ,

1
2n+1 if i = n+1

2 , n+1
2 + 1, 3(n+1)

2 ,

0, elsewhere.
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Then, we have

µχe
=

n−1
2∑
i=1

2i

2n+ 1
+

3(n+1)
2∑

i=n+1
2

i

2n+ 1

=
(n− 1)(n+ 1)

4(2n+ 1)
+

(n+ 2)(n+ 1)

2n+ 1

=
5n2 + 11n+ 5

4(2n+ 1)
,

σ2
χe

=

n−1
2∑
i=1

2i2

2n+ 1
+

3(n+1)
2∑

i=n+1
2

i2

2n+ 1

− (5n2 + 11n+ 5

4(2n+ 1)

)2

=

[
n(n2 − 1)

24(2n− 1)
· 2

2n+ 1
+

(n+ 1)(13n2 + 41n+ 30)

12
· 1

n

]
−
(

5n2 + 11n+ 5

4(2n+ 1)

)2

=
(n+ 1)(7n2 + 20n+ 15)

6(2n+ 1)
−
(

5n2 + 11n+ 5

4(2n+ 1)

)2

=
37n4 + 158n3 + 263n2 + 190n+ 45

48(2n+ 1)2
.

This completes the proof. �

A closed helm graph CHn is a graph obtained from the helm graph Hn by
joining a pendant vertex vi to the pendant vertex vi+1, where 1 ≤ i ≤ n and
vn+i = vi. Exactly in the same manner explained above, we can verify that the
equitable chromatic parameters of closed helm graphs are the same as those ones
of the corresponding helm graphs.

A sunflower graph SFn is a graph obtained by replacing each edge of the rim of a
wheel graph Wn by a triangle such that two triangles share a common vertex if and
only if the corresponding edges in Wn are adjacent in Wn. The equitable chromatic
parameters of sunflower graphs were determined in [6]. Now, we note that the

diameter of SFn is also 4. Hence, µχe(SF 4
n) = n+ 1 and σ2

χe
(SF 4

n) = n(n+1)
3 . The

following theorem explains the equitable coloring parameters of the remaining
powers of sunflower graph SFn.

Theorem 3.2. The chromatic parameters of SF rn are given by

µχe
(SF rn) =


n+ 1 if r = 2,

5n2+10n+4
4(2n+1) if r = 3 and n is even,

5n2+11n+5
4(2n+1) if r = 3 and n is odd,
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and

σ2
χe

(SF rn) =


(n+1)2(2n2+7n+6)

3(2n+1) if r = 2,

37n4+200n3+374n2+286n+72
48(2n+1)2 if r = 3 and n is even;

37n4+158n3+263n2+190n+45
48(2n+1)2 if r = 3 and n is odd.

Proof. The proof follows exactly as explained in the proof of Theorem 3.1. �

4. Equitable coloring parameters
of Mycielskian of paths and cycles

Let G be a graph with the vertex set V (G) = {v1, . . . , vn}. The Mycielski graph
or the Mycielskian of a graph G, denoted by µ(G), is the graph with vertex
set V (µ(G)) = {v1, v2, . . . , vn, u1, u2, . . . , un, w} such that vivj ∈ E(µ(G)) ⇐⇒
vivj ∈ E(G), viuj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G) and uiw ∈ E(µ(G)) for all
i = 1, . . . , n (see [13]). Here, the vertex w may be called the root vertex of the

Mycielskian graph µ(G). For ease of notation, we write Ğ instead of µ(G) to
denote the Mycielskian of G.

The equitable coloring parameters of Mycielski graphs of paths and cycles were
determined in [15]. Following those results, the theorem given below discusses the
equitable coloring parameters of Mycielskian of paths and cycles.

Theorem 4.1. If G is the path Pn or the cycle Cn, then, we have

µχe
(Ğr) =



n+ 1 if r = 2,

5n2+10n+4
4(2n+1) if r = 3 and n is even,

5n2+11n+5
4(2n+1) if r = 3 and n is odd,

n+ 1 if r = 4.

and

σ2
χe

(Ğr) =



(n+1)2(2n2+7n+6)
3(2n+1) if r = 2,

37n4+200n3+374n2+286n+72
48(2n+1)2 if r = 3 and n is even,

37n4+158n3+263n2+190n+45
48(2n+1)2 if r = 3 and n is odd,

n(n+1)
3 if r = 4.

Proof. Let w be the root vertex of µ(G), V and W be the vertex sets as defined
in the definition of Mycielskian of graphs given above. Then, we have the following
cases:

Case-1: All vertices in U are at a distance 2 in µ(G), and hence if r = 2,
then every vertex in U is adjacent to each other and to w, making the induced
subgraph 〈U ∪ {w} a clique of Ğ2. Also, every vertex of V is adjacent to w, but
not adjacent to some vertices of U (and also non-adjacent to some vertices of V ).



EQUITABLE COLORING PARAMETERS OF GRAPH 121

Hence, maximum two vertices can be seen in a color class of Ğ2. Therefore, we
need n+ 1 colors in an equitable coloring of Ğ2.

Case-2: If r = 3, then in addition to the fact that 〈U ∪ {w}〉 is a complete

subgraph of Ğ3, every vertex in V is adjacent to all vertices in U ∪ {w} and non-
adjacent among some vertices in V . Hence, maximum two vertices can be also
seen a color class of Ğ3. Therefore, if n is even, then n

2 colors are required to color
the vertices in V in addition to the n + 1 colors required to color the vertices in
U ∪ {w}. Similarly, if n is odd, then n+1

2 colors are required to color the vertices
in V in addition to the n+ 1 colors required to color the vertices in U ∪ {w}.

Case-3: If r = 4, then the graph Ğ4 is a complete graph on 2n + 1 vertices.
Note that all the above-mentioned cases clearly match the corresponding cases
mentioned in the computation of the equitable coloring parameters of the powers
of helm graphs in Theorem 3.1, and hence the result follows exactly as mentioned
in the proof of Theorem 3.1. �

The diameter of the Mycielskian of the complete graph K̆n is 2, and hence
Theorem 3.1 can be applied to the square of the Mycielskian of complete graphs.
For all graphs with ∆(G) < n − 1, the diameter of their Mycielskians is 4, and
hence Theorem 4.1 can be extended to them. For those graphs with ∆(G) = n−1,
the situation is slightly different. The number of vertices with maximum degree,
structural characteristics, etc., play a vital role in this context. These aspects open
promising research areas for further studies.

5. Conclusion

In this paper, we determined two important statistical parameters, related to equi-
table coloring of the powers of certain fundamental graph classes. We can use these
statistical parameters defined for graph coloring problems for modelling problems
in many areas like project management, communication networks, optimisation
problems, etc. The concepts of equitable chromatic parameters can be utilised
in certain particular real-life and industrial problems including routing, resource
allocation, resource smoothing, inventory management, service, and distribution
systems, etc.

The problems of χe-chromatic mean, and variance of several other graph classes
still offer much for further studies. Investigating the sum, mean and variance
corresponding to different types of edge colorings, map colorings, total colorings,
etc., of graphs also offer much for future studies. The studies can be extended to
determine the skewness and kurtosis, and other similar measures of graphs with
respect to different graph colorings, and hence determine the most effective or
economical graph coloring method in the context concerned.

We can associate many other statistical parameters to graph coloring and other
notions like covering, matching, etc. All these facts highlight a wide scope for
future studies in this area.
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