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KOROVKIN TYPE APPROXIMATION THEOREM

ON AN INFINITE INTERVAL IN AI-STATISTICAL SENSE

S. DUTTA and R. GHOSH

Abstract. In this paper, we consider the notion of AI -statistical convergence for

real sequences and establish a Korovkin type approximation theorem for positive
linear operators on UC∗[0,∞), the Banach space of all real valued uniform contin-

uous functions on [0,∞) with the property that limx→∞ f(x) exists finitely for any

f ∈ UC∗[0,∞). We then construct an example which shows that our new result is
stronger than its classical version. In the section 3, we extend the Korovkin type

approximation theorem for positive linear operators on UC∗ ([0,∞)× [0,∞)).

1. Introduction and background

Throughout the paper N denotes the set of all positive integers. Approximation
theory has important applications in the theory of polynomial approximation in
various areas of functional analysis. For a sequence {Ln}n∈N of positive linear
operators on C(X), the space of real valued continuous functions on a compact
subset X of real numbers, Korovkin [12] first established the necessary and suf-
ficient conditions for the uniform convergence of {Ln(f)}n∈N to a function f by
using the test functions e1 = 1, e2 = x, e3 = x2 [1]. The study of the Korovkin
type approximation theory has a long history and is a well-established area of re-
search. Erkuş and Duman [9] studied a Korovkin type approximation theorem via
A-statistical convergence in the space Hw(I2), where I2 = [0,∞)× [0,∞), which
was extended for double sequences of positive linear operators of two variables
in A-statistical sense by Demirci and Dirik in [5]. Further it was extended for
double sequences of positive linear operators of two variables in AI2 -statistical and
AI2 -summability sense by Dutta and Das [7, 8].

Our primary interest, in this paper, is to obtain a general Korovkin type approx-
imation theorem for positive linear operators on the space UC∗(D), the Banach
space of all real valued uniform continuous functions on D := [0,∞) with the
property that limx→∞ f(x) exists and is finite, endowed with the supremum norm
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‖f‖∗ = supx∈D |f(x)| for f ∈ UC∗(D), using the concept of A
I
-statistical con-

vergence for real sequences and test functions 1, e−x, e−2x. We also construct an
example which shows that our new result is stronger than its classical version.
In the section 3, we extend the Korovkin type approximation theorem for double
sequence of positive linear operators on UC∗ ([0,∞)× [0,∞)).

The concept of convergence of a sequence of real numbers was extended to
statistical convergence by Fast [10]. Further investigations started in this area
after the pioneering works of Šalát [19] and Fridy [11]. A family I ⊂ 2Y of
subsets of a nonempty set Y is said to be an ideal in Y if:

(i) A,B ∈ I implies A ∪B ∈ I,
(ii) A ∈ I, B ⊂ A implies B ∈ I, while an admissible ideal I of Y further

satisfies {x} ∈ I for each x ∈ Y .

If I is a non-trivial proper ideal in Y (i.e., Y /∈ I, I 6= {∅}), then the family of
sets F (I) = {M ⊂ Y : there exists A ∈ I : M = Y r A} is a filter in Y . It is
called the filter associated with the ideal I. The notion of I-convergence of real
sequences was introduced by Kostyrko et al. [14] as a generalization of statistical
convergence using the notion of ideals. On the other hand, statistical convergence
was generalized to A-statistical convergence by Kolk ([13]). Later a lot of works
have been done on matrix summability and A-statistical convergence (see [3, 4,
13]). In particular, in [20] and [21], the two above mentioned approaches were
unified and the very general notion of AI-statistical convergence was introduced
and studied.

