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CUBIC CAYLEY GRAPHS OF GIRTH AT MOST 6
AND THEIR HAMILTONICITY
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ABSTRACT. Thomassen’s conjecture states that a cubic graph with sufficiently large
cyclic connectivity is hamiltonian. Even the following strong conjecture could hold:
A cyclically 7-connected cubic graph is hamiltonian, or it is the Coxeter graph.
Assuming the conjecture holds true, to prove the hamiltonicity of cubic Cayley
graphs it is sufficient to examine cubic Cayley graphs of girth at most 6. Motivated
by this, we characterise cubic Cayley graphs of girth at most six and identify few
“hard families” of cubic Cayley graphs of small girth for which we are not able to
verify whether they are hamiltonian.

1. INTRODUCTION

Let S be a set that generates a finite group G such that 1 ¢ S and S = S~
The Cayley graph of S in G , denoted X = Cay(G;S), is a graph whose vertices
are the elements of G and the adjacency relation is defined as follows: z € G is
adjacent to y € G if and only if y = xs for some s € S. In 1969, Lovdsz [15] asked
whether every finite connected vertex-transitive graph contains a Hamilton path,
that is, a simple path visiting each vertex exactly once. A cycle passing through
all vertices of G is a Hamilton cycle of G. Every examined finite connected vertex-
transitive graph admits a Hamilton cycle except the five known counterexamples,
these are: the complete graph Ko, the Petersen graph, the Coxeter graph and two
graphs derived from the Petersen and Coxeter graphs by replacing each vertex
with a triangle. Apart from Ks, all of these are cubic graphs. However, none
of these four graphs is a Cayley graph, that is, a vertex-transitive graph with a
regular subgroup of automorphisms. This has led to a folklore conjecture that
every connected Cayley graph possesses a Hamilton cycle. Thomassen [8, 21]
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conjectured that only finitely many connected vertex-transitive graphs without a
Hamilton cycle exist, in contrast, Babai in [6, 7] conjectured that infinitely many
such graphs exist.

Let X be a connected graph. A subset FF C E(X) of edges of X is said to
be cycle-separating if X — F' is disconnected and at least two of its components
contain cycles. We say that X is cyclically k-connected, if no set of fewer than
k edges is cycle-separating in X. The edge cyclic connectivity ((X) of X is the
largest integer k not exceeding the Betti number 3(X) = |E(X)| — |[V(X)| + 1 of
X for which X is cyclically k-edge-connected. If X has no cycle-separating edge
cut we set ¢(X) = B(X). Note that for cubic graphs the concepts of edge cyclic
connectivity and vertex cyclic connectivity coincide.

All known non-hamiltonian cubic graphs have cyclic-connectivity at most 7.
The only known example which is cyclically 7-connected is the Coxeter graph.
Thomassen [22] has conjectured that if the cyclic connectivity of a cubic graph X
is large enough, then X is hamiltonian.

Conjecture 1.1 (Thomassen [22]). Cubic graphs with sufficiently large cyclic
connectivity are hamiltonian

Since there are infinitely many non-hamiltonian cyclically 6-connected cubic
graphs (for instance the Isaacs flower snarks), the strongest version of Thomassen’s
conjecture reads as follows.

Conjecture 1.2. A cyclically 7-connected cubic graph contains a Hamilton
cycle, or it is the Coxeter graph.

Assuming that Conjecture 1.2 is confirmed in the affirmative, to prove Lovész’s
conjecture for cubic Cayley graphs, it is sufficient to examine cubic Cayley graphs
of (X) < 6. In 1995, Nedela and Skoviera [18] proved that the cyclic connectivity
¢(X) of a cubic vertex-transitive graph X equals its girth g(X). Recall that the
girth of X length of a shortest cycle in X. It follows that it is sufficient to consider
cubic Cayley graphs with ¢g(X) < 6. Since the action of the Cayley group is
regular, the existence of girth cycles of length at most 6 implies a relation of length
at most 6 in terms of the generators. Since the number of generators is at most
3, there are just finitely many cases for the relation to consider. In what follows
we present case-by-case analysis according to the short relation. In most cases we
obtain strong restrictions on the structure of the Cayley group, and consequently,
on the structure of the Cayley graphs in consideration. Then we examine whether
these cubic Cayley graphs are hamiltonian. The analysis splits into two main cases
depending on the structure of the generating set S of the Cayley group G:

