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SOME RESULTS ON f-HARMONIC MAPS

AND f-BIHARMONIC SUBMANIFOLDS

E. REMLI and A. M. CHERIF

Abstract. In this paper, we study the existence of f -harmonic maps into Riemann-

ian manifolds admitting a homothetic vector fields. Also we present some properties
for the f -biharmonicity of submanifolds of Rn, where f is a smooth positive function

on Rn.

1. Preliminaries and Notations

Let (M, g) be a Riemannian manifold. By RM , we denote the Riemannian curva-
ture tensor of (M, g). Then RM is defined by

(1) RM (X,Y )Z = ∇MX∇MY Z −∇MY ∇MX Z −∇M[X,Y ]Z,

where ∇M is the Levi-Civita connection with respect to g, and X,Y, Z ∈ Γ(TM).
The divergence of (0, p)-tensor α on M is defined by

(2) (divM α)(X1, . . . , Xp−1) = (∇Mei α)(ei, X1, . . . , Xp−1),

where X1, . . . , Xp−1 ∈ Γ(TM) and {ei} is an orthonormal frame. Given a smooth
function λ on M , the gradient of λ is defined by

(3) g(gradM λ,X) = X(λ),

the Hessian of λ is defined by

(4) (HessM λ)(X,Y ) = g(∇MX gradλ, Y ),

where X,Y ∈ Γ(TM) (for more details, see, for example, [9]).
Let ϕ : (M, g)→ (N,h) be a smooth map between two Riemannian manifolds,

τ(ϕ) the tension field of ϕ (see, [1, 2, 6]) and f be a smooth positive function on
M ×N , the f -tension field of ϕ is given by

(5) τf (ϕ) = fϕτ(ϕ) + dϕ(gradM fϕ)− e(ϕ)(gradN f) ◦ ϕ,
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where fϕ is a smooth positive function on M , defined by

(6) fϕ(x) = f(x, ϕ(x)) for all x ∈M,

e(ϕ) is the energy density of ϕ (see [1]), and gradM (resp. gradN ) denotes the
gradient operator with respect to g (resp., h). Then ϕ is called f -harmonic if the
f -tension field vanishes, i.e., τf (ϕ) = 0. We define the index form for f -harmonic
maps by

(7) Iϕf (v, w) =

∫
M

h(Jϕf (v), w)vM

for all v, w ∈ Γ(ϕ−1TN), where

(8)

Jϕf (v) = − fϕ traceg R
N (v, dϕ)dϕ− traceg∇ϕfϕ∇ϕv

+ e(ϕ)(∇Nv gradN f) ◦ ϕ− dϕ(gradM v(f))

− v(f)τ(ϕ) + 〈∇ϕv, dϕ〉(gradN f) ◦ ϕ,

RN is the curvature tensor of (N,h), ∇N is the Levi-Civita connection of (N,h),
∇ϕ denotes the pull-back connection on ϕ−1TN , and vM is the volume form of
(M, g) (see [1],[9]). If τ2,f (ϕ) ≡ Jϕf (τf (ϕ)) is null onM , then ϕ is called an f -bihar-

monic map (for more details on the concept of f -harmonic and f -biharmonic maps,
see [4, 5, 10]).

A vector field ξ on a Riemannian manifold (M, g) is called a homothetic if
Lξg = 2kg for some constant k ∈ R, where Lξg is the Lie derivative of the metric
g with respect to ξ, that is,

(9) g(∇Xξ, Y ) + g(∇Y ξ,X) = 2kg(X,Y ) for all X,Y ∈ Γ(TM).

The constant k is then called the homothetic constant. If ξ is homothetic and
k 6= 0, then ξ is called proper homothetic, while k = 0 is Killing (see [1],[8],[13]).
Note that if a complete Riemannian manifold of dimension ≥ 2 admits a proper
homothetic vector field, then the manifold is isometric to the Euclidean space (see
[7] [13]).

2. Homothetic vector fields and f-harmonic maps

Theorem 2.1. Let (M, g) be a compact orientable Riemannian manifold with-
out boundary, (N,h) a Riemannian manifold admitting a homothetic vector field
ξ with a homothetic constant k, and let f be a smooth positive function on M ×N
such that 2kf + ξ(f) 6= 0 at any point. Then, any f -harmonic map ϕ from (M, g)
to (N,h) is constant.

