SOME RESULTS ON f-HARMONIC MAPS AND f-BIHARMONIC SUBMANIFOLDS

E. REMLI and A. M. CHERIF

Abstract

In this paper, we study the existence of f-harmonic maps into Riemannian manifolds admitting a homothetic vector fields. Also we present some properties for the f-biharmonicity of submanifolds of \mathbb{R}^{n}, where f is a smooth positive function on \mathbb{R}^{n}.

1. Preliminaries and Notations

Let (M, g) be a Riemannian manifold. By R^{M}, we denote the Riemannian curvature tensor of (M, g). Then R^{M} is defined by

$$
\begin{equation*}
R^{M}(X, Y) Z=\nabla_{X}^{M} \nabla_{Y}^{M} Z-\nabla_{Y}^{M} \nabla_{X}^{M} Z-\nabla_{[X, Y]}^{M} Z \tag{1}
\end{equation*}
$$

where ∇^{M} is the Levi-Civita connection with respect to g, and $X, Y, Z \in \Gamma(T M)$. The divergence of $(0, p)$-tensor α on M is defined by

$$
\begin{equation*}
\left(\operatorname{div}^{M} \alpha\right)\left(X_{1}, \ldots, X_{p-1}\right)=\left(\nabla_{e_{i}}^{M} \alpha\right)\left(e_{i}, X_{1}, \ldots, X_{p-1}\right) \tag{2}
\end{equation*}
$$

where $X_{1}, \ldots, X_{p-1} \in \Gamma(T M)$ and $\left\{e_{i}\right\}$ is an orthonormal frame. Given a smooth function λ on M, the gradient of λ is defined by

$$
\begin{equation*}
g\left(\operatorname{grad}^{M} \lambda, X\right)=X(\lambda) \tag{3}
\end{equation*}
$$

the Hessian of λ is defined by

$$
\begin{equation*}
\left(\operatorname{Hess}^{M} \lambda\right)(X, Y)=g\left(\nabla_{X}^{M} \operatorname{grad} \lambda, Y\right) \tag{4}
\end{equation*}
$$

where $X, Y \in \Gamma(T M)$ (for more details, see, for example, [9]).
Let $\varphi:(M, g) \rightarrow(N, h)$ be a smooth map between two Riemannian manifolds, $\tau(\varphi)$ the tension field of φ (see, $[\mathbf{1}, \mathbf{2}, \mathbf{6}])$ and f be a smooth positive function on $M \times N$, the f-tension field of φ is given by

$$
\begin{equation*}
\tau_{f}(\varphi)=f_{\varphi} \tau(\varphi)+d \varphi\left(\operatorname{grad}^{M} f_{\varphi}\right)-e(\varphi)\left(\operatorname{grad}^{N} f\right) \circ \varphi \tag{5}
\end{equation*}
$$

Received October 11, 2018; revised April 24, 2020.
2010 Mathematics Subject Classification. Primary 53C43, 58E20, 53A30.
Key words and phrases. Homothetic vector fields; f-harmonic maps, f-biharmonic submanifolds. The authors are supported by National Agency Scientific Research of Algeria and Laboratory of Geometry, Analysis, Controle and Applications, Algeria.
where f_{φ} is a smooth positive function on M, defined by

$$
\begin{equation*}
f_{\varphi}(x)=f(x, \varphi(x)) \quad \text { for all } x \in M \tag{6}
\end{equation*}
$$

$e(\varphi)$ is the energy density of φ (see $[\mathbf{1}])$, and $\operatorname{grad}^{M}\left(\right.$ resp. $\left.\operatorname{grad}^{N}\right)$ denotes the gradient operator with respect to g (resp., h). Then φ is called f-harmonic if the f-tension field vanishes, i.e., $\tau_{f}(\varphi)=0$. We define the index form for f-harmonic maps by

$$
\begin{equation*}
I_{f}^{\varphi}(v, w)=\int_{M} h\left(J_{f}^{\varphi}(v), w\right) v^{M} \tag{7}
\end{equation*}
$$

for all $v, w \in \Gamma\left(\varphi^{-1} T N\right)$, where

$$
\begin{align*}
J_{f}^{\varphi}(v)= & -f_{\varphi} \operatorname{trace}_{g} R^{N}(v, d \varphi) d \varphi-\operatorname{trace}_{g} \nabla^{\varphi} f_{\varphi} \nabla^{\varphi} v \\
& +e(\varphi)\left(\nabla_{v}^{N} \operatorname{grad}^{N} f\right) \circ \varphi-\mathrm{d} \varphi\left(\operatorname{grad}^{M} v(f)\right) \tag{8}\\
& -v(f) \tau(\varphi)+\left\langle\nabla^{\varphi} v, d \varphi\right\rangle\left(\operatorname{grad}^{N} f\right) \circ \varphi,
\end{align*}
$$