Type 1. S = {a,b,c}, where a,b and c are involutions, that is a? = b? = ¢? = 1,
Type 2. S = {a,b,b~1}, where a® = 1 is an involution, and the order of b is more
than 2.

The main result of the paper is stated in Theorems 3.1 and 4.1.
The reader may find some similarities to our analysis of cubic Cayley graphs of
small girth in the book [11]. However, the problem considered there is different.
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Moreover, the obtained partial results in [11] are not stated in the form ready for
direct use for our purposes.

2. PRELIMINARIES AND EXAMPLES

Obvious examples of cubic Cayley graphs of small girth are the n-sided prisms
and the Mobius ladders. The n-sided prism can be defined as a Cayley graph
Cay(G;y,x*") for G = C,, x Oy = () x (y), where z is of order n and y ¢ (z) is
an involution. The Mobius ladder of even order n is a circulant Cay(Z,;n/2,£1).
Both families of graphs have girth at most four. In general, a Cayley graph based
on an abelian group has girth at most four. A cubic Cayley graph based on an
abelian group of girth 3 is either K4, or the 3-sided prism.

In what follows we list statements establishing hamiltonicity of distinguished
sets of cubic Cayley graphs. The following statement is a consequence of a stronger
result known under the name Chen-Quimpo theorem.

Theorem 2.1 ([9]). Every connected Cayley graph of an abelian group of order
at least three is hamiltonian.

For the cubic Cayley graphs of girth four, the following two statements will be
useful.

Theorem 2.2 ([20]). There is a Hamilton cycle in every cubic Cayley graph
of girth four.

Theorem 2.3 ([19]). Let G be a finite group, generated by three involutions
a, b, c. Suppose ab = ba. Then the Cayley graph Cay(G,{a,b,c}) contains a
Hamilton cycle.

As concerns the existence of a Hamilton cycle in Cayley graphs based on meta-
cyclic groups, we present the following two results.

Theorem 2.4 ([4]). Fvery connected cubic Cayley graph on a dihedral group
is hamiltonian.

For each integer r such that ™ = 1 (mod m), there is a semi-direct product
of Z,, with Z,,, the cyclic groups of orders m and n, respectively. It is the group
G=(z,ylam=y" =1y oy =2a").

Corollary 2.5 ([1]). The Cayley graph on every semi-direct product Zy, X Zy,
of two cyclic groups of orders m and n (other than m =1,n =1 or 2; or m = 2,
n = 1) with the standard generating set has a Hamilton cycle.

An interesting sporadic example of this sort is the generalised Petersen graph
GP(8,3) which is a Cayley graph Cay(G;a,b*'), where G = (a,b | a®> = V® =
1,aba = b?).

Honeycomb graphs. Honeycomb graphs are the cubic graphs which admit a
hexagonal embedding in the torus. They can be defined by means of three integer
parameters. Alspach and Dean in [3] proved that they are Cayley graphs. The
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existence of a Hamiltonian cycle of the honeycomb graphs was investigated by
several authors, partial results can be found in [5, 4, 2]. Finally, Yang et al. [23]
proved that the honeycomb graphs are hamiltonian.

Theorem 2.6 ([23]). Honeycomb graphs are hamiltonian.

