ON BANACH AND KANNAN TYPE RESULTS IN CONE $b_{v}(s)$-METRIC SPACES OVER BANACH ALGEBRA

Z. D. MITROVIĆ, H. AYDI and S. RADENOVIĆ

Abstract

In this paper, the concept of a cone $b_{v}(s)$-metric space over Banach algebra is introduced as a generalization of metric spaces, rectangular metric spaces, b-metric spaces, rectangular b-metric spaces, v-generalized metric spaces, cone b-metric spaces over Banach algebra and rectangular cone b-metric spaces over Banach algebra. We also give Banach and, Kannan fixed point results in cone $b_{v}(s)$-metric spaces over Banach algebra. Some examples are provided as well.

1. Introduction and preliminaries

Bakhtin [5] and Czerwik [8] introduced b-metric spaces (a generalization of metric spaces) and proved the Banach contraction principle in this framework. In the last period, many authors obtained fixed point results for single-valued or set-valued functions in the setting of b-metric spaces, see $[\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{1 8}]$.

In a b-metric space (X, d) with coefficient $s \geq 1$, the modified triangular inequality is

$$
d(x, z) \leq s[d(x, y)+d(y, z)]
$$

for all $x, y, z \in X$. In 2000, Branciari [6] introduced the concept of rectangular metric spaces (in short RMS) by replacing the sum on the right hand-side of the triangular inequality in the definition of a metric space by a three-term expression and proved an analogue of the Banach Contraction Principle on such spaces. Here, $d(x, y) \leq d(x, u)+d(u, v)+d(v, y)$ for all $x, y \in X$ and all distinct points $u, v \in$ $X \backslash\{x, y\}$. In [11], George et al. introduced the concept of a rectangular b-metric space, generalizing the concept of rectangular metric spaces and b-metric spaces. Here, there exists a real number $s \geq 1$ such that $d(x, y) \leq s[d(x, u)+d(u, v)+$ $d(v, y)]$ for all $x, y \in X$ and all distinct points $u, v \in X \backslash\{x, y\}$. Note that a rectangular b-metric space is not necessarily Hausdorff. Moreover, the analogue of Banach contraction principle on rectangular b-metric spaces was provided by Mitrović [21]. Branciari [6] also introduced the following concept.

[^0]Definition $1.1([\mathbf{6}])$. Let X be a set, d be a function from $X \times X$ into $[0, \infty)$, and $v \in \mathbb{N}$. Then (X, d) is said to be a v-generalized metric space if the following hold:
(N1) $d(x, y)=0$ if and only if $x=y$,
(N2) $d(x, y)=d(y, x)$ for all $x, y \in X$,
(N3) $d(x, y) \leq d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+\cdots+d\left(u_{v}, y\right)$ for all $x, u_{1}, u_{2}, \ldots, u_{v}, y \in X$ such that $x, u_{1}, u_{2}, \ldots, u_{v}, y$ are all different.

Recently, Suzuki et al. [26] gave the analogue of the Banach contraction principle in v-generalized metric spaces. Very recently, Mitrović and Radenović [22] introduced the notion of $b_{v}(s)$-metric spaces and established some fixed point theorems in such spaces.

Definition $1.2([\mathbf{2 2}])$. Let X be a non-empty set. Let d be a function from $X \times X$ into $[0, \infty)$ and $v \in \mathbb{N}$. Then (X, d) is said to be a $b_{v}(s)$-metric space if for all $x, y \in X$ and for all distinct points $u_{1}, u_{2}, \ldots, u_{v} \in X$, each of them different from x and y the following holds:
(B1) $d(x, y)=0$ if and only if $x=y$,
(B2) $d(x, y)=d(y, x)$,
(B3) there exists a real number $s \geq 1$ such that

$$
d(x, y) \leq s\left[d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+\cdots+d\left(u_{v}, y\right)\right] .
$$

Note that

- a $b_{1}(1)$-metric space is an usual metric space,
- a $b_{1}(s)$-metric space is a b-metric space with coefficient s of Bakhtin and Czerwik,
- a $b_{2}(1)$-metric space is a rectangular metric space,
- a $b_{2}(s)$-metric space is a rectangular b-metric space with coefficient s of George et al.,
- a $b_{v}(1)$-metric space is a v-generalized metric space of Branciari.