Recall that a real double sequence {xmn}m,n∈N is said to be convergent to L in
Pringsheim’s sense if for every ε > 0, there exists N(ε) ∈ N such that |xmn−L| < ε
for all m,n > N(ε), and denoted by lim

m,n
xmn = L ([17]). A double sequence is

called bounded if there exists a positive number M such that |xmn| ≤ M for all
(m,n) ∈ N×N. A real double sequence {xmn}m,n∈N is statistically convergent to

L if for every ε > 0, limj,k
|{m≤j,n≤k:|xmn−L|≥ε}|

jk = 0 ([15, 16]).

A non-trivial ideal I of N × N is called strongly admissible if {i} × N and
N × {i} belong to I for each i ∈ N. It is evident that a strongly admissible ideal
is admissible also. Let I0 = {A ⊂ N × N : there is m(A) ∈ N such that i, j ≥
m(A) =⇒ (i, j) /∈ A}. Then I0 is a non-trivial strongly admissible ideal [2].
Let A = (ajkmn) be a four dimensional summability matrix. For a given double
sequence {xmn}m,n∈N, the A-transform of x, denoted by Ax := ((Ax)jk), is given
by

(Ax)jk =
∑

(m,n)∈N2

ajkmnxmn

provided the double series converges in Pringsheim sense for every (j, k) ∈ N2.
In 1926, Robison [18] presented a four dimensional analog of the regularity by
considering an additional assumption of boundedness. This assumption was made
because a convergent double sequence is not necessarily bounded.

Recall that a four dimensional matrix A = (ajkmn) is said to be RH-regular
if it maps every bounded convergent double sequence into a convergent double
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sequence with the same limit. The Robison-Hamilton conditions state that a four
dimensional matrix A = (ajkmn) is RH-regular if and only if:

(i) lim
j,k

ajkmn = 0 for each (m,n) ∈ N2,

(ii) lim
j,k

∑
(m,n)∈N2

ajkmn = 1,

(iii) lim
j,k

∑
m∈N
|ajkmn| = 0 for each n ∈ N,

(iv) lim
j,k

∑
n∈N
|ajkmn| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2

|ajkmn| is convergent for each (j, k) ∈ N2,

(vi) there exist finite positive integers M0 and N0 such that
∑

m,n>N0

|ajkmn| < M0

holds for every (j, k) ∈ N2.

Let A = (ajkmn) be a nonnegative RH-regular summability matrix and let
K ⊂ N2. Then the A-density of K is given by

δ
(2)
A {K} = lim

j,k

∑
(m,n)∈K

ajkmn

provided the limit exists. A real double sequence x = {xmn}m,n∈N is said to be
A-statistically convergent to a number L if for every ε > 0,

δ
(2)
A {(m,n) ∈ N2 : |xmn − L| ≥ ε} = 0.

2. A Korovkin type approximation theorem

Throughout the section, I denotes the non-trivial admissible ideal in N. If L is a
positive linear operator, then L(f) ≥ 0 for any positive function f , and we denote
the value of L(f) at x by L(f ;x). Recall the following definition.

Definition 2.1 ([20, 21]). Let A = (ank) be a non-negative regular matrix.
For an ideal I of N, a sequence {xn}n∈N is said to be AI-statistically convergent
to L if for any ε > 0 and δ > 0,{

n ∈ N :
∑

k∈K(ε)

ank ≥ δ
}
∈ I,

where K(ε) = {k ∈ N : |xk − L| ≥ ε}. In this case, we write AI-st-lim
n
xn = L.

We now establish the following Korovkin type approximation theorem for pos-
itive linear operators on UC∗[0,∞), the Banach space of all real valued uniform
continuous functions on [0,∞), with the property that limx→∞ f(x) exists finitely
for any f ∈ UC∗[0,∞), endowed with the supremum norm ‖f‖∗ = supx∈D |f(x)|
for f ∈ UC∗(D).



