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ESTIMATING THE SHORT RATE

FROM TERM STRUCTURES

IN THE CHAN-KAROLYI-LONGSTAFF-SANDERS MODEL

V. MOSNÝ and B. STEHLÍKOVÁ

Abstract. Short rate models are formulated in terms of a stochastic differential

equation for the instantaneous interest rate, so called short rate. The interest rates
with other maturities, forming the term structure of interest rates, are then deter-

mined by bond prices which are solutions to the partial differential equation. We

study the Chan-Karolyi-Longstaff-Sanders model and estimate the dependence of
volatility on the short rate using the observed term structures together with esti-

mating the unobservable short rate process. Starting with minimizing the sum of

squares of erros, we make two approximations of this original optimization problem:
Firstly, we relax the constraints regarding zero short rates and allow only positive

vales. Secondly, the partial differential equation for the bond prices has a closed

form solution only in special cases, so we use an analytical approximation formula
in a convenient form. Finally, we apply the proposed algorithm to real data.

1. Introduction

An interest rate is a rate charged for the use of money. It is related to a discount
bond, which is a security that pays its holder a unit amount of money at the
specified time T (called maturity of the bond). The price P (t, T ) at time t of a
discount bond with maturity T and the corresponding interest rate R(t, T ) are, in
case of continuous compounding, connected by a formula

P (t, T ) = e−R(t,T )(T−t), i.e., R(t, T ) = − logP (t, T )

T − t
.

Interest rates at a certain time t with different maturities T form the so called
term structure of interest rates. Its beginning (i.e., the limit limT→t+ R(t, T )) is
called the instantaneous interest rate or the short rate.
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Short rate models are formulated in terms of a stochastic differential equation
for the short rate r which has, in general, the form

(1) dr = µ(r, t)dt+ σ(r, t)dw,

where w is a Wiener process. After specifying the market price of risk λ = λ(r, t)
which provides an expected rise of the bond return for the unit rise of risk, the
bond price P = P (r, t) (as a function of r and t, treating T as a parameter) satisfies
the partial differential equation

(2)
∂P

∂t
+ (µ(r, t)− λ(r, t)σ(r, t))

∂P

∂r
+

1

2
σ2(r, t)

∂2P

∂r2
− rP = 0

for all r > 0, t ∈ (0, T ), with terminal conditionP (r, T ) = 1 for all r > 0. See, e.g.,
[2] and [11] for more details on short rate models.

In particular, if the drift function µ(r, t) in (1) is defined to be µ(r, t) = κ(θ−r)
for some constants κ, θ > 0, the model displays a mean-reversion feature: the short
rate is attracted to its long-term level θ. The function σ(r, t) then describes the
character of random fluctuations added to this trend. Many previously suggested
models can be nested within the choice σ(r, t) = σrγ , which was popularized by
an influencing paper [4]. Specifically, it nests two models which for a suitable
choice of market price of risk admit a closed form solution for the bond pricing
partial differential equation (2): Vasicek model [20] assuming constant volatility
and market price of risk (i.e., γ = 0 and λ(r, t) = λ) and Cox-Ingersoll-Ross (CIR
hereafter) model [6] assuming volatility and market price of risk being propor-
tional to the square root of the short rate (i.e., γ = 1/2 and λ(r, t) = λ

√
r). The

constant volatility of the short rate in the Vasicek model leads to its normal distri-
bution, which implies the possibility of negative interest rates. This can be indeed
observed, for example, at Euribor market (see [23]), but, for example, Canadian
rates have small values without reaching zero or becoming negative (see [22]). The
latter case corresponds to the case of γ > 0. The CIR model with its tractability
(explicit expression for the transition density of the short rate as well as the bond
prices) makes a popular choice. Empirical results suggest that it is meaningful to
study also the models with the general parameter γ, cf. the original paper [4],
for example, [7] for an application of Nowman method based on quasi maximum
likelihood or a recent paper [21] for an approach using Bayesian analysis. Note
that all these studies use a certain market time series which are considered to be
a proxy to the short rate process r.