On the other hand, by replacing the set of real numbers which forms the domain of distance functions with a complete normed space, Huang and Zang [15] obtained cone metric spaces. Further, some generalizations of cone metric spaces, also appeared in literature. Recently, Liu and Xu [19] reported the concept of cone metric spaces over Banach algebra and proved the contraction principle in such spaces. The concept defined by Liu and $\mathrm{Xu}[\mathbf{1 9}]$ was further generalized by Huang and Radenović $[\mathbf{1 3}, \mathbf{1 4}]$ by introduction of cone b-metric spaces over Banach algebra. This concept was again generalized by George et al. [10] by introduction of rectangular cone b-metric spaces over Banach algebra.

In the following, we always suppose that \mathcal{A} is a Banach algebra with a unit e, P is a solid cone in \mathcal{A}, and \preceq is a partial ordering with respect to P.

Definition $1.3([\mathbf{2 7}])$. Let P be a solid cone in a Banach algebra \mathcal{A}. A sequence $\left\{x_{n}\right\} \subset P$ is said to be a c-sequence if for each $c \gg \theta$, there exists a natural number n_{0} such that $x_{n} \ll c$ for all $n \geq n_{0}$.

Lemma $1.4([\mathbf{1 3}])$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two c-sequences in a solid cone P. If $a, b \in P$ are two given vectors, then $\left\{a x_{n}+b y_{n}\right\}$ is also a c-sequence.

Lemma 1.5 ([24]). Let \mathcal{A} be a Banach algebra with a unit e and $k \in \mathcal{A}$, then $\lim _{n \rightarrow \infty}\left\|k^{n}\right\|^{\frac{1}{n}}$ exists and the spectral radius $r(k)$ satisfies

$$
r(k)=\lim _{n \rightarrow \infty}\left\|k^{n}\right\|^{\frac{1}{n}}=\inf _{n \geq 1}\left\|k^{n}\right\|^{\frac{1}{n}} .
$$

If $r(k)<|\lambda|$, then $\lambda e-k$ is invertible in \mathcal{A}. Moreover,

$$
(\lambda e-k)^{-1}=\sum_{i=0}^{\infty} \frac{k^{i}}{\lambda^{i+1}},
$$

where λ is a constant.
Lemma 1.6 ([25]). Let $P \subset \mathcal{A}$ be a cone.
(a) If $a, b \in \mathcal{A}, c \in P$ and $a \preceq b$, then $c a \preceq c b$.
(b) If $a, k \in P$ are such that $r(k)<1$, and $a \preceq k a$, then $a=\theta$.
(c) If $k \in P$ and $r(k)<1$, then for any fixed $m \in \mathbb{N}$ we have $r\left(k^{m}\right)<1$.

Lemma $1.7([\mathbf{1 6}])$. If $u \preceq v$ and $v \ll w$, then $u \ll w$.
Lemma 1.8 ([13]). Let \mathcal{A} be a Banach algebra with a unit e. Let $k \in \mathcal{A}$ and $r(k)<1$. Then $\left\{k^{n}\right\}$ is a c-sequence.

Lemma 1.9 ([24]). Let \mathcal{A} be a Banach algebra with a unit e and $a, b \in \mathcal{A}$. If a commutes with b, then

$$
r(a+b) \leq r(a)+r(b), r(a b) \leq r(a) r(b)
$$

Lemma 1.10 ([14]). Let \mathcal{A} be a Banach algebra with a unit e and $k \in \mathcal{A}$. If λ is a constant and $r(k)<|\lambda|$, then

$$
r\left((\lambda e-k)^{-1}\right) \leq \frac{1}{|\lambda|-r(k)}
$$

The concept defined by Liu and $\mathrm{Xu}[\mathbf{1 9}]$ was further generalized by Huang and Radenović $[\mathbf{1 3}, \mathbf{1 4}]$ by introduction of cone b-metric spaces over Banach algebra.

Definition 1.11 ([14]). Let X be a nonempty set and $s \in P$ with $e \preceq s$. Suppose that the mapping $d: X \times X \rightarrow \mathcal{A}$ satisfies:
(i) $\theta \prec d(x, y)$ for all $x, y \in X$, with $x \neq y$, and $d(x, y)=\theta$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$,
(iii) $d(x, y) \preceq s[d(x, z)+d(z, y)]$ for all $x, y, z \in X$. Then d is called a cone b-metric on X and (X, d) is called a cone b-metric space over Banach algebra \mathcal{A}.

In [12], the following theorem was proved.
Theorem 1.12 ([12]). Let (X, d) be a b-complete cone b-metric space over Banach algebra with $s \in P$ and $e \preceq s$. Suppose that $T: X \rightarrow X$ is a mapping such that for all $x, y \in X$,

$$
d(T x, T y) \preceq k d(x, y),
$$

where $k \in P$ is a generalized Lipschitz constant with $r(k)<1$. Then T has a unique fixed point in X.