R^{N} is the curvature tensor of $(N, h), \nabla^{N}$ is the Levi-Civita connection of (N, h), ∇^{φ} denotes the pull-back connection on $\varphi^{-1} T N$, and v^{M} is the volume form of $(M, g)($ see $[\mathbf{1}],[\mathbf{9}])$. If $\tau_{2, f}(\varphi) \equiv J_{f}^{\varphi}\left(\tau_{f}(\varphi)\right)$ is null on M, then φ is called an f-biharmonic map (for more details on the concept of f-harmonic and f-biharmonic maps, see $[\mathbf{4}, \mathbf{5}, \mathbf{1 0}])$.

A vector field ξ on a Riemannian manifold (M, g) is called a homothetic if $L_{\xi} g=2 k g$ for some constant $k \in \mathbb{R}$, where $L_{\xi} g$ is the Lie derivative of the metric g with respect to ξ, that is,

$$
\begin{equation*}
g\left(\nabla_{X} \xi, Y\right)+g\left(\nabla_{Y} \xi, X\right)=2 k g(X, Y) \quad \text { for all } X, Y \in \Gamma(T M) \tag{9}
\end{equation*}
$$

The constant k is then called the homothetic constant. If ξ is homothetic and $k \neq 0$, then ξ is called proper homothetic, while $k=0$ is Killing (see $[\mathbf{1}],[\mathbf{8}],[\mathbf{1 3}]$). Note that if a complete Riemannian manifold of dimension ≥ 2 admits a proper homothetic vector field, then the manifold is isometric to the Euclidean space (see [7] [13]).

2. Homothetic vector fields and f-harmonic maps

Theorem 2.1. Let (M, g) be a compact orientable Riemannian manifold without boundary, (N, h) a Riemannian manifold admitting a homothetic vector field ξ with a homothetic constant k, and let f be a smooth positive function on $M \times N$ such that $2 k f+\xi(f) \neq 0$ at any point. Then, any f-harmonic map φ from (M, g) to (N, h) is constant.

Proof. We set

$$
\begin{equation*}
\omega(X)=h\left(\xi \circ \varphi, f_{\varphi} d \varphi(X)\right), \quad \text { for all } X \in \Gamma(T M) \tag{10}
\end{equation*}
$$

Let $\left\{e_{i}\right\}$ be a normal orthonormal frame at $x \in M$, we have

$$
\begin{align*}
\operatorname{div}^{M} \omega & =e_{i}\left[h\left(\xi \circ \varphi, f_{\varphi} d \varphi\left(e_{i}\right)\right)\right] \\
& =h\left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), f_{\varphi} d \varphi\left(e_{i}\right)\right)+h\left(\xi \circ \varphi, \nabla_{e_{i}}^{\varphi} f_{\varphi} d \varphi\left(e_{i}\right)\right) \tag{11}\\
& =h\left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), f_{\varphi} d \varphi\left(e_{i}\right)\right)+h\left(\xi \circ \varphi, f_{\varphi} \tau(\varphi)+d \varphi\left(\operatorname{grad}^{M} f_{\varphi}\right)\right) .
\end{align*}
$$

By equation (11) and the f-harmonicity of φ, we get

$$
\begin{aligned}
\operatorname{div}^{M} \omega & =h\left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), f_{\varphi} d \varphi\left(e_{i}\right)\right)+h\left(\xi \circ \varphi, e(\varphi)\left(\operatorname{grad}^{N} f\right) \circ \varphi\right) \\
& =f_{\varphi} h\left(\nabla_{d \varphi\left(e_{i}\right)}^{N} \xi, d \varphi\left(e_{i}\right)\right)+h\left(\xi \circ \varphi, e(\varphi)\left(\operatorname{grad}^{N} f\right) \circ \varphi\right) .
\end{aligned}
$$

Since ξ is a homothetic vector field with a homothetic constant k, we find that

$$
\begin{aligned}
\operatorname{div}^{M} \omega & =f_{\varphi} k h\left(d \varphi\left(e_{i}\right), d \varphi\left(e_{i}\right)\right)+e(\varphi) h\left(\xi \circ \varphi,\left(\operatorname{grad}^{N} f\right) \circ \varphi\right) \\
& =k f_{\varphi}|d \varphi|^{2}+\frac{1}{2}|d \varphi|^{2} h\left(\xi \circ \varphi,\left(\operatorname{grad}^{N} f\right) \circ \varphi\right) \\
& =\frac{|d \varphi|^{2}}{2}\left[2 k f_{\varphi}+h\left(\xi \circ \varphi,\left(\operatorname{grad}^{N} f\right) \circ \varphi\right)\right]=\frac{|d \varphi|^{2}}{2}\left[2 k f_{\varphi}+\xi(f) \circ \varphi\right] .
\end{aligned}
$$

Theorem 2.1 follows from the last equation and the divergence theorem [1] with $2 k f+\xi(f) \neq 0$.