Note that in the Vasicek and the CIR models, as described above, the bond
price is a function of four parameters κ, θ, σ, λ. However, actually they depend
only on three independent combinations of parameters. This is closely related to
the so called risk neutral probability measure which is an equivalent measure to
the real probability measure in which the rates are observed. Both models under
the risk neutral measure have the form

(3) dr = (α+ βr)dt+ σrγdw



ESTIMATING THE SHORT RATE IN THE CKLS MODEL 363

and the partial differential equation (2), after the transformation τ = T − t, can
be written as

(4) − ∂P

∂τ
+ (α+ βr)

∂P

∂r
+

1

2
σ2r2γ

∂2P

∂r2
− rP = 0

for all r > 0, τ ∈ (0, T ), with initial condition P (r, 0) = 1 for all r > 0. For a more
detailed treatment of the risk neutral measure, we again refer the reader to books
[2] and [11]. In what follows, we consider the risk neutral formulation (3) of the
Chan-Karolyi-Longstaff-Sanders (CKLS hereafter) model and the corresponding
partial differential equation (4).

Solving the partial differential equation (4) allows us to compute the bond prices
and interest rates for the given set of parameters. In practice, we are often faced
with an inverse problem: on the market we observe the interest rates and we are
interested in estimating the model parameters. Since the solution to the equation
(4) depends on the short rate r, this variable is needed to compute the bond prices
on the given day, as implied by the model. However, it is not observable in the
market; it is only a theoretical construction. In [9], this problem was addressed for
the case of Vasicek model. The special form of the bond price enables to estimate
the evolution of the short rate together with the model parameters by means of a
simple optimization problem. In the inner optimization problem the objective is a
quadratic function and the outer optimization is only a one variable optimization
problem.

This approach cannot be directly generalized to the CKLS model. The explicit
form of the bond price is known only in the case of the CIR model and even in this
case, it has a more complicated form, and so the previous procedure cannot be
applied. Papers [19] and [18] calibrated the CIR model using the exact solution
and even when taking the short rate as known, they used computationally complex
evolution algorithms to minimize the objective function. For the other choices of
parameter γ in (3), besides γ = 0 (Vasicek) and γ = 1/2 (CIR), the explicit
solution to (4) is not even available.

In the absence of a closed form solution, there are several possible approaches
to obtain an approximation: Monte Carlo simulations (cf. [8] for an overview of
Monte Carlo methods applied to financial mathematics), numerical solution of the
PDE (e.g., [13], [14], [15]), analytical approximation formulae (e.g., [3], [17], [16],
[10]). When used in the context of calibration, it has to be taken into account
that every evaluation of the objective function requires the computation of the
bond prices for all the maturities and short rates from the data set. This favours
analytical approximation formulae which are the least computationally complex.

In this paper, we use the approximation formula from [17]. Its simple form
allows us to propose and implement a calibration procedure for estimating short
rates in the CKLS model based on the term structure data. The paper is orga-
nized as follows: In the next section, we formulate the optimization problem and
its modification leading to a computationally simpler problem. Afterwards, we
propose the calibration algorithm The third section considers alternative approx-
imations of the bond prices and discusses their effect on calibration procedure.



364 V. MOSNÝ and B. STEHLÍKOVÁ

In the fourth section, we show a sample calibration on simulated data. The fifth
section contains the application of the algorithm to real data. We complete the
paper with concluding remarks in the fifth section.

2. Formulation of the optimization problem and its approximation

Let us consider the data of the interest rates Rij for i = 1, . . . , n and j = 1, . . . ,m.
Here, Rij is the interest rate with maturity τj observed on the i-th day. Following
[19], [18], [16] (cf. also [5] for a similar idea applied to a convergence model and
[12] where this approach was used in a model with cyclic behaviour separately for
each maturity), we define the objective function by

(5)

F =
1

mn

n∑
i=1

m∑
j=1

wij(R(ri, τj)−Rij))2

=
1

mn

n∑
i=1

m∑
j=1

wij
τ2j

(logP (ri, τj) +Rijτj)
2,

where wij are the weights. In what follows, we consider wij = 1, i.e., uniform
weights. We note that this is not the only meaningful choice, assigning more
weight to fitting interest rates with longer maturities was proposed in [19], [18].
However, later we introduce an approximation to compute the bond prices which
is more precise for shorter maturities, and therefore, we have chosen the uniform
weights as a certain compromise. The algorithm can be easily changed for any
choice of weights.

The function F is to be minimized with respect to the parameters of the model
and the short rate values ri. If γ = 0, there are no restrictions on ri, but in the case
of γ > 0, they have to be nonnegative. Furthermore, depending on the parameters,
the zero might be unattainable and the short rate has to be strictly positive. In
later steps we require strictly positive values of the short rate for all parameter
values, therefore we do not go into details now, but we refer the interested reader
to, for example, [1] for a discussion on the behaviour of short rate processes at the
zero boundary.