The rectangular cone b-metric space over Banach algebra was introduced by George et al. $[\mathbf{1 0}]$ as a generalization of a metric space and many of its generalizations (b-metric space, rectangular metric space, rectangular b-metric space, cone metric space, rectangular cone metric space, cone b-metric space over Banach algebra).

Definition $1.13([\mathbf{1 0}])$. Let X be a nonempty set. Let $d: X \times X \rightarrow \mathcal{A}$ satisfies (RCbM1) $d(x, y)=\theta$ if and only if $x=y$,
(RCbM2) $d(x, y)=d(y, x)$ for all $x, y \in X$,
(RCbM3) there exists $s \in P$ with $e \preceq s$ such that

$$
d(x, y) \preceq s[d(x, u)+d(u, v)+d(v, y)]
$$

for all $x, y \in X$ and all distinct points $u, v \in X \backslash\{x, y\}$.
Then d is called a rectangular cone b-metric on X and (X, d) is called a rectangular cone b-metric space over Banach algebra (in short, RCbMS-BA) with coefficient s. If $s=e$, we say that (X, d) is a rectangular cone metric space over Banach algebra (in short, RCMS-BA).

Theorem $1.14([\mathbf{1 0}])$. Let (X, d) be a complete $R C b M S-B A$ over \mathcal{A} with $s \in P$ such that $e \preceq s$. Given $T: X \rightarrow X$. If there exist $\lambda \in P$ and $r(\lambda)<1$ such that

$$
d(T x, T y) \preceq \lambda d(x, y)
$$

for all $x, y \in X$, then T has a unique fixed point.
Remark 1.15. Note that in Theorem 3.5. in the paper [10], there is a printing error. Namely, instead of $\theta \preceq s$, there must be condition $s \geq e$.

In this paper, we initiate the concept of cone $b_{v}(s)$-metric spaces over Banach algebra. We also provide some related fixed point results for Banach and Kannan contractions types.

2. Main results

The concept of cone $b_{v}(s)$-metric spaces over Banach algebra is given as follows.
Definition 2.1. Let X be a nonempty set. Let $d: X \times X \rightarrow \mathcal{A}$ satisfies
$\left(\mathrm{C} b_{v} 1\right) \theta \preceq d(x, y)$ and $d(x, y)=\theta$ if and only if $x=y$,
$\left(\mathrm{C}_{v} 2\right) \quad d(x, y)=d(y, x)$ for all $x, y \in X$,
$\left(\mathrm{C} b_{v} 3\right)$ there exists $s \in P$ with $e \preceq s$ such that

$$
d(x, y) \preceq s\left[d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+\cdots+d\left(u_{v}, y\right)\right]
$$

for all $x, y \in X$ and all distinct elements $u_{1}, u_{2}, \ldots, u_{v} \in X \backslash\{x, y\}$.
Then (X, d) is called a cone $b_{v}(s)$-metric space over Banach algebra with coefficient s such that $s \in P$ and $e \preceq s$. In the case that $s=e$, we say that (X, d) is a Branciari cone metric space over Banach algebra.

Definitions of convergent sequence, Cauchy sequence and completeness in cone $b_{v}(s)$-metric space over Banach algebra go on the same line as those one of cone b-metric spaces over Banach algebra given in the papers $[\mathbf{1 3}, \mathbf{1 4}]$ of Huang and Radenović.

Definition 2.2. Let (X, d) be a cone $b_{v}(s)$-metric space over Banach algebra $\mathcal{A}, x \in X$, and $\left\{x_{n}\right\}$ be a sequence in X. Then
(i) $\left\{x_{n}\right\}$ converges to x whenever for every $c \gg \theta$, there is a natural number N such that $d\left(x_{n}, x\right) \ll c$ for all $n \geq N$,
(ii) $\left\{x_{n}\right\}$ is a Cauchy sequence whenever for every $c \gg \theta$, there is a natural number N such that $d\left(x_{n}, x_{m}\right) \ll c$ for all $n, m \geq N$,
(iii) (X, d) is complete if every Cauchy sequence is convergent.

Our first main result is the analogue of the Banach contraction principle on cone $b_{v}(s)$-metric spaces over Banach algebra.