From Theorem 2.1, we get the following results.
Corollary 2.2. [3] Let (M, g) be a compact orientable Riemannian manifold without boundary and (N, h) be a Riemannian manifold admitting a homothetic vector field ξ with a homothetic constant $k \neq 0$. Then, any harmonic map φ from (M, g) to (N, h) is constant.

If $f(x, y)=f_{1}(x)$ for all $(x, y) \in M \times N$, where f_{1} is a smooth positive function on M, we have the following.

Corollary 2.3. Let (M, g) be a compact orientable Riemannian manifold without boundary, (N, h) a Riemannian manifold admitting a proper homothetic vector field, and let f_{1} be a smooth positive function on M. Then, any f_{1}-harmonic map φ from (M, g) to (N, h) is constant.

In the case of non-compact Riemannian manifold, we obtain the following result.
Theorem 2.4. Let (M, g) be a complete non-compact orientable Riemannian manifold, (N, h) a Riemannian manifold admitting a homothetic vector field ξ with a homothetic constant k, and let f be a smooth positive function on $M \times N$ such that $2(k-\mu) f+\xi(f) \neq 0$ (at any point) for some constant $\mu>0$. If $\varphi:(M, g) \rightarrow(N, h)$ is an f-harmonic map satisfying

$$
\int_{M} f_{\varphi}|\xi \circ \varphi|^{2} v^{g}<\infty
$$

then φ is constant.

Proof. Let ρ be a smooth function with compact support on M, we set

$$
\omega(X)=h\left(\xi \circ \varphi, \rho^{2} f_{\varphi} d \varphi(X)\right) \quad \text { for all } X \in \Gamma(T M)
$$

and let $\left\{e_{i}\right\}$ be a normal orthonormal frame at $x \in M$, we have

$$
\begin{aligned}
\operatorname{div}^{M} \omega= & e_{i}\left[h\left(\xi \circ \varphi, \rho^{2} f_{\varphi} d \varphi\left(e_{i}\right)\right)\right] \\
= & h\left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \rho^{2} f_{\varphi} d \varphi\left(e_{i}\right)\right)+h\left(\xi \circ \varphi, \nabla_{e_{i}}^{\varphi} \rho^{2}\left(f_{\varphi} d \varphi\left(e_{i}\right)\right)\right) \\
= & h\left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \rho^{2} f_{\varphi} d \varphi\left(e_{i}\right)\right)+h\left(\xi \circ \varphi, e_{i}\left(\rho^{2}\right) f_{\varphi} d \varphi\left(e_{i}\right)\right) \\
& +h\left(\xi \circ \varphi, \rho^{2} \nabla_{e_{i}}^{\varphi} f_{\varphi} d \varphi\left(e_{i}\right)\right),
\end{aligned}
$$

so that

$$
\begin{align*}
\operatorname{div}^{M} \omega= & h\left(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \rho^{2} f_{\varphi} d \varphi\left(e_{i}\right)\right)+h\left(\xi \circ \varphi, 2 \rho e_{i}(\rho) f_{\varphi} d \varphi\left(e_{i}\right)\right) \tag{12}\\
& +h\left(\xi \circ \varphi, \rho^{2}\left[f_{\varphi} \tau(\varphi)+d \varphi\left(\operatorname{grad}^{M} f_{\varphi}\right)\right]\right)
\end{align*}
$$

By equation (12) and f-harmonicity condition of φ, we get

$$
\begin{aligned}
\operatorname{div}^{M} \omega= & \rho^{2} f_{\varphi} h\left(\nabla_{d \varphi\left(e_{i}\right)}^{N} \xi, d \varphi\left(e_{i}\right)\right)+2 \rho e_{i}(\rho) f_{\varphi} h\left(\xi \circ \varphi, d \varphi\left(e_{i}\right)\right) \\
& +\rho^{2} h\left(\xi \circ \varphi, e(\varphi)\left(\operatorname{grad}^{N} f\right) \circ \varphi\right)
\end{aligned}
$$