Proof. We set

(10) ω(X) = h(ξ ◦ ϕ, fϕdϕ(X)), for all X ∈ Γ(TM).
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Let {ei} be a normal orthonormal frame at x ∈M , we have

(11)

divM ω = ei
[
h(ξ ◦ ϕ, fϕdϕ(ei))

]
= h(∇ϕei(ξ ◦ ϕ), fϕdϕ(ei)) + h(ξ ◦ ϕ,∇ϕeifϕdϕ(ei))

= h(∇ϕei(ξ ◦ ϕ), fϕdϕ(ei)) + h(ξ ◦ ϕ, fϕτ(ϕ) + dϕ(gradM fϕ)).

By equation (11) and the f -harmonicity of ϕ, we get

divM ω = h(∇ϕei(ξ ◦ ϕ), fϕdϕ(ei)) + h(ξ ◦ ϕ, e(ϕ)(gradN f) ◦ ϕ)

= fϕh(∇Ndϕ(ei)ξ, dϕ(ei)) + h(ξ ◦ ϕ, e(ϕ)(gradN f) ◦ ϕ).

Since ξ is a homothetic vector field with a homothetic constant k, we find that

divM ω = fϕkh(dϕ(ei), dϕ(ei)) + e(ϕ)h(ξ ◦ ϕ, (gradN f) ◦ ϕ)

= kfϕ|dϕ|2 +
1

2
|dϕ|2h(ξ ◦ ϕ, (gradN f) ◦ ϕ)

=
|dϕ|2

2

[
2kfϕ + h(ξ ◦ ϕ, (gradN f) ◦ ϕ)

]
=
|dϕ|2

2

[
2kfϕ + ξ(f) ◦ ϕ

]
.

Theorem 2.1 follows from the last equation and the divergence theorem [1] with
2kf + ξ(f) 6= 0. �

From Theorem 2.1, we get the following results.

Corollary 2.2. [3] Let (M, g) be a compact orientable Riemannian manifold
without boundary and (N,h) be a Riemannian manifold admitting a homothetic
vector field ξ with a homothetic constant k 6= 0. Then, any harmonic map ϕ from
(M, g) to (N,h) is constant.

If f(x, y) = f1(x) for all (x, y) ∈M ×N , where f1 is a smooth positive function
on M , we have the following.

Corollary 2.3. Let (M, g) be a compact orientable Riemannian manifold with-
out boundary, (N,h) a Riemannian manifold admitting a proper homothetic vector
field, and let f1 be a smooth positive function on M . Then, any f1-harmonic map
ϕ from (M, g) to (N,h) is constant.

In the case of non-compact Riemannian manifold, we obtain the following result.

Theorem 2.4. Let (M, g) be a complete non-compact orientable Riemannian
manifold, (N,h) a Riemannian manifold admitting a homothetic vector field ξ with
a homothetic constant k, and let f be a smooth positive function on M×N such that
2(k−µ)f+ξ(f) 6= 0 (at any point) for some constant µ > 0. If ϕ : (M, g)→ (N,h)
is an f -harmonic map satisfying∫

M

fϕ|ξ ◦ ϕ|2vg <∞,

then ϕ is constant.
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Proof. Let ρ be a smooth function with compact support on M , we set

ω(X) = h(ξ ◦ ϕ, ρ2fϕdϕ(X)) for all X ∈ Γ(TM),

and let {ei} be a normal orthonormal frame at x ∈M , we have

divM ω = ei[h(ξ ◦ ϕ, ρ2fϕdϕ(ei))]

= h(∇ϕei(ξ ◦ ϕ), ρ2fϕdϕ(ei)) + h(ξ ◦ ϕ,∇ϕeiρ
2(fϕdϕ(ei)))

= h(∇ϕei(ξ ◦ ϕ), ρ2fϕdϕ(ei)) + h(ξ ◦ ϕ, ei(ρ2)fϕdϕ(ei))

+ h(ξ ◦ ϕ, ρ2∇ϕeifϕdϕ(ei)),

so that

(12)
divM ω = h(∇ϕei(ξ ◦ ϕ), ρ2fϕdϕ(ei)) + h(ξ ◦ ϕ, 2ρei(ρ)fϕdϕ(ei))

+ h(ξ ◦ ϕ, ρ2[fϕτ(ϕ) + dϕ(gradM fϕ)]).