Theorem 2.3. Let (X, d) be a complete cone $b_{v}(s)$-metric space over Banach algebra \mathcal{A}. Let $k \in P$ be such that k commutes with s and $r(k)<1$. Let $T: X \rightarrow X$ be such that

$$
\begin{equation*}
d(T x, T y) \preceq k d(x, y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, then T has a unique fixed point.
Proof. Let $x_{0} \in X$ be arbitrary and $x_{n}=T x_{n-1}=T^{n} x_{0}$. From (2.1), we have

$$
\begin{aligned}
d\left(x_{m+p}, x_{n+p}\right) & =d\left(T x_{m+p-1}, T x_{n+p-1}\right) \\
& \preceq k d\left(x_{m+p-1}, x_{n+p-1}\right) \preceq k^{2} d\left(x_{m+p-2}, x_{n+p-2}\right) \\
& \vdots \\
& \preceq k^{p} d\left(x_{m}, x_{n}\right) .
\end{aligned}
$$

So,

$$
\begin{equation*}
d\left(x_{m+p}, x_{n+p}\right) \preceq k^{p} d\left(x_{m}, x_{n}\right) \tag{2.2}
\end{equation*}
$$

for all $m, n, p \in \mathbb{N}$.
If $x_{n}=x_{n+1}$, then x_{n} is a fixed point of T and the proof holds. Now, suppose that $x_{n} \neq x_{n+1}$ for all $n \geq 0$. We will prove that $x_{n} \neq x_{n+p}$ for all $n \geq 0, p \geq 1$. Namely, if $x_{n}=x_{n+p}$ for some $n \geq 0$ and $p \geq 1$, we have $T x_{n}=T x_{n+p}$ and $x_{n+1}=x_{n+p+1}$. Then (2.1) implies that

$$
d\left(x_{n+1}, x_{n}\right)=d\left(x_{n+p+1}, x_{n+p}\right) \preceq k^{p} d\left(x_{n+1}, x_{n}\right) .
$$

From Lemma 1.6, we obtain that $d\left(x_{n+1}, x_{n}\right)=\theta$, i.e., $x_{n+1}=x_{n}$ is a contradiction. Thus, we obtain that $x_{n} \neq x_{m}$ for all distinct $n, m \in \mathbb{N}$. Let us consider the following three cases:

- $v=1$,
- $v=2$,
- $v \geq 3$.

Let $v=1$. Then (X, d) is a cone $b_{1}(s)$-metric space over Banach algebra. From condition $\left(\mathrm{Cb}_{1} 3\right)$, we have

$$
\begin{equation*}
d(x, y) \preceq s\left[d\left(x, u_{1}\right)+d\left(u_{1}, y\right)\right] \tag{2.3}
\end{equation*}
$$

for all $x, y, u_{1} \in X$. From (2.3), we obtain

$$
\begin{equation*}
d(x, y) \preceq s\left[d\left(x, u_{1}\right)+s\left(d\left(u_{1}, u_{2}\right)+d\left(u_{2}, y\right)\right)\right] \tag{2.4}
\end{equation*}
$$

for all $x, y, u_{1}, u_{2} \in X$. Since $s \in P, e \preceq s$, from Lemma 1.6 (a), we have that $d\left(x, u_{1}\right) \preceq s d\left(x, u_{1}\right)$ and $s d\left(x, u_{1}\right) \preceq s^{2} d\left(x, u_{1}\right)$. So,

$$
\begin{equation*}
d(x, y) \preceq s^{2}\left[d\left(x, u_{1}\right)+d\left(u_{1}, u_{2}\right)+d\left(u_{2}, y\right)\right] \tag{2.5}
\end{equation*}
$$

for all $x, y, u_{1}, u_{2} \in X$. Since $r(k)<1$, there exists $p_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
r^{2}(s) r^{p_{1}}(k)<1 \tag{2.6}
\end{equation*}
$$

We note that $r(s)$ exists because of Lemma 1.5. Using the inequality (2.5), we get

$$
d\left(x_{m}, x_{n}\right) \preceq s^{2}\left[d\left(x_{m}, x_{m+p_{1}}\right)+d\left(x_{m+p_{1}}, x_{n+p_{1}}\right)+d\left(x_{n+p_{1}}, x_{n}\right)\right] .
$$

Using (2.2), from the above inequality, we get

$$
d\left(x_{m}, x_{n}\right) \preceq s^{2}\left[k^{m} d\left(x_{0}, x_{p_{1}}\right)+k^{p_{1}} d\left(x_{m}, x_{n}\right)+k^{n} d\left(x_{p_{1}}, x_{0}\right)\right] .
$$

Therefore,

$$
\left(e-s^{2} k^{p_{1}}\right) d\left(x_{m}, x_{n}\right) \preceq s^{2}\left[k^{m} d\left(x_{0}, x_{p_{1}}\right)+k^{n} d\left(x_{p_{1}}, x_{0}\right)\right]
$$