Since ξ is a homothetic vector field with a homothetic constant k, we find that $\operatorname{div}^{M} \omega=k \rho^{2} f_{\varphi} h\left(d \varphi\left(e_{i}\right), d \varphi\left(e_{i}\right)\right)+2 \rho e_{i}(\rho) f_{\varphi} h\left(\xi \circ \varphi, d \varphi\left(e_{i}\right)\right)+\frac{1}{2}|d \varphi|^{2} \rho^{2} \xi(f) \circ \varphi$, that is,

$$
\begin{equation*}
\operatorname{div}^{M} \omega=k \rho^{2} f_{\varphi}|d \varphi|^{2}+2 \rho e_{i}(\rho) f_{\varphi} h\left(\xi \circ \varphi, d \varphi\left(e_{i}\right)\right)+\frac{1}{2}|d \varphi|^{2} \rho^{2} \xi(f) \circ \varphi \tag{13}
\end{equation*}
$$

By the Young's inequality, we have

$$
-2 \rho e_{i}(\rho) h\left(\xi \circ \varphi, d \varphi\left(e_{i}\right)\right) \leq \varepsilon \rho^{2}|d \varphi|^{2}+\frac{1}{\varepsilon} e_{i}(\rho)^{2}|\xi \circ \varphi|^{2}
$$

for all $\varepsilon>0$, multiplying the last inequality by f_{φ}, we find that

$$
\begin{equation*}
-2 f_{\varphi} \rho e_{i}(\rho) h\left(\xi \circ \varphi, d \varphi\left(e_{i}\right)\right) \leq \varepsilon f_{\varphi} \rho^{2}|d \varphi|^{2}+\frac{1}{\varepsilon} f_{\varphi} e_{i}(\rho)^{2}|\xi \circ \varphi|^{2} \tag{14}
\end{equation*}
$$

From (13), (14), we deduce the inequality
(15) $k \rho^{2} f_{\varphi}|d \varphi|^{2}-\operatorname{div}^{M} \omega+\frac{1}{2}|d \varphi|^{2} \rho^{2} \xi(f) \circ \varphi \leq \varepsilon f_{\varphi} \rho^{2}|d \varphi|^{2}+\frac{1}{\varepsilon} f_{\varphi} e_{i}(\rho)^{2}|\xi \circ \varphi|^{2}$,
we set $\varepsilon=\mu$, by (15), we have

$$
\begin{equation*}
(k-\mu) \rho^{2} f_{\varphi}|d \varphi|^{2}-\operatorname{div}^{M} \omega+\frac{1}{2}|d \varphi|^{2} \rho^{2} \xi(f) \circ \varphi \leq \frac{1}{\mu} f_{\varphi} e_{i}(\rho)^{2}|\xi \circ \varphi|^{2} . \tag{16}
\end{equation*}
$$

By the divergence theorem and (16), we have

$$
\begin{equation*}
\frac{1}{2} \int_{M} \rho^{2}|d \varphi|^{2}\left[2(k-\mu) f_{\varphi}+\xi(f) \circ \varphi\right] v^{g} \leq \frac{1}{\mu} \int_{M} f_{\varphi} e_{i}(\rho)^{2}|\xi \circ \varphi|^{2} v^{g} \tag{17}
\end{equation*}
$$

Now, consider the cut-off smooth function $\rho=\rho_{R}$ such that, $\rho \leq 1$ on $M, \rho=1$ on the ball $B(\rho, R), \rho=0$ on $M \backslash B(\rho, 2 R)$, and $\left|\operatorname{grad}^{M} \rho\right| \leq \frac{2}{R}$ (see [12]). From (17), we get

$$
\begin{equation*}
\frac{1}{2} \int_{M} \rho^{2}|d \varphi|^{2}\left[2(k-\mu) f_{\varphi}+\xi(f) \circ \varphi\right] v^{g} \leq \frac{4}{\mu R^{2}} \int_{M} f_{\varphi}|\xi \circ \varphi|^{2} v^{g} \tag{18}
\end{equation*}
$$

Since $\int_{M} f_{\varphi}|\xi \circ \varphi|^{2} v^{g}<\infty$, when $R \rightarrow \infty$, we obtain

$$
\begin{equation*}
\int_{M}|d \varphi|^{2}\left[2(k-\mu) f_{\varphi}+\xi(f) \circ \varphi\right] v^{g}=0 \tag{19}
\end{equation*}
$$

Consequently, $|d \varphi|=0$, that is, φ is constant, because $2(k-\mu) f+\xi(f) \neq 0$ at any point.

From Theorem 2.4, we deduce
Corollary 2.5. [3] Let (M, g) be a complete non-compact orientable Riemannian manifold and (N, h) be a Riemannian manifold admitting a proper homothetic vector field ξ. If $\varphi:(M, g) \rightarrow(N, h)$ is a harmonic map satisfying $\int_{M}|\xi \circ \varphi|^{2} v^{g}<$ ∞, then φ is constant.