By equation (12) and f -harmonicity condition of ϕ, we get

divM ω = ρ2fϕh(∇Ndϕ(ei)ξ, dϕ(ei)) + 2ρei(ρ)fϕh(ξ ◦ ϕ, dϕ(ei))

+ ρ2h(ξ ◦ ϕ, e(ϕ)(gradN f) ◦ ϕ).

Since ξ is a homothetic vector field with a homothetic constant k, we find that

divM ω = kρ2fϕh(dϕ(ei), dϕ(ei)) + 2ρei(ρ)fϕh(ξ ◦ ϕ, dϕ(ei)) +
1

2
|dϕ|2ρ2ξ(f) ◦ ϕ,

that is,

(13) divM ω = kρ2fϕ|dϕ|2 + 2ρei(ρ)fϕh(ξ ◦ ϕ, dϕ(ei)) +
1

2
|dϕ|2ρ2ξ(f) ◦ ϕ.

By the Young’s inequality, we have

−2ρei(ρ)h(ξ ◦ ϕ, dϕ(ei)) ≤ ερ2|dϕ|2 +
1

ε
ei(ρ)2|ξ ◦ ϕ|2

for all ε > 0, multiplying the last inequality by fϕ, we find that

(14) − 2fϕρei(ρ)h(ξ ◦ ϕ, dϕ(ei)) ≤ εfϕρ2|dϕ|2 +
1

ε
fϕei(ρ)2|ξ ◦ ϕ|2.

From (13), (14), we deduce the inequality

(15) kρ2fϕ|dϕ|2 − divM ω +
1

2
|dϕ|2ρ2ξ(f) ◦ ϕ ≤ εfϕρ2|dϕ|2 +

1

ε
fϕei(ρ)2|ξ ◦ ϕ|2,

we set ε = µ, by (15), we have

(16) (k − µ)ρ2fϕ|dϕ|2 − divM ω +
1

2
|dϕ|2ρ2ξ(f) ◦ ϕ ≤ 1

µ
fϕei(ρ)2|ξ ◦ ϕ|2.

By the divergence theorem and (16), we have

(17)
1

2

∫
M

ρ2|dϕ|2
[
2(k − µ)fϕ + ξ(f) ◦ ϕ

]
vg ≤ 1

µ

∫
M

fϕei(ρ)2|ξ ◦ ϕ|2vg.
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Now, consider the cut-off smooth function ρ = ρR such that, ρ ≤ 1 on M , ρ = 1
on the ball B(ρ,R), ρ = 0 on M rB(ρ, 2R), and | gradM ρ| ≤ 2

R (see [12]). From
(17), we get

(18)
1

2

∫
M

ρ2|dϕ|2
[
2(k − µ)fϕ + ξ(f) ◦ ϕ

]
vg ≤ 4

µR2

∫
M

fϕ|ξ ◦ ϕ|2vg.

Since
∫
M
fϕ|ξ ◦ ϕ|2vg <∞, when R→∞, we obtain

(19)

∫
M

|dϕ|2
[
2(k − µ)fϕ + ξ(f) ◦ ϕ

]
vg = 0.

Consequently, |dϕ| = 0, that is, ϕ is constant, because 2(k − µ)f + ξ(f) 6= 0 at
any point. �

From Theorem 2.4, we deduce

Corollary 2.5. [3] Let (M, g) be a complete non-compact orientable Riemann-
ian manifold and (N,h) be a Riemannian manifold admitting a proper homothetic
vector field ξ. If ϕ : (M, g)→ (N,h) is a harmonic map satisfying

∫
M
|ξ ◦ϕ|2vg <

∞, then ϕ is constant.