All the previous examples of cubic Caley graphs of girth at most 6 are based on
solvable groups. However, there are infinitely many examples, where the Cayley
groups are unsolvable; they can be even simple non-abelian. For instance, such
graphs of type 2 can be constructed as the torsion-free quotients of the triangle
groups

A(2,m,n) = (a,b| a® =b™ = (ab)").
For each m € {3,5,6} and for each n > 6, there are infinitely many finite torsion-
free quotients G, giving rise to cubic Cayley graphs Cay(G;a,b*!) of girth m,
where by @ and b we denote the images of the generators of G in the natural
projection G — G. This is a consequence of the fact that provided % + % < %,
the group A(2,m,n) is an infinite residually finite group. The examination of

Hamilton cycles of large graphs from this family of graphs seems to be notoriously
hard to handle.

3. CAYLEY GRAPHS OF TYPE 1

In what follows we assume that X = Cay(G,S) is a finite cubic Cayley graph,
where S consists of three distinct involutions a, b, and c¢. Clearly, the girth of X
is at most the minimum of the orders of ab, bc and ac. without loss of generality
we assume that |ab| < |bc| < |ac].

We first characterise the cubic Cayley graphs of type 1 of girth at most six.

Proposition 3.1. Let X be a Cayley cubic graph X = Cay(G;a,b,c), where
a? =% =c® =1 and |ab| < |be| < |ac|. Let the girth of X be at most siz. Then
one of the following happen
g(X) = 3, G=Cy x CQ, and X = K4,

g(X) =4, and (ab)? =1,
g(X) =6, (abc)? =1, and X is the honeycomb graph,
g(X) =6 and (ab)® = 1.

Proof. Accordingly to the girth of X we distinguish three cases.

Case 1: ¢(X) = 3. Then up to symmetry, either abc = 1, or aba = 1. The
first one implies a = ¢b, and 1 = a? = (¢b)?. Thus G = (b,c | b?* = ? =1, (bc)? =
1) 2 C5 x Cy. The second relation implies b = 1, a contradiction.

Case 2: ¢(X) = 4. Then up to symmetry, either (ab)? = 1, or b = abc.
However, the second relation implies a = bcb, and consequently, 1 = a? = (bc)?.
Hence G = Cy x C5 and so g(X) = 3, a contradiction.

Case 3: g(X) = 5. Then up to symmetry, we have b = (ac)?. It follows that G
is dihedral of order 8. Moreover, b is the central involution commuting with both
a and c. In particular, we have (ab)? = 1 implying g(X) = 4, a contradiction.
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Case 4: ¢g(X) = 6. Assume just two of the three generators appear in the
relation of length 6. Then up to symmetry, (ab)® = 1.

Therefore we assume that all the three generators appear in the short relation.
There are two subcases to consider.

Assume one of the generators, say ¢, appears just once. Then up to symmetry,
c can be expressed as ¢ = ababa. It follows that G is dihedral, and since 1 = ¢ =
(ab)4, the order of G is 8. In particular, ¢ = ababa = bab, hence we have a relation
of length 4, a contradiction.

Assume that each of the generators appears in the relation twice. Then up to
symmetry, the relation occurs in one of the following forms: (abc)? = 1, abacbc = 1.
Assume the second relation holds. Then b(ac)b = ac, and thus the subgroup (ac)
is normal of index four. In particular, in the Cayley graph X there are exactly two
alternating cycles coloured by a and ¢ joined by the perfect matching formed by the
edges coloured b. The commuting rules b(ac) = (ac)b and b(ca) = (ca)b, show that
the Cayley graph is a prism implying g(X) = 4, a contradiction. It remains to show
that if (abc)? = 1, then X is a honeycomb graph. Indeed, the relation (abc)? = 1
gives rise to a hexagonal cycle double cover, such that every edge is traversed by a
hexagon in each direction. In particular, say an edge {g, ga} is in the two hexagons:
(g, 9a, gab, gabe, gabea, gabeadb) and (ga, g, gc, geb, geba, gebac, gebacd), see Figure 1.

O

Figure 1. A honeycomb graph on torus from quotients of G = (b,a,c | a2 = b? = ¢ = 1,
abcabe = 1).

Now we shall examine the existence of Hamilton cycles in the Cayley graphs in
Proposition 3.1.