134 S. DUTTA and R. GHOSH

Theorem 2.2. Let {Ln} be a sequence of positive linear operators from
UC∗[0,∞) into itself, and let A = (ajn) be a non-negative regular summability
matrix. Then for all f ∈ UC∗[0,∞),

AI-st- lim
n
‖Ln(f)− f‖∗ = 0

if and only if the following statements hold

AI-st- lim
n
‖Ln(e−kt)− e−kx ‖∗ = 0, k = 0, 1, 2.

Proof. Since the necessity is clear, it is enough to proof sufficiency. Our objec-
tive is to show that given ε > 0, there exist constants C0, C1, C2 (depending on
ε > 0) such that

‖Ln(f)− f‖∗ ≤ ε+ C2‖Ln(e−2t)− e−2x ‖∗
+ C1‖Ln(e−t)− e−x ‖∗ + C0‖Ln(1)− 1‖∗.

If this is done, then our hypothesis implies that for ε > 0, δ > 0,

{n ∈ N :
∑

p∈P (ε)

anp ≥ δ} ∈ I,

where

P (ε) = {p ∈ N : ‖Lp(f)− f‖∗ ≥ ε}.
Let f ∈ UC∗[0,∞). Then there is a constant M such that | f(x) |≤ M for
each x ∈ [0,∞). Let ε be an arbitrary positive number. By hypothesis, we may
find δ := δ(ε) > 0 such that for every t, x ∈ [0,∞), | e−t− e−x |< δ implies
| f(t)− f(x) |< ε. Further note that | f(t)− f(x) |< 2M for all t, x ∈ [0,∞).

Also if | e−t− e−x |≥ δ, then

| f(t)− f(x) |< 2M

δ2
(e−t− e−x)2.

Then for all t, x ∈ [0,∞),

| f(t)− f(x) |< ε+
2M

δ2
(e−t− e−x)2.

Consequently, for n ∈ N, using the linearity and the positivity of the operators
Ln, we get

|Ln(f(t);x)− f(x)| ≤ Ln(| f(t)− f(x)|;x) + |f(x)| |Ln(1;x)− 1|

≤ Ln(ε+
2M

δ2
(e−t− e−x)2;x) + |f(x)| |Ln(1;x)− 1|

≤ ε+ (ε+M)|Ln(1;x)− 1|+ 2M

δ2
Ln((e−t− e−x)2;x)

≤ ε+ (ε+M)|Ln(1;x)− 1|+ 2M

δ2
| e−2x | |Ln(1;x)− 1|

+
2M

δ2
|Ln(e−2t;x)− e−2x |+ 4M

δ2
| e−x | |Ln(e−t;x)− e−x |,

where | e−kt | ≤ 1 for all t ∈ [0,∞) and k ∈ N.
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Now taking supremum over x ∈ [0,∞), we have

(1)
‖Ln(f)− f‖∗ ≤ ε+K{‖Ln(1)− 1‖∗

+ ‖Ln(e−t)− e−x ‖∗ + ‖Ln(e−2t)− e−2x ‖∗},

where K = max{ε+M + 2M
δ2 ,

2M
δ2 ,

4M
δ2 }. For a given r > 0, choose ε > 0 such that

ε < r, let us define the following sets:

D = {n ∈ N : ‖Ln(f)− f‖∗ ≥ r},

D1 =
{
n ∈ N : ‖Ln(1)− 1‖∗ ≥

r − ε
3K

}
,

D2 =
{
n ∈ N : ‖Ln(e−t)− e−x ‖∗ ≥

r − ε
3K

}
,

D3 =
{
n ∈ N : ‖Ln(e−2t)− e−2x ‖∗ ≥

r − ε
3K

}
.

It follows from (1) that D ⊂ D1 ∪ D2 ∪ D3. Therefore, for each n ∈ N, we may
write ∑

p∈D
anp ≤

∑
p∈D1

anp +
∑
p∈D2

anp +
∑
p∈D3

anp

which implies that for any σ > 0 and p ∈ D,{
n ∈ N :

∑
p∈D

anp ≥ σ
}
⊆

3⋃
i=1

{
n ∈ N :

∑
p∈Di

anp ≥
σ

3

}
.