3. f-biharmonic maps and submanifolds

Let M be a submanifold of Rn of dimension m, i : M ↪→ Rn the canonical inclusion,
f ∈ C∞(Rn) a smooth positive function such that f ◦ i = 1, and let {ei} be an
orthonormal frame with respect to induced Riemannian metric on M by the inner
product <,> on Rn. By ∇ (resp., ∇M ), we denote the Levi-Civita connection of

Rn (resp., of M), by grad (resp., gradM ) the gradient operator in Rn (resp., in
M), by B the second fundamental form of the submanifold M , by A the shape
operator, by H the mean curvature vector field of M , and by ∇⊥ the normal
connection of M (see, for example [1]). Under the notation above we have the
following results.

Theorem 3.1. The map i is f -biharmonic if and only if

m

2
gradM |H|2 − 2A∇⊥

ei
H(ei)−m(∇⊥eiH)(f)ei +A∇⊥

ei
grad f (ei)

+
m− 2

2
gradM H(f)− m− 4

8
gradM | grad f |2 = 0,

−B(ei, AH(ei))−∆⊥H +
1

2
B(ei, Agrad f (ei)) +

1

2
∆⊥ grad f

+
m

2
(∇H grad f)⊥ − m

4
(∇grad f grad f)⊥ −mH(f)H +

m

2
| grad f |2H

−m|H|2 grad f +
m

2
H(f) grad f = 0.

We need the following lemmas to prove Theorem 3.1.
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Lemma 3.2 ([14]). Let ∆⊥ the Laplacian in the normal bundle of M , then

trace∇2H = −m
2

gradM (|H|2) + 2A∇⊥
ei
H(ei) +B(ei, AH(ei)) + ∆⊥H.

Lemma 3.3. On taking the trace of ∇2 grad f , we obtain

trace∇2 grad f=−m(∇⊥eiH)(f)ei+2A∇⊥
ei

grad f (ei)+B(ei, Agrad f (ei))+∆⊥ grad f.

Proof. First, note that grad f is normal to M because f is constant on M . We
suppose that ∇Mei ej = 0 at x ∈M for all i, j = 1, . . . ,m. Then calculating at x

(20)

∇ei∇ei grad f = ∇ei
(
Agrad f (ei) + (∇ei grad f)⊥

)
= ∇Mei Agrad f (ei) +B(ei, Agrad f (ei))

+A(∇ei
grad f)⊥(ei) +

(
∇ei(∇ei grad f)⊥

)⊥
.

Since 〈Agrad f (X), Y 〉 = −〈B(X,Y ), grad f〉, for all X,Y ∈ Γ(TM), we get the
following

∇Mei Agrad f (ei) =
〈
∇Mei Agrad f (ei), ej

〉
ej = ei

(〈
Agrad f (ei), ej

〉)
ej

= −ei
(〈
B(ei, ej), grad f

〉)
ej = −ei

(〈
∇ejei, grad f

〉)
ej ,

and since ∇X∇Y Z = ∇Y∇XZ +∇[X,Y ]Z, for all X,Y, Z ∈ Γ(TM), we have

∇Mei Agrad f (ei) = −
〈
∇ei∇ejei, grad f

〉
ej −

〈
∇ejei,∇ei grad f

〉
ej

= −
〈
∇ej∇eiei, grad f

〉
ej −

〈
B(ei, ej), (∇ei grad f)⊥

〉
ej .

Here, the Riemannian curvature tensor of Rn is null, so that

(21)

∇Mei Agrad f (ei) = − ej
(〈
∇eiei, grad f

〉)
ej +

〈
∇eiei,∇ej grad f

〉
ej

+
〈
A(∇ei

grad f)⊥(ei), ej
〉
ej

= −mej
(〈
H, grad f

〉)
ej +m

〈
H,∇ej grad f

〉
ej

+A(∇ei
grad f)⊥(ei)

= −m
〈
∇ejH, grad f

〉
ej +A(∇ei

grad f)⊥(ei).