Since k commutes with s, by Lemma 1.9 and Lemma 1.10, we obtain that

$$
r\left(s^{2} k^{p_{1}}\right) \leq r^{2}(s) r^{p_{1}}(k)<1
$$

and $\left(e-s^{2} k^{p_{1}}\right)$ is invertible. Therefore,

$$
d\left(x_{n}, x_{m}\right) \preceq\left(e-s^{2} k^{p_{1}}\right)^{-1}\left[k^{m} d\left(x_{0}, x_{p_{1}}\right)+k^{n} d\left(x_{p_{1}}, x_{0}\right)\right] .
$$

Now, Lemma 1.4 and Lemma 1.8 implicate that $\left\{x_{n}\right\}$ is a Cauchy sequence.
Let $v=2$. Then similar to the case $v=1$, only in the inequality (2.5) instead of s^{2}, we have s we get that $\left\{x_{n}\right\}$ is a Cauchy sequence.
Let $v \geq 3$. Similar to earlier, since $r(k)<1$, there exists $p_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
r(s) r(k)^{p_{0}}<1 \tag{2.7}
\end{equation*}
$$

From (2.2), we obtain

$$
\begin{aligned}
d\left(x_{m}, x_{m+p_{0}}\right) & \preceq k^{m} d\left(x_{0}, x_{p_{0}}\right), \\
d\left(x_{m+p_{0}}, x_{n+p_{0}}\right) & \preceq k^{p_{0}} d\left(x_{m}, x_{n}\right), \\
d\left(x_{n+p_{0}}, x_{n+p_{0}+1}\right) & \preceq k^{n+p_{0}} d\left(x_{0}, x_{1}\right), \\
& \vdots \\
d\left(x_{n+p_{0}+v-3}, x_{n+p_{0}+v-2}\right) & \preceq k^{n+p_{0}+v-3} d\left(x_{0}, x_{1}\right), \\
d\left(x_{n+p_{0}+v-2}, x_{n}\right) & \preceq k^{n} d\left(x_{p_{0}+v-2}, x_{1}\right) .
\end{aligned}
$$

So, we get

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) \preceq & s\left[d\left(x_{m}, x_{m+p_{0}}\right)+d\left(x_{m+p_{0}}, x_{n+p_{0}}\right)\right)+d\left(x_{n+p_{0}}, x_{n+p_{0}+1}\right) \\
& +d\left(x_{n+p_{0}+1}, x_{n+p_{0}+2}\right)+\cdots+d\left(x_{n+p_{0}+v-3}, x_{n+p_{0}+v-2}\right) \\
& \left.\left.+d\left(x_{n+p_{0}+v-2}, x_{n}\right)\right)\right] \\
\preceq & s\left[k^{m} d\left(x_{0}, x_{p_{0}}\right)+k^{p_{0}} d\left(x_{m}, x_{n}\right)\right)+k^{n+p_{0}} d\left(x_{0}, x_{1}\right) \\
& +k^{n+p_{0}+1} d\left(x_{0}, x_{1}\right)+\cdots+k^{n+p_{0}+v-3}\left(d\left(x_{0}, x_{1}\right)\right. \\
& \left.\left.+k^{n} d\left(x_{p_{0}+v-2}, x_{0}\right)\right)\right] .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left(e-s k^{p_{0}}\right) d\left(x_{m}, x_{n}\right) \preceq c_{1} k^{m}+c_{2} k^{n} \tag{2.8}
\end{equation*}
$$

where the elements c_{1} and c_{2} are given with $c_{1}=s d\left(x_{0}, x_{p_{0}}\right)$ and $c_{2}=s\left[d\left(x_{0}, x_{1}\right) \times\right.$ $\left.\left(k^{p_{0}}+\cdots+k^{p_{0}+v-3}\right)+d\left(x_{p_{0}+v-2}, x_{0}\right)\right]$. Since k commutes with s, by Lemma 1.9 and Lemma 1.10, we obtain that

$$
r\left(s k^{p_{0}}\right) \leq r(s) r(k)^{p_{0}}<1
$$

and $\left(e-s k^{p_{0}}\right)$ is invertible. Therefore, we conclude that

$$
d\left(x_{n}, x_{m}\right) \preceq\left(e-s k^{p_{0}}\right)^{-1}\left(c_{1} k^{m}+c_{2} k^{n}\right) .
$$