From hypotheses {n ∈ N :
∑
p∈Di

anp ≥ σ
3 } ∈ I for i = 1, 2, 3, we get

3⋃
i=1

{
n ∈ N :

∑
p∈Di

anp ≥
σ

3

}
∈ I

Hence {
n ∈ N :

∑
p∈D

anp ≥ σ
}
∈ I.

and this completes the proof. �

Remark. We now exhibit a sequence of positive linear operators {Ln} s.t.
AI- st - limn ‖Ln(f)− f‖∗ = 0 but stA - limn ‖Ln(f)− f‖∗ 6= 0.

Let I be a non-trivial admissible ideal of N. Choose an infinite subset C =
{p1 < p2 < p3 < . . . } from I r Id. Let {uk}k∈N be given by

uk =

{
1 if k is even,

0 if k is odd.

Let A = (ank) be given by

ank =


1 if n = pi, k = 2pi for some i ∈ N,
1 if n 6= pi for any i, k = 2n+ 1,

0 otherwise.
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Now for 0 < ε < 1, K(ε) = {k ∈ N : |uk − 0| ≥ ε} is the set of all even integers.
Observe that ∑

k∈K(ε)

ank =

{
1 if n = pi for some i ∈ N,
0 if n 6= pi for any i ∈ N.

Thus for any δ > 0,
{
n ∈ N :

∑
k∈K(ε)ank ≥ δ

}
= C ∈ I which shows that {uk}k∈N

is AI-statistically convergent to 0 though x is not A-statistically convergent.
We now consider the following Baskakov operators BnUC∗[0,∞)→ UC∗[0,∞)

defined by

Bnf(x) =

∞∑
k=0

(
n− 1 + k

k

)
xk(1 + x)−n−kf

(
k

n

)
.

Thus

Bn(1, x) = 1,

Bn(e−u, x) = (1 + x− x e−
1
n )−n,

Bn(e−2u, x) = (1 + x− x e−
2
n )−n,

where x ∈ [0,∞).
Let us define Ln(f, x) = (1 + un)Bn(f, x) for any f ∈ UC∗[0,∞). Then

AI-st- lim
n
‖Ln(fi)− fi‖∗ = 0, i = 0, 1, 2.

From previous theorem,

AI-st- lim
n
‖Ln(f)− f‖∗ = 0.

But as stA- limn un 6= 0, so stA- limn ‖Ln(f)− f‖∗ 6= 0.

3. A Korovkin type approximation theorem for a sequence of
positive linear operators of two variables

Throughout the section, I denotes the non-trivial strongly admissible ideal in
N× N. Recall the following definitions.

Definition 3.1 ([7]). A real double sequence {xm,n}m,n∈N is said to be
I2-statistically convergent to L if for each ε > 0 and δ > 0,{

(j, k) ∈ N2 :
1

jk
|{m ≤ j, n ≤ k : |xmn − L| ≥ ε}| ≥ δ

}
∈ I.

Definition 3.2 ([7]). Let A = (ajkmn) be a non-negative RH-regular summa-
bility matrix. Then a real double sequence {xmn}m,n∈N is said to beAI2 -statistically
convergent to a number L if for every ε > 0 and δ > 0,{

(j, k) ∈ N2 :
∑

(m,n)∈K2(ε)

ajkmn ≥ δ
}
∈ I,
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where K2(ε) = {(m,n) ∈ N2 : |xmn − L| ≥ ε}.
In this case, we write AI2 -st-lim

m,n
xmn = L.

It should be noted that if we take A = C(1, 1), the double Cesáro matrix defined
as follows

ajkmn =

{
1
jk for m ≤ j, n ≤ k,
0 otherwise.

then AI2 -statistical convergence coincides with the notion of I2-statistical conver-
gence. Again if we replace the matrix A by the identity matrix for four dimensional
matrices and I = I0, then AI2 -statistical convergence reduces to the Pringsheim
convergence for double sequences. For the ideal I = I0, AI2 -statistical convergence
implies A-statistical convergence for double sequences.

