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ON BANACH AND KANNAN TYPE RESULTS

IN CONE bv(s)-METRIC SPACES OVER BANACH ALGEBRA

Z. D. MITROVIĆ, H. AYDI and S. RADENOVIĆ

Abstract. In this paper, the concept of a cone bv(s)-metric space over Banach

algebra is introduced as a generalization of metric spaces, rectangular metric spaces,
b-metric spaces, rectangular b-metric spaces, v-generalized metric spaces, cone

b-metric spaces over Banach algebra and rectangular cone b-metric spaces over

Banach algebra. We also give Banach and, Kannan fixed point results in cone
bv(s)-metric spaces over Banach algebra. Some examples are provided as well.

1. Introduction and preliminaries

Bakhtin [5] and Czerwik [8] introduced b-metric spaces (a generalization of metric
spaces) and proved the Banach contraction principle in this framework. In the last
period, many authors obtained fixed point results for single-valued or set-valued
functions in the setting of b-metric spaces, see [2, 3, 4, 18].

In a b-metric space (X, d) with coefficient s ≥ 1, the modified triangular in-
equality is

d(x, z) ≤ s[d(x, y) + d(y, z)]

for all x, y, z ∈ X. In 2000, Branciari [6] introduced the concept of rectangular
metric spaces (in short RMS) by replacing the sum on the right hand-side of the
triangular inequality in the definition of a metric space by a three-term expression
and proved an analogue of the Banach Contraction Principle on such spaces. Here,
d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and all distinct points u, v ∈
Xr{x, y}. In [11], George et al. introduced the concept of a rectangular b-metric
space, generalizing the concept of rectangular metric spaces and b-metric spaces.
Here, there exists a real number s ≥ 1 such that d(x, y) ≤ s[d(x, u) + d(u, v) +
d(v, y)] for all x, y ∈ X and all distinct points u, v ∈ X r {x, y}. Note that a
rectangular b-metric space is not necessarily Hausdorff. Moreover, the analogue
of Banach contraction principle on rectangular b-metric spaces was provided by
Mitrović [21]. Branciari [6] also introduced the following concept.
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Definition 1.1 ([6]). Let X be a set, d be a function from X ×X into [0,∞),
and v ∈ N. Then (X, d) is said to be a v-generalized metric space if the following
hold:

(N1) d(x, y) = 0 if and only if x = y,
(N2) d(x, y) = d(y, x) for all x, y ∈ X,
(N3) d(x, y) ≤ d(x, u1) + d(u1, u2) + · · ·+ d(uv, y) for all x, u1, u2, . . . , uv, y ∈ X
such that x, u1, u2, . . . , uv, y are all different.

Recently, Suzuki et al. [26] gave the analogue of the Banach contraction prin-
ciple in v-generalized metric spaces. Very recently, Mitrović and Radenović [22]
introduced the notion of bv(s)-metric spaces and established some fixed point the-
orems in such spaces.

Definition 1.2 ([22]). Let X be a non-empty set. Let d be a function from
X ×X into [0,∞) and v ∈ N. Then (X, d) is said to be a bv(s)-metric space if for
all x, y ∈ X and for all distinct points u1, u2, . . . , uv ∈ X, each of them different
from x and y the following holds:

(B1) d(x, y) = 0 if and only if x = y,
(B2) d(x, y) = d(y, x),
(B3) there exists a real number s ≥ 1 such that

d(x, y) ≤ s[d(x, u1) + d(u1, u2) + · · ·+ d(uv, y)].

Note that

• a b1(1)-metric space is an usual metric space,
• a b1(s)-metric space is a b-metric space with coefficient s of Bakhtin and

Czerwik,
• a b2(1)-metric space is a rectangular metric space,
• a b2(s)-metric space is a rectangular b-metric space with coefficient s of

George et al.,
• a bv(1)-metric space is a v-generalized metric space of Branciari.

On the other hand, by replacing the set of real numbers which forms the do-
main of distance functions with a complete normed space, Huang and Zang [15]
obtained cone metric spaces. Further, some generalizations of cone metric spaces,
also appeared in literature. Recently, Liu and Xu [19] reported the concept of cone
metric spaces over Banach algebra and proved the contraction principle in such
spaces. The concept defined by Liu and Xu [19] was further generalized by Huang
and Radenović [13, 14] by introduction of cone b-metric spaces over Banach alge-
bra. This concept was again generalized by George et al. [10] by introduction of
rectangular cone b-metric spaces over Banach algebra.

In the following, we always suppose that A is a Banach algebra with a unit e,
P is a solid cone in A, and � is a partial ordering with respect to P .