Theorem 3.2. Let X be a Cayley cubic graph X = Cay(G;a,b,c), where a® =
b2 = % =1 of girth at most siz. Then either X is hamiltonian, or (ab)® = 1.

Proof. If the girth of X is at most four, then the Hamilton cycle follows from
Theorem 2.3. Suppose g(X) = 6 and the relation (abc)? = 1. Then by the main
theorem of [23] X is hamiltonian. O



356 E. ABOOMAHIGIR AND R. NEDELA

For the remaining class of graphs of type 1 satisfying the relation (ab)? = 1 we
have just a partial result proved recently by Nedela and Skoviera.

Theorem 3.3. Let X be a Cayley cubic graph X = Cay(G;a,b,c), where
a? = b = 2 = (ab)® = (bc)® = 1. Then X admits a Hamilton path, and it
is hamiltonian whenever |G| = 2 (mod 4), or if |ac| is even.

4. CAYLEY GRAPHS OF TYPE 2

In this section we shall deal with the cubic Cayley graphs X = Cay(G;a,b), where
a? =1, and |b] > 2.

Theorem 4.1. Let X be a Cayley cubic graph X = Cay(G;a,b), where a®> = 1.
Let the girth g(X) of X be at most 6. Then one of the following cases happens:

e g(X)=3,and v®* =1, or G=Cy and X = Ky,

e g(X)=4,a=0®, G=2Cs and X is K3 3,

o g(X) = 4, aba = b*', G is abelian or dihedral, and X is a prism or a
Mébius ladder,

e g(X)=4, and b* =1,

e g(X)=5, and b® =1,

e g(X) =6, and G = (a,b | a®> = b® = 1,aba = b*3), X is the generalised
Petersen graph GP(8,3),

e g(X) = 6, ab’a = b*? and either |b| is odd and G dihedral, or X is a
honeycomb graph,

e g(X) =6, and either (ab)> =1 or b° = 1.

Proof. We distinguish the four cases with respect to the girth of X. Note that
a (short) relation is invariant under a cyclic permutation.

Case 1: g(X) = 3. Up to symmetry, we have that either v*> = 1, or a = b*2.
In the second case 1 = a? = b%, hence G = Cy and X is Kj.

Case 2: ¢(X) = 4. Up to symmetry we have the following cases to consider:
b* =1, abab~! =1, (ab)? = 1 and a = b>. The case a = b3 forces G = Cp and
X = Ks3. If (ab)? = 1, G is abelian. If a € (b), then X is the Mobius ladder,
while if @ ¢ (b), then X is the prism. In the case aba = b~!, G is dihedral, and X
is a prism.

Case 3: ¢(X) = 5. Up to symmetry, the short relation takes one of the fol-
lowing forms: »° = 1, a = b**, abab® = 1, abab=2 = 1. In the case a = b**, G
is cyclic. Assume abab™ = 1. In the case (ab)?b = 1 by changing the generating
set to ¢ = ab; b, we see that b= = ¢?, therefore G = (c) is cyclic, the girth
g(X) = 4, a contradiction. In the case abab™2 = 1, we have ab = b%a. It follows
that ba = ab®> = (ab)b = b%ab = b*a, and therefore b> = 1, and the girth is 3, a
contradiction. We are left with the case b® = 1.