From Lemma 1.4 and Lemma 1.8, $\left\{x_{n}\right\}$ is a Cauchy sequence.
Since X is complete, there exists $x^{*} \in X$ such that $\left\{x_{n}\right\}$ converges to x^{*}. Now, we obtain that x^{*} is the unique fixed point of T. Namely, for any $n \in \mathbb{N}$, we have

$$
\begin{aligned}
d\left(x^{*}, T x^{*}\right) \preceq & s\left[d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\cdots\right. \\
& \left.+d\left(x_{n+v-2}, x_{n+v-1}\right)+d\left(x_{n+v-1}, x_{n+v}\right)+d\left(x_{n+v}, T x^{*}\right)\right] \\
\preceq & s\left[d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\cdots\right. \\
& \left.+d\left(x_{n+v-2}, x_{n+v-1}\right)+d\left(x_{n+v-1}, x_{n+v}\right)+d\left(T x_{n+v-1}, T x^{*}\right)\right] \\
\leq & s\left[d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\cdots\right. \\
& \left.+d\left(x_{n+v-2}, x_{n+v-1}\right)+d\left(x_{n+v-1}, x_{n+v}\right)+k d\left(x_{n+v-1}, x^{*}\right)\right] .
\end{aligned}
$$

Since $\left\{d\left(x^{*}, x_{n}\right)\right\}$ is a c-sequence and $d\left(x_{n}, x_{n+1}\right) \preceq k^{n} d\left(x_{0}, x_{1}\right)$, we also get that $\left.\left\{d x_{n}, x_{n+1}\right)\right\}$ is a c-sequence. We deduce $d\left(x^{*}, T x^{*}\right)=\theta$, i.e., $T x^{*}=x^{*}$.

For uniqueness, let y^{*} be another fixed point of T. It follows from (2.1) that

$$
d\left(x^{*}, y^{*}\right)=d\left(T x^{*}, T y^{*}\right) \preceq k d\left(x^{*}, y^{*}\right) .
$$

Using Lemma 1.6, we have $d\left(x^{*}, y^{*}\right)=\theta$, i.e., $x^{*}=y^{*}$.
We present the following example illustrating Theorem 2.3.
Example 2.4. (The case of a non-normal cone) Let $\mathcal{A}=C_{\mathbb{R}}^{1}[0,1]$ and $\|a\|=$ $\|a\|_{\infty}+\left\|a^{\prime}\right\|_{\infty}$ be its norm. Consider the usual pointwise multiplication as its multiplication. Clearly, \mathcal{A} is a Banach algebra with the unit $e(t)=1$ for all $t \in[0,1]$. Put $P=\{a \in \mathcal{A}: a=a(t) \geq 0, t \in[0,1]\}$. Then P is a non-normal cone
(well-known). Let $X=A \cup B$, where $A=\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right\}$ and $B=[1,2]$. Define $d: X \times X \rightarrow P$ as

$$
\begin{cases}d\left(\frac{1}{2}, \frac{1}{3}\right)(t)=d\left(\frac{1}{4}, \frac{1}{5}\right), & (t)=0.03 t \\ d\left(\frac{1}{2}, \frac{1}{5}\right)(t)=d\left(\frac{1}{4}, \frac{1}{3}\right), & (t)=0.03 t \\ d\left(\frac{1}{2}, \frac{1}{4}\right)(t)=d\left(\frac{1}{3}, \frac{1}{5}\right), & (t)=0.6 t \\ d(x, y)(t)=|x-y|^{2} t, & \text { otherwise. }\end{cases}
$$

Clearly, (X, d) is a cone $b_{2}(4)$-metric space over Banach algebra \mathcal{A} with a nonnormal cone. But, (X, d) is neither a cone metric space, nor a rectangular cone metric space. Again, consider $T: X \rightarrow X$ as $T x=\left\{\begin{array}{c}\frac{1}{4} \text { if } x \in A, \\ \frac{1}{5} \text { if } x \in B \text {. }\end{array}\right.$ Then T satisfies the conditions of Theorem 2.3 and has a unique fixed point, which is $x=\frac{1}{4}$.

Remark 2.5. 1. Theorem 2.3 improves [12, Theorem 2.1] of Huang, Radenović and Deng (see Theorem 1.12).
2. Theorem 2.3 improves the result of George et al. [10] (see Theorem 1.14).
3. Also, Theorem 2.3 improves the results of Mitrović and Radenović [22], Suzuki [26], and Mitrović [21].

Our second main result is a fixed point theorem of Kannan type [17].
Theorem 2.6. Let (X, d) be a complete cone $b_{v}(s)$-metric space over Banach algebra \mathcal{A} and $T: X \rightarrow X$ be a mapping satisfying

$$
\begin{equation*}
d(T x, T y) \leq k[d(x, T x)+d(y, T y)] \tag{2.9}
\end{equation*}
$$

for all $x, y \in X$, where $k \in P$ such that $r(k)<\frac{1}{2}$. Then T has a unique fixed point x^{*} and for any $x_{0} \in X$ the sequence $\left\{T^{n} x_{0}\right\}$ converges to x^{*} if one of the following conditions is satisfied:
(i) $r(s k)<1$,
(ii) $r(s)<2$.