Now we establish the Korovkin type approximation theorem for a double se-
quence of positive linear operators on UC∗ ([0,∞)× [0,∞)), the Banach space of
all real valued uniformly continuous functions defined on D := [0,∞) × [0,∞)
with the property that lim(x,y)→(∞,∞) f(x, y) exists finitely for any f ∈ UC∗(D),
endowed with the supremum norm ‖f‖∗ = sup(x,y)∈D |f(x, y)| for f ∈ UC∗(D), in

AI2 -statistical sense.

Theorem 3.3. Let {Lmn}m,n∈N be a sequence of positive linear operators on
UC∗ ([0,∞)× [0,∞)), the Banach space of all real valued uniform continuous func-
tions defined on [0,∞)× [0,∞) with the property that lim(x,y)→(∞,∞) f(x, y) exists
finitely for any f ∈ UC∗ ([0,∞)× [0,∞)), and let A = (ajkmn) be a non-negative
RH-regular summability matrix. Then for any f ∈ UC∗ ([0,∞)× [0,∞)),

AI2 - st - lim
m,n
‖Lmn(f)− f‖∗ = 0

is satisfied if the following holds

AI2 - st -lim
m,n
‖Lmn(fi)− fi‖∗ = 0, i = 0, 1, 2, 3.(2)

where f0 = 1, f1 = e−x, f2 = e−y, f3 = e−2x + e−2y .

Proof. Assume that (2) holds. Let f ∈ UC∗ ([0,∞)× [0,∞)). Our objective is
to show that for given ε > 0, there exist constants C0, C1, C2, C3 (depending on
ε > 0) such that

‖Lmnf − f‖∗ ≤ ε+ C3‖Lmnf3 − f3‖∗ + C2‖Lmnf2 − f2‖∗
+ C1‖Lmnf1 − f1‖∗ + C0‖Lmnf0 − f0‖∗.

If this is done, then our hypothesis implies that for any ε > 0, δ > 0,{
(j, k) ∈ N2 :

∑
(m,n)∈K2(ε)

ajkmn ≥ δ
}
∈ I,

where K2(ε) = {(m,n) ∈ N2 : ‖Lmnf − f‖∗ ≥ ε}.
To this end, start by observing that for each (u, v) ∈ ([0,∞)× [0,∞)), the

function 0 ≤ guv ∈ UC∗ ([0,∞)× [0,∞)) defined by

guv(s, t) = (e−s− e−u)2 + ((e−t−(e−v)2
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satisfies guv = (e−x)2 +(e−y)2−2 e−u e−x−2 e−v e−y +(e−u)2 +(e−v)2. Since each
Lmn is a positive operator, Lmnguv is a positive function. In particular, we have
for each (u, v) ∈ ([0,∞)× [0,∞)),

0 ≤ Lmnguv(u, v)

=
[
Lmn

( (
e−x
)2

+
(
e−y
)2 − 2 e−u e−x−2 e−v e−y +

(
e−u

)2
+
(
e−v
)2

;u, v
)]

=
[
Lmn

( (
e−x
)2

+
(
e−y
)2

;u, v
)
−
(
e−u

)2 − (e−v)2]
− 2 e−u

[
Lmn

(
e−x;u, v

)
− e−u

]
− 2 e−v

[
Lmn

(
e−y;u, v

)
− e−v

]
+
{(

e−u
)2

+
(
e−v
)2}

[Lmnf0 − f0]

≤ ‖Lmnf3 − f3‖∗ + 2 e−u ‖Lmnf1 − f1‖∗ + 2 e−v ‖Lmnf2 − f2‖∗

+
{(

e−u
)2

+
(
e−v
)2} ‖Lmnf0 − f0‖∗.