By (20) and (21), the lemma is as follows. �

Proof of Theorem 3.1. Note that the f -tension field of i is given by

τf (i) = τ(i)− e(i)(grad f) ◦ i = mH − m

2
grad f

such that ∇Mei ej = 0 at x ∈M for all i, j = 1, . . . ,m. Then calculating at x,

∇i
ei∇

i
eiτf (i) = m∇ei∇eiH −

m

2
∇ei∇ei grad f
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and by Lemmas 3.2 and 3.3, we have

(22)

−∇i
ei∇

i
eiτf (i) =

m2

2
gradM (|H|2)− 2mA∇⊥

ei
H(ei)

−mB(ei, AH(ei))−m∆⊥H − m2

2
(∇⊥eiH)(f)ei

+mA∇⊥
ei

grad f (ei) +
m

2
B(ei, Agrad f (ei)) +

m

2
∆⊥ grad f.

In the same way, we have the following formulas

(23)

e(i)(∇τf (i) grad f) ◦ i =
m2

2
∇H grad f − m2

4
∇grad f grad f

=
m2

2
(∇H grad f)⊥ − m2

4
(∇grad f grad f)⊥

+
m2

2
〈∇ei grad f,H〉ei −

m2

4
〈∇ei grad f, grad f〉ei

=
m2

2
(∇H grad f)⊥ − m2

4
(∇grad f grad f)⊥

+
m2

2
gradM H(f)− m2

2
(∇⊥eiH)(f)ei

− m2

8
gradM | grad f |2,

−di(gradM τf (i)(f)) = −m gradM H(f) +
m

2
gradM | grad f |2,(24)

−τf (i)(f)τ(i) = −m2H(f)H +
m2

2
| grad f |2H,(25)

〈∇iτf (i), di〉(grad f) ◦ i =
[
m〈∇eiH, ei〉 −

m

2
〈∇ei grad f, ei〉

]
grad f

=
[
−m〈H,B(ei, ei)〉+

m

2
〈grad f,B(ei, ei)〉

]
grad f(26)

=
[
−m2|H|2 +

m2

2
H(f)

]
grad f.

By definition (8) and equations (22–26), the theorem is as follows. �

Example 3.4. Let ε ∈ R, the plane M = {(x, y, z) ∈ R3|z = ε} is proper
f -biharmonic, i.e., the canonical inclusion i : M ↪→ R3 is an f -biharmonic non-
f -harmonic map for f(x, y, z) = F (z − ε), where F is a smooth positive function
such that F (0) = 1, F ′(0) 6= 0, and F ′′(0) = 0. For example, we consider the
function

F (t) =
1

2
+

1

2

[
t2 − exp(t)

]2
.

Indeed, the function f satisfies the following formulas

grad f = F ′(z − ε)∂z, | grad f |2 = F ′(0)2 on M,

∇Z grad f = F ′′(z − ε)〈Z, ∂z〉∂z,
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for all Z ∈ Γ(TR3), and for X ∈ Γ(TM) we have

∇X grad f = 0,

Note that a unit normal vector field U on M is evidently parallel in R3 (constant
Euclidean coordinates), hence AUX = ∇XU = 0 for all tangent vectors X to M .
Thus the shape operator is identically zero, so that B = 0 and H = 0. According
to Theorem 3.1, the map i is f -biharmonic if and only if F ′′(0)F ′(0) = 0.

Using the similar technique of Example 3.4, we have

Example 3.5. The sphere Sm of Rm+1 is proper f -biharmonic for

f(y) = F
( |y|2

2

)
for all y ∈ Rn, where F (t) =

1

5
exp

(5

2
− 5t

)
− 2

5
t+ 1.

Here, H = −P , where P is the position vector field on Rm+1,

|H| = 1, ∇⊥XH = 0, AHX = −X, B(X,Y ) = −〈X,Y 〉P ,

grad f = F ′
( |y|2

2

)
P , H(f) = −F ′

(
1
2

)
, Agrad fX = F ′

(
1
2

)
X

∇Z grad f = 〈Z,P 〉F ′′
( |y|2

2

)
P + F ′

( |y|2
2

)
Z,

where X,Y ∈ Γ(TSm) and Z ∈ Γ(TRm+1). According to Theorem 3.1, the map i
is f -biharmonic if and only if

1

2
F ′′
(1

2

)
+ 3F ′

(1

2

)
+

5

4
F ′
(1

2

)2
+

1

4
F ′
(1

2

)
F ′′
(1

2

)
+ 1 = 0.
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