Definition 1.3 ([27]). Let P be a solid cone in a Banach algebra A. A sequence
{xn} ⊂ P is said to be a c-sequence if for each c� θ, there exists a natural number
n0 such that xn � c for all n ≥ n0.
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Lemma 1.4 ([13]). Let {xn} and {yn} be two c-sequences in a solid cone P .
If a, b ∈ P are two given vectors, then {axn + byn} is also a c-sequence.

Lemma 1.5 ([24]). Let A be a Banach algebra with a unit e and k ∈ A, then

lim
n→∞

‖kn‖ 1
n exists and the spectral radius r(k) satisfies

r(k) = lim
n→∞

‖kn‖ 1
n = inf

n≥1
‖kn‖ 1

n .

If r(k) < |λ|, then λe− k is invertible in A. Moreover,

(λe− k)−1 =

∞∑
i=0

ki

λi+1
,

where λ is a constant.

Lemma 1.6 ([25]). Let P ⊂ A be a cone.

(a) If a, b ∈ A, c ∈ P and a � b, then ca � cb.
(b) If a, k ∈ P are such that r(k) < 1, and a � ka, then a = θ.
(c) If k ∈ P and r(k) < 1, then for any fixed m ∈ N we have r(km) < 1.

Lemma 1.7 ([16]). If u � v and v � w, then u� w.

Lemma 1.8 ([13]). Let A be a Banach algebra with a unit e. Let k ∈ A and
r(k) < 1. Then {kn} is a c-sequence.

Lemma 1.9 ([24]). Let A be a Banach algebra with a unit e and a, b ∈ A. If
a commutes with b, then

r(a+ b) ≤ r(a) + r(b), r(ab) ≤ r(a)r(b).

Lemma 1.10 ([14]). Let A be a Banach algebra with a unit e and k ∈ A. If λ
is a constant and r(k) < |λ|, then

r((λe− k)−1) ≤ 1

|λ| − r(k)
.

The concept defined by Liu and Xu [19] was further generalized by Huang and
Radenović [13, 14] by introduction of cone b-metric spaces over Banach algebra.

Definition 1.11 ([14]). Let X be a nonempty set and s ∈ P with e � s.
Suppose that the mapping d : X ×X → A satisfies:

(i) θ ≺ d(x, y) for all x, y ∈ X, with x 6= y, and d(x, y) = θ if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, y) � s[d(x, z) + d(z, y)] for all x, y, z ∈ X. Then d is called a cone

b-metric on X and (X, d) is called a cone b-metric space over Banach alge-
bra A.

In [12], the following theorem was proved.

Theorem 1.12 ([12]). Let (X, d) be a b-complete cone b-metric space over
Banach algebra with s ∈ P and e � s. Suppose that T : X → X is a mapping such
that for all x, y ∈ X,

d(Tx, Ty) � kd(x, y),
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where k ∈ P is a generalized Lipschitz constant with r(k) < 1. Then T has a
unique fixed point in X.

The rectangular cone b-metric space over Banach algebra was introduced by
George et al. [10] as a generalization of a metric space and many of its gen-
eralizations (b-metric space, rectangular metric space, rectangular b-metric space,
cone metric space, rectangular cone metric space, cone b-metric space over Banach
algebra).

Definition 1.13 ([10]). Let X be a nonempty set. Let d : X×X → A satisfies

(RCbM1) d(x, y) = θ if and only if x = y,
(RCbM2) d(x, y) = d(y, x) for all x, y ∈ X,
(RCbM3) there exists s ∈ P with e � s such that

d(x, y) � s[d(x, u) + d(u, v) + d(v, y)]

for all x, y ∈ X and all distinct points u, v ∈ X r {x, y}.
Then d is called a rectangular cone b-metric on X and (X, d) is called a rect-

angular cone b-metric space over Banach algebra (in short, RCbMS-BA) with
coefficient s. If s = e, we say that (X, d) is a rectangular cone metric space over
Banach algebra (in short, RCMS-BA).

Theorem 1.14 ([10]). Let (X, d) be a complete RCbMS-BA over A with s ∈ P
such that e � s. Given T : X → X. If there exist λ ∈ P and r(λ) < 1 such that

d(Tx, Ty) � λd(x, y)

for all x, y ∈ X, then T has a unique fixed point.

Remark 1.15. Note that in Theorem 3.5. in the paper [10], there is a printing
error. Namely, instead of θ � s, there must be condition s ≥ e.

In this paper, we initiate the concept of cone bv(s)-metric spaces over Banach
algebra. We also provide some related fixed point results for Banach and Kannan
contractions types.