3. f-BIHARMONIC MAPS AND SUBMANIFOLDS

Let M be a submanifold of \mathbb{R}^{n} of dimension $m, \mathbf{i}: M \hookrightarrow \mathbb{R}^{n}$ the canonical inclusion, $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ a smooth positive function such that $f \circ \mathbf{i}=1$, and let $\left\{e_{i}\right\}$ be an orthonormal frame with respect to induced Riemannian metric on M by the inner product $<,>$ on \mathbb{R}^{n}. By ∇ (resp., ∇^{M}), we denote the Levi-Civita connection of \mathbb{R}^{n} (resp., of M), by grad (resp., grad^{M}) the gradient operator in \mathbb{R}^{n} (resp., in M), by B the second fundamental form of the submanifold M, by A the shape operator, by H the mean curvature vector field of M, and by ∇^{\perp} the normal connection of M (see, for example [1]). Under the notation above we have the following results.

Theorem 3.1. The map \mathbf{i} is f-biharmonic if and only if

$$
\begin{array}{r}
\frac{m}{2} \operatorname{grad}^{M}|H|^{2}-2 A_{\nabla_{e_{i}} H}\left(e_{i}\right)-m\left(\nabla_{e_{i}}^{\perp} H\right)(f) e_{i}+A_{\nabla_{e_{i}}^{\perp} \operatorname{grad} f}\left(e_{i}\right) \\
+\frac{m-2}{2} \operatorname{grad}^{M} H(f)-\frac{m-4}{8} \operatorname{grad}^{M}|\operatorname{grad} f|^{2}=0, \\
-B\left(e_{i}, A_{H}\left(e_{i}\right)\right)-\Delta^{\perp} H+\frac{1}{2} B\left(e_{i}, A_{\operatorname{grad} f}\left(e_{i}\right)\right)+\frac{1}{2} \Delta^{\perp} \operatorname{grad} f \\
+\frac{m}{2}\left(\nabla_{H} \operatorname{grad} f\right)^{\perp}-\frac{m}{4}\left(\nabla_{\operatorname{grad} f} \operatorname{grad} f\right)^{\perp}-m H(f) H+\frac{m}{2}|\operatorname{grad} f|^{2} H \\
-m|H|^{2} \operatorname{grad} f+\frac{m}{2} H(f) \operatorname{grad} f=0 .
\end{array}
$$

We need the following lemmas to prove Theorem 3.1.

Lemma 3.2 ([14]). Let Δ^{\perp} the Laplacian in the normal bundle of M, then

$$
\operatorname{trace} \nabla^{2} H=-\frac{m}{2} \operatorname{grad}^{M}\left(|H|^{2}\right)+2 A_{\nabla_{e_{i}}^{\perp} H}\left(e_{i}\right)+B\left(e_{i}, A_{H}\left(e_{i}\right)\right)+\Delta^{\perp} H
$$

Lemma 3.3. On taking the trace of $\nabla^{2} \operatorname{grad} f$, we obtain $\operatorname{trace} \nabla^{2} \operatorname{grad} f=-m\left(\nabla_{e_{i}}^{\perp} H\right)(f) e_{i}+2 A_{\nabla_{e_{i}}^{\perp} \operatorname{grad} f}\left(e_{i}\right)+B\left(e_{i}, A_{\operatorname{grad} f}\left(e_{i}\right)\right)+\Delta^{\perp} \operatorname{grad} f$.

Proof. First, note that grad f is normal to M because f is constant on M. We suppose that $\nabla_{e_{i}}^{M} e_{j}=0$ at $x \in M$ for all $i, j=1, \ldots, m$. Then calculating at x

$$
\begin{align*}
\nabla_{e_{i}} \nabla_{e_{i}} \operatorname{grad} f= & \nabla_{e_{i}}\left(A_{\operatorname{grad} f}\left(e_{i}\right)+\left(\nabla_{e_{i}} \operatorname{grad} f\right)^{\perp}\right) \\
= & \nabla_{e_{i}}^{M} A_{\operatorname{grad} f}\left(e_{i}\right)+B\left(e_{i}, A_{\operatorname{grad} f}\left(e_{i}\right)\right) \tag{20}\\
& +A_{\left(\nabla_{e_{i}} \operatorname{grad} f\right)^{\perp}}\left(e_{i}\right)+\left(\nabla_{e_{i}}\left(\nabla_{e_{i}} \operatorname{grad} f\right)^{\perp}\right)^{\perp}
\end{align*}
$$