Proof. Let $x_{0} \in X$ be arbitrary and $x_{n}=T x_{n-1}=T^{n} x_{0}$ for all $n \in \mathbb{N}$. We have

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}\right)=d\left(T x_{n}, T x_{n-1}\right) & \preceq k\left[d\left(T x_{n}, x_{n}\right)+d\left(T x_{n-1}, x_{n-1}\right)\right] \\
& \preceq k d\left(x_{n+1}, x_{n}\right)+k d\left(x_{n}, x_{n-1}\right) .
\end{aligned}
$$

So,

$$
\begin{equation*}
(e-k) d\left(x_{n+1}, x_{n}\right) \preceq k d\left(x_{n}, x_{n-1}\right) . \tag{2.10}
\end{equation*}
$$

Since $r(k)<\frac{1}{2}$, by Lemma 1.5, we obtain that $(e-k)$ is invertible. Hence,

$$
d\left(x_{n}, x_{n+1}\right) \preceq(e-k)^{-1} k d\left(x_{n-1}, x_{n}\right) .
$$

Let $h=(e-k)^{-1} k$. Since k commutes with $(e-k)^{-1}$, from Lemma 1.5 and Lemma 1.10, we have

$$
\begin{equation*}
r(h)=r\left(k(e-k)^{-1}\right) \leq r(k) r\left((e-k)^{-1}\right) \leq \frac{r(k)}{1-r(k)}<1 . \tag{2.11}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \preceq h^{n} d\left(x_{0}, x_{1}\right) . \tag{2.12}
\end{equation*}
$$

Now, for $n, m \in \mathbb{N}$ with $m>n$, from (2.12), we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) \preceq k\left[d\left(x_{n}, x_{n-1}\right)+d\left(x_{m}, x_{m-1}\right)\right] & \preceq k\left[h^{n-1} d\left(x_{1}, x_{0}\right)+h^{m-1} d\left(x_{1}, x_{0}\right)\right] \\
& \preceq k\left[h^{n-1}+h^{m-1}\right] d\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence in X using Lemma 1.4 and Lemma 1.8. By completeness of (X, d), there exists $x^{*} \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=x^{*} \tag{2.13}
\end{equation*}
$$

Now, we obtain that x^{*} is the unique fixed point of T.
Case 1: Let $r(s k)<1$. For each $n \in \mathbb{N}$, we have

$$
\begin{aligned}
d\left(x^{*}, T x^{*}\right) \preceq & s\left[d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\cdots\right. \\
& \left.+d\left(x_{n+v-2}, x_{n+v-1}\right)+d\left(x_{n+v-1}, x_{n+v}\right)+d\left(x_{n+v}, T x^{*}\right)\right] \\
\preceq & s\left[d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\cdots\right. \\
& \left.+d\left(x_{n+v-2}, x_{n+v-1}\right)+d\left(x_{n+v-1}, x_{n+v}\right)+d\left(T x_{n+v-1}, T x^{*}\right)\right] \\
\leq & s\left[d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\cdots\right. \\
& +d\left(x_{n+v-2}, x_{n+v-1}\right)+d\left(x_{n+v-1}, x_{n+v}\right) \\
& +k\left(d\left(x_{n+v-1}, T x_{n+v-1}\right)+d\left(x^{*}, T x^{*}\right)\right] .
\end{aligned}
$$

Since $\left\{d\left(x^{*}, x_{n}\right)\right\}$ is a c-sequence and $d\left(x_{n}, x_{n+1}\right) \preceq k^{n} d\left(x_{0}, x_{1}\right)$, we also get that $\left\{d x_{n}, x_{n+1}\right)$ is a c-sequence, so we have $(e-s k) d\left(x^{*}, T x^{*}\right) \preceq u_{n}$, where $\left\{u_{n}\right\}$ is a c-sequence. Since $r(s k)<1$, we obtain $d\left(x^{*}, T x^{*}\right) \preceq(e-s k)^{-1} u_{n}$. So, $T x^{*}=x^{*}$. Case 2: $r(s)<2$. Clearly, condition (ii) implies condition (i).

For uniqueness, let y^{*} be another fixed point of T. It follows from (2.9) that $d\left(x^{*}, y^{*}\right)=d\left(T x^{*}, T y^{*}\right) \preceq k\left[d\left(x^{*}, T x^{*}\right)+d\left(y^{*}, T y^{*}\right)\right]=\theta$. Therefore, we must have $d\left(x^{*}, y^{*}\right)=\theta$, i.e., $x^{*}=y^{*}$.