Let f ∈ UC∗ ([0,∞)× [0,∞)). Then there exists a constant M such that
|f(x, y)| ≤M for each (x, y) ∈ ([0,∞)× [0,∞)). Let ε > 0 be arbitrary. Then by
the uniform continuity of f on ([0,∞)× [0,∞)), there exists a δ = δ(ε) > 0 such
that if | e−x− e−u | < δ and | e−y − e−v | < δ, then

|f(x, y)− f(u, v)| < ε+
2M

δ2

[(
e−x− e−u

)2
+
(
e−y − e−v

)2]
for all (x, y), (u, v) ∈ [0,∞)×[0,∞). Since each Lmn is positive and linear it follows
that

−εLmnf0 −
2M

δ2
Lmnguv ≤ Lmnf − f(u, v)Lmnf0

≤ εLmnf0 +
2M

δ2
Lmnguv.

Therefore,

|Lmn(f ;u, v)− f(u, v)Lmn(f0;u, v)| ≤ ε+ ε [Lmn(f0;u, v)− f0(u, v)]

+
2M

δ2
Lmnguv

≤ ε+ ε‖Lmnf0 − f0‖∗ +
2M

δ2
Lmnguv.

In particular, note that

|Lmn(f ;u, v)− f(u, v)| ≤ |Lmn(f ;u, v)− f(u, v)Lmn(f0;u, v)|
+ |f(u, v)| |Lmn(f0;u, v)− f0(u, v)|

≤ ε+ (M + ε)‖Lmnf0 − f0‖∗ +
2M

δ2
Lmnguv,

which implies

‖Lmnf − f‖∗ ≤ ε+ C3‖Lmnf3 − f3‖∗ + C2‖Lmnf2 − f2‖∗
+ C1‖Lmnf1 − f1‖∗ + C0‖Lmnf0 − f0‖∗,
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where there exist A and B such that C0 =
[
2M
δ2 {(e

−A)2 + (e−B)2}+M + ε
]
, C1 =

4M
δ2 e−A, C2 = 4M

δ2 e−B and C3 = 2M
δ2 , i.e.,

‖Lmnf − f‖∗ ≤ ε+ C

3∑
i=0

‖Lmnfi − fi‖∗, i = 0, 1, 2, 3,

where C = max{C0, C1, C2, C3}.
For a given γ > 0, choose ε > 0 such that ε < γ. Now let

U = {(m,n) : ‖Lmnf − f‖∗ ≥ γ}

and

Ui =
{

(m,n) : ‖Lmnfi − fi‖∗ ≥
γ − ε
4C

}
, i = 0, 1, 2, 3.

It follows that U ⊂
⋃3
i=0 Ui and consequently for all (j, k) ∈ N2,∑
(m,n)∈U

ajkmn ≤
3∑
i=0

∑
(m,n)∈Ui

ajkmn,

which implies that for any σ > 0 and (m,n) ∈ U ,{
(j, k) ∈ N2 :

∑
(m,n)∈U

ajkmn ≥ σ
}
⊆

3⋃
i=0

{
(j, k) ∈ N2 :

∑
(m,n)∈Ui

ajkmn ≥
σ

3

}
.

Therefore, from hypothesis,
{

(j, k) ∈ N2 :
∑

(m,n)∈U ajkmn ≥ σ
}
∈ I, and this

completes the proof of the theorem. �

Remark. We now show that our theorem is stronger than the A-statistical
version [6] (and so the classical version). Let I be a non-trivial strongly admissible
ideal of N×N. Choose an infinite subset C = {(pi, qi) : i ∈ N} from I r Id, where
Id denotes the set of all subsets of N × N with natural density zero, such that
pi 6= qi for all i, p1 < p2 < . . . and q1 < q2 < . . .

Let {umn}m,n∈N be given by

umn =

{
1 m,n are even,

0, otherwise.