Since $\left\langle A_{\operatorname{grad} f}(X), Y\right\rangle=-\langle B(X, Y), \operatorname{grad} f\rangle$, for all $X, Y \in \Gamma(T M)$, we get the following

$$
\begin{aligned}
\nabla_{e_{i}}^{M} A_{\operatorname{grad} f}\left(e_{i}\right) & =\left\langle\nabla_{e_{i}}^{M} A_{\operatorname{grad} f}\left(e_{i}\right), e_{j}\right\rangle e_{j}=e_{i}\left(\left\langle A_{\operatorname{grad} f}\left(e_{i}\right), e_{j}\right\rangle\right) e_{j} \\
& =-e_{i}\left(\left\langle B\left(e_{i}, e_{j}\right), \operatorname{grad} f\right\rangle\right) e_{j}=-e_{i}\left(\left\langle\nabla_{e_{j}} e_{i}, \operatorname{grad} f\right\rangle\right) e_{j}
\end{aligned}
$$

and since $\nabla_{X} \nabla_{Y} Z=\nabla_{Y} \nabla_{X} Z+\nabla_{[X, Y]} Z$, for all $X, Y, Z \in \Gamma(T M)$, we have

$$
\begin{aligned}
\nabla_{e_{i}}^{M} A_{\operatorname{grad} f}\left(e_{i}\right) & =-\left\langle\nabla_{e_{i}} \nabla_{e_{j}} e_{i}, \operatorname{grad} f\right\rangle e_{j}-\left\langle\nabla_{e_{j}} e_{i}, \nabla_{e_{i}} \operatorname{grad} f\right\rangle e_{j} \\
& =-\left\langle\nabla_{e_{j}} \nabla_{e_{i}} e_{i}, \operatorname{grad} f\right\rangle e_{j}-\left\langle B\left(e_{i}, e_{j}\right),\left(\nabla_{e_{i}} \operatorname{grad} f\right)^{\perp}\right\rangle e_{j}
\end{aligned}
$$

Here, the Riemannian curvature tensor of \mathbb{R}^{n} is null, so that

$$
\begin{align*}
& \nabla_{e_{i}}^{M} A_{\operatorname{grad} f}\left(e_{i}\right)=-e_{j}\left(\left\langle\nabla_{e_{i}} e_{i}, \operatorname{grad} f\right\rangle\right) e_{j}+\left\langle\nabla_{e_{i}} e_{i}, \nabla_{e_{j}} \operatorname{grad} f\right\rangle e_{j} \\
&+\left\langle A_{\left(\nabla_{e_{i}} \operatorname{grad} f\right)^{\perp}}\left(e_{i}\right), e_{j}\right\rangle e_{j} \\
&=-m e_{j}(\langle H, \operatorname{grad} f\rangle) e_{j}+m\left\langle H, \nabla_{e_{j}} \operatorname{grad} f\right\rangle e_{j} \tag{21}\\
&+A_{\left(\nabla_{e_{i}} \operatorname{grad} f\right)^{\perp}\left(e_{i}\right)}= \\
&-m\left\langle\nabla_{e_{j}} H, \operatorname{grad} f\right\rangle e_{j}+A_{\left(\nabla_{e_{i}} \operatorname{grad} f\right)^{\perp}}\left(e_{i}\right) .
\end{align*}
$$

By (20) and (21), the lemma is as follows.
Proof of Theorem 3.1. Note that the f-tension field of \mathbf{i} is given by

$$
\tau_{f}(\mathbf{i})=\tau(\mathbf{i})-e(\mathbf{i})(\operatorname{grad} f) \circ \mathbf{i}=m H-\frac{m}{2} \operatorname{grad} f
$$

such that $\nabla_{e_{i}}^{M} e_{j}=0$ at $x \in M$ for all $i, j=1, \ldots, m$. Then calculating at x,

$$
\nabla_{e_{i}}^{\mathbf{i}} \nabla_{e_{i}}^{\mathbf{i}} \tau_{f}(\mathbf{i})=m \nabla_{e_{i}} \nabla_{e_{i}} H-\frac{m}{2} \nabla_{e_{i}} \nabla_{e_{i}} \operatorname{grad} f
$$

and by Lemmas 3.2 and 3.3, we have

$$
\begin{align*}
-\nabla_{e_{i}}^{\mathbf{i}} \nabla_{e_{i}}^{\mathbf{i}} \tau_{f}(\mathbf{i})= & \frac{m^{2}}{2} \operatorname{grad}^{M}\left(|H|^{2}\right)-2 m A_{\nabla_{e_{i}}^{\perp} H}\left(e_{i}\right) \\
& -m B\left(e_{i}, A_{H}\left(e_{i}\right)\right)-m \Delta^{\perp} H-\frac{m^{2}}{2}\left(\nabla_{e_{i}}^{\perp} H\right)(f) e_{i} \tag{22}\\
& +m A_{\nabla_{e_{i}} \operatorname{grad} f}\left(e_{i}\right)+\frac{m}{2} B\left(e_{i}, A_{\operatorname{grad} f}\left(e_{i}\right)\right)+\frac{m}{2} \Delta^{\perp} \operatorname{grad} f .
\end{align*}
$$