References

1. Aleksić S., Mitrović Z. D. and Radenović S., A fixed point theorem of Jungck in $b_{v}(s)$-metric spaces, Period. Math. Hungar. 77 (2) (2018), 224-231.
2. Ansari A. H., Barakat M. A. and Aydi H., New approach for common fixed point theorems via C-class functions in G_{p}-metric spaces, J. Funct. Spaces 2017 (2017), Art. ID 2624569, 9 pages.
3. Aydi H., Karapinar E., Bota M. F. and Mitrović S., A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012 (2012), 88.
4. Aydi H., Bota M. F., Karapinar E. and Moradi S., A common fixed point for weak ϕ contractions on b-metric spaces, Fixed Point Theory 13(2) (2012), 337-346.
5. Bakhtin I. A., The contraction mapping principle in quasimetric spaces, Funct. Anal., Ulianowsk Gos. Ped. Inst., 30 (1989), 26-37.
6. Branciari A., A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31-37.
7. Benavides T. D., Lorenzo J. and Gatica I., Some generalizations of Kannan's fixed point theorem in K-metric spaces, Fixed Point Theory 13(1) (2012), 73-83.
8. Czerwik S., Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11.
9. Dung N. V. and Hang V. T. L., On relaxations of contraction constants and Caristi's theorem in b-metric spaces, J. Fixed Point Theory Appl. 18 (2016), 267-284.
10. George R., Nabwey H. A., Rajagopalan R., Radenović S. and Reshma K. P., Rectangular cone b-metric space over Banach algebra and contraction principles, Fixed Point Theory Appl. 2017 (2017), Art. 14.
11. George R., Radenović S., Reshma K. P. and Shukla S., Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8 (2015), 1005-1013.
12. Huang H., Radenović S. and Deng G., A sharp generalization on cone b-metric space over Banach algebra, J. Nonlinear Sci. Appl. 10 (2017), 429-435.
13. Huang H. P. and Radenović S., Some fixed point results of generalised Lipchitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl. 20 (2016), 566-583.
14. Huang H. and Radenović S., Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl. 8 (2015), 787-799.
15. Huang L. G. and Zhang X., Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), 1468-1476.
16. Janković S., Kadelburg Z. and Radenović S., On cone metric spaces: a survey, Nonlinear Anal. 74 (2011), 2591-2601.
17. Kannan R., Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
18. Karapinar E., Czerwik S. and Aydi H., (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces, J. Funct. Spaces 2018 (2018), Art. ID 3264620, 4 pages.
19. Liu H. and Xu S., Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl. 320 (2013), 1-10.
20. Miculescu R. and Mihail A., New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl. 19 (2017), 2153-2163.
21. Mitrović Z. D., On an open problem in rectangular b-metric space, J. Anal. 25 (2017), 135-137.
22. Mitrović Z. D. and Radenović S., The Banach and Reich contractions in $b_{v}(s)$-metric spaces, J. Fixed Point Theory Appl. 19 (2017), 3087-3095.
23. Reich S., Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121-124.
24. Rudin W., Functional Analysis, McGraw-Hill, New York, 1991.
25. Shukla S., Balasubramanian S. and Pavlović M., A Generalized Banach fixed point theorem, Bull. Malays. Math. Sci. Soc. (2) 39(4), (2016), 1529-1539.
26. Suzuki T., Alamri B. and Khan L. A., Some notes on fixed point theorems in v-generalized metric space, Bull. Kyushu Inst. Tech. Pure Appl. Math. 62 (2015), 15-23.
27. Xu S. and Radenović S., Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebra without assumption of normality, Fixed Point Theory Appl. 102 (2014), 1-12.
Z. D. Mitrović, Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, and Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam,
e-mail: zoran.mitrovic@tdtu.edu.vn
H. Aydi, Université de Sousse, Institut Supérieur d'Informatique et des Techniques de Communication, H. Sousse 4000, Tunisia,
e-mail: hassen.aydi@isima.rnu.tn, hmaydi@iau.edu.sa
S. Radenović, Department of Mathematics, College of Science, King Saud University, Riyadh

11451, Saudi Arabia,
e-mail: radens@beotel.rs

[^0]: Received October 21, 2018; revised November 16, 2018.
 2010 Mathematics Subject Classification. Primary 47H10; Secondary 55M20.
 Key words and phrases. Fixed points; b-metric space; rectangular metric space; rectangular b-metric space; rectangular cone b-metric space over Banach algebra.