Let A = (ajkmn) be given by

ajkmn =


1 if j = pi, k = qi, m = 2pi, n = 2qi for some i ∈ N,
1 if (j, k) 6= (pi, qi) for any i,m = 2j + 1, n = 2k + 1,

0, otherwise.

Now for 0 < ε < 1, K2(ε) = {(m,n) ∈ N × N : |umn − 0| ≥ ε} = {(m,n) :
m,n are even}. Observe that∑

(m,n)∈K2(ε)

ajkmn =

{
1 if j = pi, k = qi for some i ∈ N,
0, if (j, k) 6= (pi, qi) for any i ∈ N.
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Thus for any δ > 0,{
(j, k) ∈ N× N :

∑
(m,n)∈K2(ε)

ajkmn ≥ δ
}

= C ∈ I

which shows that {umn}m,n∈N is AI2 -statistically convergent to 0. Evidently this
sequence is not A-statistically convergent to 0.

Let K = [0,∞) × [0,∞). We consider the following Baskakov operators
Bmn UC∗(K)→ UC∗(K) defined by

Bmn(f ;x, y) =

∞∑
j=0

∞∑
k=0

f

(
j

n
,
k

n

)(
m− 1 + j

j

)(
n− 1 + k

k

)
× (1 + x)−m−j(1 + y)−n−kxjyk,

Now we consider the double sequence {Lmn}m,n∈ N of positive linear operators
defined by Lmn(f ;x, y) = (1 + umn)Bmn(f ;x, y).
Then observe that

Lmn(f0;x, y) = (1 + umn)f0(x, y),

Lmn(f1;x, y) = (1 + umn)
(

1 + x− x e−
1
m

)−m
,

Lmn(f2;x, y) = (1 + umn)
(

1 + y − y e−
1
n

)−n
,

Lmn(f3;x, y) = (1 + umn)

[(
1 + x− x e−

1
m

)−m
+
(

1 + y − y e−
1
n

)−n]
,

Then

(3) AI2 -st-lim
m,n
‖Lmn(fi)− fi‖∗ = 0, i = 0, 1, 2, 3.

Therefore, by previous theorem, for any f ∈ UC∗(K),

AI2 - st - lim
m,n
‖Lmn(f)− f‖∗ = 0.

But since {umn}m,n∈N is not usual convergent and not A-statistical convergent,
so we can say that the classical version and A-statistical version of the previous
theorem do not work for the operator defined above.

4. Conclusion

We conclude this article by pointing out some important features of this study.
The result that we have encountered, for a sequence {Ln}n∈N of positive linear
operators on UC∗[0,∞), established the necessary and sufficient conditions for
the AI-statistically convergence of {Ln(f)}n∈N to a function f by using the test
functions f0 = 1, f1 = e−x, f2 = e−2x. The same type result (Theorem 3.3) is
also established for a sequence of positive linear operators of two variables by using
the test functions f0 = 1, f1 = e−x, f2 = e−y, f2 = e−2x + e−2y. The examples in
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Section 2 and Section 3 show that our new results are stronger than its A-statistical
version ([6, Theorem 2.2]) and consequently stronger than its classical version.
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2. Das P., Kostyrko P., Wilczyński W. and Malik P., I and I∗-convergence of double sequences,
Math. Slovaca 58(5) (2008), 605–620.

3. Das P., Savas E. and Ghosal S. K., On generalizations of certain summability methods using

ideals, Appl. Math. Lett. 24 (2011), 1509–1514.
4. Demirci K., Strong A-summabilty and A-statistical convergence, Indian J. Pure Appl. Math.

27 (1996), 589–593.
5. Demirci K. and Dirik F., A Korovkin type approximation theorem for double sequences of

positive linear operators of two variables in A-statistical sense, Bull. Korean Math. Soc.

47(4) (2010), 825–837.
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