Case 4: ¢(X) = 6. Up to symmetry, a 6-cycle in X forces one of the following
relations to hold: b =1, a = b°, aba = b*3, ab?a = b2, (ab)® = 1, (ab)?ab™! = 1.
The last relation gives b~! = abab~'a implying |b| = 2, a contradiction. The
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relation a = b° implies that G is cyclic and consequently, g(X) = 4, a contradic-
tion. If aba = b3, then b = a?ba® = b°, implying b® = 1. Hence, G is the group
of order 16, and X has two b-cycles of length 8 joined by the perfect matching
formed by the a-edges. The relation aba = b3 proves that X = GP(8,3). As-
sume that ab’a = b*2. If |b| is odd, then G = (a,b) = (a,b?), and G is either
cyclic, or dihedral. Assume |b| is even. To see that X is a honeycomb graph
we form a hexagonal double cycle by directed cycles such that each edge is tra-
versed by a directed hexagon in both directions. Recall that in X, considered as
a coloured Cayley graph, there are two kinds of edges, a-edges that correspond
to the involutory generator, and b edges which are directed from g to gb. We
claim that the hexagonal cycles given by the relation ab?ab? in the first case, or
by the relation ab?ab~2 in the second case, give the required hexagonal double
cycle cover. In the first case, the two hexagons passing through an a-edge {g, ga},
g € G, are (g, ga, gab, gab?, gab*a, gab*ab) and (ga, g, gb, gb*, gb*a, gb®ab). For a
b-edge, {g, gb} the two covering hexagons are: (g, gb, gb%, gb*a, gb®ab, gb*>ab?) and
(gb,g,gb~ %, gb"ra,gb~tab™1, gb~tab=?). Finding two hexagons passing through
an edge in the second case is left to the reader. Using Euler’s formula one can
easily see that the underlying surface is either the torus, or it is Klein’s bottle.
To exclude the second case we can prove that the surface is orientable as follows.
First observe that (b?) is a normal cyclic subgroup of order ¢, for some t > 1.
Secondly, the factor group G/(b?) is dihedral. It follows that there exists a least
positive m such that (ab)™ = b, for some r. The relation ab?ab™? = 1 induces an
orientation on each of the hexagons, and these local orientations are compatible
globally. In particular, the two integers ¢t and r determine both the group and the
embedding of X into the torus. O

Theorem 4.2. Let X = Cay(G;a,b*!), a® =1 and |b] > 2, be a cubic Cayley
graph of girth at most sixz. Then either X is hamiltonian, or one of the following
relations hold: b3 =1, > =1, % =1, (ab)® = 1.

Proof. For the exceptional graphs mentioned in Theorem 4.1 the Hamilton cycle
can be easily checked directly. If the girth is at most four then the statement follows
from Theorem 2.2. If X is the honeycomb graph, then it follows from Theorem 2.6.
Now the statement follows from Theorem 4.1. O

For the remaining four difficult cases we have an almost complete result in the
case (ab)® = 1 proved in several papers by Glover, Marusi¢, Kutnar, etc. We
summarise it as follows.

Theorem 4.3 ([12, 13, 14]). Let k > 3 be an integer and let G = (a,b |
a? = 1,0 = 1,(ab)® = 1,...) be a finite group. Then the Cayley graph X =
Cay(G,{a,b,b=1}) has a Hamilton cycle except |G| = 0 (mod 4) and k = 2
(mod 4). In the latter case X has a Hamilton path.

For the case b> = 1 we have the following statement.

Proposition 4.4. If Conjecture 1.2 is true, then the Cayley graphs Cay(G; a, b),
where a® = b3 = 1, are hamiltonian.
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Proof. In the Cayley graph X the b-edges form a triangular 2-factor F. Form
a new cubic graph Y by contracting each triangle of F' to a vertex. Clearly X is
hamiltonian if and only if YV is hamiltonian. Moreover, G acts regularly on the
arcs of Y. If the girth of Y is at least 7, then the Hamilton cycle of Y follows from
Conjecture 1.2. Suppose g(Y) < 6. Arc-transitive cubic graphs of small girth are
analysed in [10]. The following facts are well known. If g(Y') < 5 and Y is an arc-
transitive cubic graph, then Y is one of the following graphs: K4, K33, the cube
@3, the Petersen graph and the dodecahedron. Between them the Petersen graph
does not admit a group of automorphisms acting regularly on the arcs. The other
four are known to be hamiltonian. If g(Y) = 6, then by a result of Miller [17],
either YV is the generalised Petersen graph GP(8,3), or it is a honeycomb graph.
Both GP(8,3) and the honeycomb graphs are known to be hamiltonian. O
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