In the same way, we have the following formulas

$$
\begin{align*}
e(\mathbf{i})\left(\nabla_{\tau_{f}(\mathbf{i})} \operatorname{grad} f\right) \circ \mathbf{i}= & \frac{m^{2}}{2} \nabla_{H} \operatorname{grad} f-\frac{m^{2}}{4} \nabla_{\operatorname{grad} f} \operatorname{grad} f \\
= & \frac{m^{2}}{2}\left(\nabla_{H} \operatorname{grad} f\right)^{\perp}-\frac{m^{2}}{4}\left(\nabla_{\operatorname{grad} f} \operatorname{grad} f\right)^{\perp} \\
& +\frac{m^{2}}{2}\left\langle\nabla_{e_{i}} \operatorname{grad} f, H\right\rangle e_{i}-\frac{m^{2}}{4}\left\langle\nabla_{e_{i}} \operatorname{grad} f, \operatorname{grad} f\right\rangle e_{i} \\
= & \frac{m^{2}}{2}\left(\nabla_{H} \operatorname{grad} f\right)^{\perp}-\frac{m^{2}}{4}\left(\nabla_{\operatorname{grad} f} \operatorname{grad} f\right)^{\perp} \tag{23}\\
& +\frac{m^{2}}{2} \operatorname{grad}^{M} H(f)-\frac{m^{2}}{2}\left(\nabla_{e_{i}}^{\perp} H\right)(f) e_{i} \\
& -\frac{m^{2}}{8} \operatorname{grad}^{M}|\operatorname{grad} f|^{2},
\end{align*}
$$

$$
\begin{align*}
-d \mathbf{i}\left(\operatorname{grad}^{M} \tau_{f}(\mathbf{i})(f)\right) & =-m \operatorname{grad}^{M} H(f)+\frac{m}{2} \operatorname{grad}^{M}|\operatorname{grad} f|^{2}, \tag{24}\\
-\tau_{f}(\mathbf{i})(f) \tau(\mathbf{i}) & =-m^{2} H(f) H+\frac{m^{2}}{2}|\operatorname{grad} f|^{2} H, \tag{25}\\
\left\langle\nabla^{\mathbf{i}} \tau_{f}(\mathbf{i}), d \mathbf{i}\right\rangle(\operatorname{grad} f) \circ \mathbf{i} & =\left[m\left\langle\nabla_{e_{i}} H, e_{i}\right\rangle-\frac{m}{2}\left\langle\nabla_{e_{i}} \operatorname{grad} f, e_{i}\right\rangle\right] \operatorname{grad} f \\
& =\left[-m\left\langle H, B\left(e_{i}, e_{i}\right)\right\rangle+\frac{m}{2}\left\langle\operatorname{grad} f, B\left(e_{i}, e_{i}\right)\right\rangle\right] \operatorname{grad} f \tag{26}\\
& =\left[-m^{2}|H|^{2}+\frac{m^{2}}{2} H(f)\right] \operatorname{grad} f .
\end{align*}
$$

By definition (8) and equations (22-26), the theorem is as follows.
Example 3.4. Let $\varepsilon \in \mathbb{R}$, the plane $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=\varepsilon\right\}$ is proper f-biharmonic, i.e., the canonical inclusion $\mathbf{i}: M \hookrightarrow \mathbb{R}^{3}$ is an f-biharmonic non-f-harmonic map for $f(x, y, z)=F(z-\varepsilon)$, where F is a smooth positive function such that $F(0)=1, F^{\prime}(0) \neq 0$, and $F^{\prime \prime}(0)=0$. For example, we consider the function

$$
F(t)=\frac{1}{2}+\frac{1}{2}\left[t^{2}-\exp (t)\right]^{2} .
$$

Indeed, the function f satisfies the following formulas

$$
\begin{gathered}
\operatorname{grad} f=F^{\prime}(z-\varepsilon) \partial_{z}, \quad|\operatorname{grad} f|^{2}=F^{\prime}(0)^{2} \quad \text { on } M, \\
\nabla_{Z} \operatorname{grad} f=F^{\prime \prime}(z-\varepsilon)\left\langle Z, \partial_{z}\right\rangle \partial_{z},
\end{gathered}
$$

for all $Z \in \Gamma\left(T \mathbb{R}^{3}\right)$, and for $X \in \Gamma(T M)$ we have

$$
\nabla_{X} \operatorname{grad} f=0
$$

Note that a unit normal vector field U on M is evidently parallel in \mathbb{R}^{3} (constant Euclidean coordinates), hence $A_{U} X=\nabla_{X} U=0$ for all tangent vectors X to M. Thus the shape operator is identically zero, so that $B=0$ and $H=0$. According to Theorem 3.1, the map \mathbf{i} is f-biharmonic if and only if $F^{\prime \prime}(0) F^{\prime}(0)=0$.