2. Main results

The concept of cone bv(s)-metric spaces over Banach algebra is given as follows.

Definition 2.1. Let X be a nonempty set. Let d : X ×X → A satisfies

(Cbv1) θ � d(x, y) and d(x, y) = θ if and only if x = y,
(Cbv2) d(x, y) = d(y, x) for all x, y ∈ X,
(Cbv3) there exists s ∈ P with e � s such that

d(x, y) � s[d(x, u1) + d(u1, u2) + · · ·+ d(uv, y)]

for all x, y ∈ X and all distinct elements u1, u2, . . . , uv ∈ X r {x, y}.
Then (X, d) is called a cone bv(s)-metric space over Banach algebra with coef-

ficient s such that s ∈ P and e � s. In the case that s = e, we say that (X, d) is a
Branciari cone metric space over Banach algebra.
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Definitions of convergent sequence, Cauchy sequence and completeness in cone
bv(s)-metric space over Banach algebra go on the same line as those one of cone
b-metric spaces over Banach algebra given in the papers [13, 14] of Huang and
Radenović.

Definition 2.2. Let (X, d) be a cone bv(s)-metric space over Banach algebra
A, x ∈ X, and {xn} be a sequence in X. Then

(i) {xn} converges to x whenever for every c � θ, there is a natural number
N such that d(xn, x)� c for all n ≥ N ,

(ii) {xn} is a Cauchy sequence whenever for every c � θ, there is a natural
number N such that d(xn, xm)� c for all n,m ≥ N ,

(iii) (X, d) is complete if every Cauchy sequence is convergent.

Our first main result is the analogue of the Banach contraction principle on
cone bv(s)-metric spaces over Banach algebra.

Theorem 2.3. Let (X, d) be a complete cone bv(s)-metric space over Banach
algebra A. Let k ∈ P be such that k commutes with s and r(k) < 1. Let T : X → X
be such that

(2.1) d(Tx, Ty) � kd(x, y)

for all x, y ∈ X, then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary and xn = Txn−1 = Tnx0. From (2.1), we have

d(xm+p, xn+p) = d(Txm+p−1, Txn+p−1)

� kd(xm+p−1, xn+p−1) � k2d(xm+p−2, xn+p−2)

...

� kpd(xm, xn).

So,

(2.2) d(xm+p, xn+p) � kpd(xm, xn)

for all m,n, p ∈ N.
If xn = xn+1, then xn is a fixed point of T and the proof holds. Now, suppose

that xn 6= xn+1 for all n ≥ 0. We will prove that xn 6= xn+p for all n ≥ 0, p ≥ 1.
Namely, if xn = xn+p for some n ≥ 0 and p ≥ 1, we have Txn = Txn+p and
xn+1 = xn+p+1. Then (2.1) implies that

d(xn+1, xn) = d(xn+p+1, xn+p) � kpd(xn+1, xn).

From Lemma 1.6, we obtain that d(xn+1, xn) = θ, i.e., xn+1 = xn is a contradic-
tion. Thus, we obtain that xn 6= xm for all distinct n,m ∈ N. Let us consider the
following three cases:

• v = 1,
• v = 2,
• v ≥ 3.
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Let v = 1. Then (X, d) is a cone b1(s)-metric space over Banach algebra. From
condition (Cb13), we have

(2.3) d(x, y) � s[d(x, u1) + d(u1, y)]

for all x, y, u1 ∈ X. From (2.3), we obtain

(2.4) d(x, y) � s[d(x, u1) + s(d(u1, u2) + d(u2, y))]

for all x, y, u1, u2 ∈ X. Since s ∈ P, e � s, from Lemma 1.6 (a), we have that
d(x, u1) � sd(x, u1) and sd(x, u1) � s2d(x, u1). So,

(2.5) d(x, y) � s2[d(x, u1) + d(u1, u2) + d(u2, y)]

for all x, y, u1, u2 ∈ X. Since r(k) < 1, there exists p1 ∈ N such that

(2.6) r2(s)rp1(k) < 1.

We note that r(s) exists because of Lemma 1.5. Using the inequality (2.5), we get

d(xm, xn) � s2[d(xm, xm+p1) + d(xm+p1 , xn+p1) + d(xn+p1 , xn)].

Using (2.2), from the above inequality, we get

d(xm, xn) � s2[kmd(x0, xp1
) + kp1d(xm, xn) + knd(xp1

, x0)].