Using the similar technique of Example 3.4, we have
Example 3.5. The sphere \mathbb{S}^{m} of \mathbb{R}^{m+1} is proper f-biharmonic for

$$
f(y)=F\left(\frac{|y|^{2}}{2}\right) \quad \text { for all } y \in \mathbb{R}^{n}, \text { where } F(t)=\frac{1}{5} \exp \left(\frac{5}{2}-5 t\right)-\frac{2}{5} t+1
$$

Here, $H=-P$, where P is the position vector field on \mathbb{R}^{m+1},

$$
\begin{gathered}
|H|=1, \quad \nabla_{X}^{\frac{1}{X}} H=0, \quad A_{H} X=-X, \quad B(X, Y)=-\langle X, Y\rangle P \\
\operatorname{grad} f=F^{\prime}\left(\frac{|y|^{2}}{2}\right) P, \quad H(f)=-F^{\prime}\left(\frac{1}{2}\right), \quad A_{\operatorname{grad} f} X=F^{\prime}\left(\frac{1}{2}\right) X \\
\nabla_{Z} \operatorname{grad} f=\langle Z, P\rangle F^{\prime \prime}\left(\frac{|y|^{2}}{2}\right) P+F^{\prime}\left(\frac{|y|^{2}}{2}\right) Z,
\end{gathered}
$$

where $X, Y \in \Gamma\left(T \mathbb{S}^{m}\right)$ and $Z \in \Gamma\left(T \mathbb{R}^{m+1}\right)$. According to Theorem 3.1, the map i is f-biharmonic if and only if

$$
\frac{1}{2} F^{\prime \prime}\left(\frac{1}{2}\right)+3 F^{\prime}\left(\frac{1}{2}\right)+\frac{5}{4} F^{\prime}\left(\frac{1}{2}\right)^{2}+\frac{1}{4} F^{\prime}\left(\frac{1}{2}\right) F^{\prime \prime}\left(\frac{1}{2}\right)+1=0
$$

References

1. Baird P. and Wood J. C., Harmonic Morphisms between Riemannian Manifolds, Clarendon Press Oxford, 2003.
2. Caddeo R., Montaldo S. and Oniciuc C., Biharmonic submanifolds of \mathbb{S}^{3}, Internat. J. Math. 12 (2001), 867-876.
3. Cherif A. M., Some results on harmonic and bi-harmonic maps, Int. J. Geom. Methods Mod. Phys. 14(7) (2017).
4. Course N., f-harmonic maps which map the boundary of the domain to one point in the target, New York J. Math. 13 (2007), 423-435.
5. Djaa M., Cherif A. M., Zagga K. and Ouakkas S., On the generalized of harmonic and bi-harmonic maps, Int. Electron. J. Geom. 5(1) (2012), 90-100.
6. Eells J. and Sampson J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
7. Kobayashi S., A theorem on the affine transformation group of a Riemannian manifold, Nagoya Math. J. 9 (1955), 39-41.
8. Kühnel W. and Rademacher H., Conformal transformations of pseudo-Riemannian manifolds, Differential Geom. Appl. 7 (1997), 237-250.
9. O'Neil B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
10. Ouakkas S., Nasri R. and Djaa M., On the f-harmonic and f-biharmonic maps, JP Journal of Geometry and Topology V. 10(1) (2010), 11-27.
11. Xin Y. L., Geometry of Harmonic Maps, Progress in Nonlinear Differential Equations and Their Aplications, Birkhuser Boston, 1996.
12. Yau S. T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
13. Yano K. and Nagano T., The de Rham decomposition, isometries and affine transformations in Riemannian space, Japan. J. Math. 29 (1959), 173-184.
14. Zegga K., Cherif A. M. and Djaa M., On the f-biharmonic maps and submanifolds, Kyungpook Math. J. 55 (2015), 157-168.
E. Remli, University Mustapha Stambouli Mascara, Faculty of Exact Sciences, Department of Mathematics, 29000, Algeria,
e-mail: ambarka.ramli@univ-mascara.dz
A. M. Cherif, University Mustapha Stambouli Mascara, Faculty of Exact Sciences, Department of Mathematics, 29000, Algeria,
e-mail: a.mohammedcherif@univ-mascara.dz