Therefore,

(e− s2kp1)d(xm, xn) � s2[kmd(x0, xp1
) + knd(xp1

, x0)]

Since k commutes with s, by Lemma 1.9 and Lemma 1.10, we obtain that

r(s2kp1) ≤ r2(s)rp1(k) < 1

and (e− s2kp1) is invertible. Therefore,

d(xn, xm) � (e− s2kp1)−1[kmd(x0, xp1
) + knd(xp1

, x0)].

Now, Lemma 1.4 and Lemma 1.8 implicate that {xn} is a Cauchy sequence.
Let v = 2. Then similar to the case v = 1, only in the inequality (2.5) instead

of s2, we have s we get that {xn} is a Cauchy sequence.
Let v ≥ 3. Similar to earlier, since r(k) < 1, there exists p0 ∈ N such that

(2.7) r(s)r(k)p0 < 1.

From (2.2), we obtain

d(xm, xm+p0) � kmd(x0, xp0),

d(xm+p0
, xn+p0

) � kp0d(xm, xn),

d(xn+p0 , xn+p0+1) � kn+p0d(x0, x1),

...

d(xn+p0+v−3, xn+p0+v−2) � kn+p0+v−3d(x0, x1),

d(xn+p0+v−2, xn) � knd(xp0+v−2, x1).
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So, we get

d(xm, xn) � s[d(xm, xm+p0) + d(xm+p0 , xn+p0)) + d(xn+p0 , xn+p0+1)

+ d(xn+p0+1, xn+p0+2) + · · ·+ d(xn+p0+v−3, xn+p0+v−2)

+ d(xn+p0+v−2, xn))]

� s[kmd(x0, xp0) + kp0d(xm, xn)) + kn+p0d(x0, x1)

+ kn+p0+1d(x0, x1) + · · ·+ kn+p0+v−3(d(x0, x1)

+ knd(xp0+v−2, x0))].

It follows that

(2.8) (e− skp0)d(xm, xn) � c1km + c2k
n,

where the elements c1 and c2 are given with c1 = sd(x0, xp0
) and c2 = s[d(x0, x1)×

(kp0 + · · ·+ kp0+v−3) + d(xp0+v−2, x0)]. Since k commutes with s, by Lemma 1.9
and Lemma 1.10, we obtain that

r(skp0) ≤ r(s)r(k)p0 < 1

and (e− skp0) is invertible. Therefore, we conclude that

d(xn, xm) � (e− skp0)−1(c1k
m + c2k

n).

From Lemma 1.4 and Lemma 1.8, {xn} is a Cauchy sequence.
Since X is complete, there exists x∗ ∈ X such that {xn} converges to x∗. Now,

we obtain that x∗ is the unique fixed point of T . Namely, for any n ∈ N, we have

d(x∗, Tx∗) � s[d(x∗, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·
+ d(xn+v−2, xn+v−1) + d(xn+v−1, xn+v) + d(xn+v, Tx

∗)]

� s[d(x∗, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·
+ d(xn+v−2, xn+v−1) + d(xn+v−1, xn+v) + d(Txn+v−1, Tx

∗)]

≤ s[d(x∗, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·
+ d(xn+v−2, xn+v−1) + d(xn+v−1, xn+v) + kd(xn+v−1, x

∗)].

Since {d(x∗, xn)} is a c-sequence and d(xn, xn+1) � knd(x0, x1), we also get that
{dxn, xn+1)} is a c-sequence. We deduce d(x∗, Tx∗) = θ, i.e., Tx∗ = x∗.

For uniqueness, let y∗ be another fixed point of T . It follows from (2.1) that

d(x∗, y∗) = d(Tx∗, Ty∗) � kd(x∗, y∗).

Using Lemma 1.6, we have d(x∗, y∗) = θ, i.e., x∗ = y∗. �

We present the following example illustrating Theorem 2.3.

Example 2.4. (The case of a non-normal cone) Let A = C1
R [0, 1] and ‖a‖ =

‖a‖∞ + ‖a′‖∞ be its norm. Consider the usual pointwise multiplication as its
multiplication. Clearly, A is a Banach algebra with the unit e (t) = 1 for all
t ∈ [0, 1] . Put P = {a ∈ A : a = a (t) ≥ 0, t ∈ [0, 1]} . Then P is a non-normal cone
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(well-known). Let X = A ∪ B, where A =
{

1
2 ,

1
3 ,

1
4 ,

1
5

}
and B = [1, 2]. Define

d : X ×X → P as 
d
(
1
2 ,

1
3

)
(t) = d

(
1
4 ,

1
5

)
, (t) = 0.03t,

d
(
1
2 ,

1
5

)
(t) = d

(
1
4 ,

1
3

)
, (t) = 0.03t,

d
(
1
2 ,

1
4

)
(t) = d

(
1
3 ,

1
5

)
, (t) = 0.6t,

d (x, y) (t) = |x− y|2 t, otherwise.

Clearly, (X, d) is a cone b2 (4)−metric space over Banach algebra A with a non-
normal cone. But, (X, d) is neither a cone metric space, nor a rectangular cone

metric space. Again, consider T : X → X as Tx =

{
1
4 if x ∈ A,
1
5 if x ∈ B. Then T satisfies

the conditions of Theorem 2.3 and has a unique fixed point, which is x = 1
4 .

Remark 2.5. 1. Theorem 2.3 improves [12, Theorem 2.1] of Huang, Radenović
and Deng (see Theorem 1.12).

2. Theorem 2.3 improves the result of George et al. [10] (see Theorem 1.14).
3. Also, Theorem 2.3 improves the results of Mitrović and Radenović [22],

Suzuki [26], and Mitrović [21].

Our second main result is a fixed point theorem of Kannan type [17].

Theorem 2.6. Let (X, d) be a complete cone bv(s)-metric space over Banach
algebra A and T : X → X be a mapping satisfying

(2.9) d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)]

for all x, y ∈ X, where k ∈ P such that r(k) < 1
2 . Then T has a unique fixed point

x∗ and for any x0 ∈ X the sequence {Tnx0} converges to x∗ if one of the following
conditions is satisfied:
(i) r(sk) < 1, (ii) r(s) < 2.

Proof. Let x0∈X be arbitrary and xn =Txn−1 =Tnx0 for all n∈N. We have

d(xn+1, xn) = d(Txn, Txn−1) � k[d(Txn, xn) + d(Txn−1, xn−1)]

� kd(xn+1, xn) + kd(xn, xn−1).

So,

(2.10) (e− k)d(xn+1, xn) � kd(xn, xn−1).

Since r(k) < 1
2 , by Lemma 1.5, we obtain that (e− k) is invertible. Hence,

d(xn, xn+1) � (e− k)−1kd(xn−1, xn).

Let h = (e − k)−1k. Since k commutes with (e − k)−1, from Lemma 1.5 and
Lemma 1.10, we have

(2.11) r(h) = r(k(e− k)−1) ≤ r(k)r((e− k)−1) ≤ r(k)

1− r(k)
< 1.

Therefore,

(2.12) d(xn, xn+1) � hnd(x0, x1).
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Now, for n,m ∈ N with m > n, from (2.12), we have

d(xn, xm) � k[d(xn, xn−1) + d(xm, xm−1)] � k[hn−1d(x1, x0) + hm−1d(x1, x0)]

� k[hn−1 + hm−1]d(x1, x0).

Thus, {xn} is a Cauchy sequence in X using Lemma 1.4 and Lemma 1.8. By
completeness of (X, d), there exists x∗ ∈ X such that

(2.13) lim
n→∞

xn = x∗.

Now, we obtain that x∗ is the unique fixed point of T .
Case 1: Let r(sk) < 1. For each n ∈ N, we have

d(x∗, Tx∗) � s[d(x∗, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·
+ d(xn+v−2, xn+v−1) + d(xn+v−1, xn+v) + d(xn+v, Tx

∗)]

� s[d(x∗, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·
+ d(xn+v−2, xn+v−1) + d(xn+v−1, xn+v) + d(Txn+v−1, Tx

∗)]

≤ s[d(x∗, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·
+ d(xn+v−2, xn+v−1) + d(xn+v−1, xn+v)

+ k(d(xn+v−1, Txn+v−1) + d(x∗, Tx∗)].

Since {d(x∗, xn)} is a c-sequence and d(xn, xn+1) � knd(x0, x1), we also get that
{dxn, xn+1) is a c-sequence, so we have (e− sk)d(x∗, Tx∗) � un, where {un} is a
c-sequence. Since r(sk) < 1, we obtain d(x∗, Tx∗) � (e− sk)−1un. So, Tx∗ = x∗.
Case 2: r(s) < 2. Clearly, condition (ii) implies condition (i).

For uniqueness, let y∗ be another fixed point of T . It follows from (2.9) that
d(x∗, y∗) = d(Tx∗, T y∗) � k[d(x∗, Tx∗) + d(y∗, T y∗)] = θ. Therefore, we must
have d(x∗, y∗) = θ, i.e., x∗ = y∗. �
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27. Xu S. and Radenović S., Fixed point theorems of generalized Lipschitz mappings on cone

metric spaces over Banach algebra without assumption of normality, Fixed Point Theory

Appl. 102 (2014), 1–12.
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