Since we do not have a closed form expression for logP , we replace it by an
approximation formula from [17], which is based on substituting the constant
volatility in the Vasicek bond price formula by the instantaneous volatility from
the CKLS model considered. We recall (see [20]) that in the Vasicek model we
have

lnP vas(r, τ) =

(
α

β
+

σ2

2β2

)(
1− eβτ

β
+ τ

)
+

σ2

4β3

(
1− eβτ

)2
+

1− eβτ

β
r.

The approximation, therefore, reads as

(6) lnP ap(r, τ) =

(
α

β
+
σ2r2γ

2β2

)(
1− eβτ

β
+ τ

)
+
σ2r2γ

4β3

(
1− eβτ

)2
+

1− eβτ

β
r.
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It can be shown (cf. [17, Theorem 4]) that logP ap − logP = O(τ4) as τ → 0+.
The paper [17] also provides numerical examples of the performance of the ap-
proximation.

For the calibration purposes, it is useful to write (6) as

(7) lnP ap(r, τ) = c0(τ)r + c1(τ)α+ c2(τ)σ2r2γ ,

where

c0 =
1− eβτ

β
, c1 =

1

β

(
1− eβτ

β
+ τ

)
,

c2 =
1

2β2

(
1− eβτ

β
+ τ +

(1− eβτ )2

2β

)
.

By inserting (7) into (5), the objective function takes the form

(8) F =
1

mn

n∑
i=1

m∑
j=1

wij
τ2j

(
c0(τj)ri + c1(τj)α+ c2(τj)σ

2r2γi +Rijτj

)2
.

If γ = 0, we have a quadratic function of variables α, σ2, r1, . . . , rn which was
studied in [9] dealing with estimation of the short rate in Vasicek model (note
that the approximation formula (7) which we use is exact in that case). In general,
there is a nontrivial nonlinearity.

The main idea of our procedure lies in the substitution

(9) yi = σ2r2γi

in the objective function (8). It results in the new objective function

(10) F̃ =
1

mn

n∑
i=1

m∑
j=1

wij
τ2j

(c0(τj)ri + c1(τj)α+ c2(τj)yi +Rijτj)
2
,

which we minimize with respect to α, β, σ2 (the model parameters), r1, . . . , rn
(short rates), and y1, . . . , yn (auxiliary variables). Both ri and yi are nonnega-
tive, but we see that a possibility of zero short rates for certain combinations of
parameters means a further condition: ri = 0 if and only if yi = 0. Without
this condition, for each β, we would solve a quadratic optimization problem with
certain variables restricted to be nonnegative, and find the optimal value of F̃ for
the given β. What we propose here is to disregard those values of β which, when
using unconstrained optimization, lead to some ri or yi that are zero (in practical
implementation the condition of being equal to zero is replaced by being less that
a chosen small number ε). We call them unfeasible. Therefore, the inner opti-
mization problem is a simple unrestricted quadratic optimization and moreover,
feasible values of β typically produce a reasonable range where we look for the
optimal β. This is a useful feature since the dependence of either optimal F̃ or
log F̃ on β is not necessarily convex. In practical realization of the calibration,
we minimize logF in the outer optimzation problem. We remark that this step is
independent of the choice of parameter γ, and therefore, it is performed only once.
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Note that the variables ri and yi are not independent, the substitution (9)

implies that the ratio yi/r
2γ
i is equal to a constant σ2. By treating them as

independent variables in the estimation procedure, we expect the values yi to be
approximations of σ2r2γi when using real data or data simulated from the exact

bond price formula. Also, the ratios yi/r
2γ
i should provide a good approximation

of σ2, by using their mean or median values as an estimate. In order to do this,
we need the value of γ. We estimate it as the value which gives the lowest value
of variation coefficient (defined as a ratio of standard deviation and mean) for the

values of the auxiliary variable yi/r
2γ
i (since theoretically it should be constant).

3. Choice of the approximation formula and the resulting
optimization problem

We note that the simple structure of the optimization problem (10) which, for
fixed values of γ and β, is a quadratic function of ri, yi (i = 1, 2, . . . , n) and α, is
a consequence of the approximation formula (6). In particular, for fixed values of
γ and β, and after a substitution y = σ2r2γ , the logarithm of the approximated
bond price is a linear function of r, α, and y. In this section, we review some
other possible approximation formulae. We note that out of the approximations
considered, only the approximation (6) has this desirable property.

Firstly, we recall that the approximation formula (6) is based on the closed form
solution for the bond price in the Vasicek model. Another one factor model with a
closed form solution is the model by Cox-Ingersoll-Ross [6] which corresponds to
the choice of γ = 1/2 in the stochastic differential equation (3). Using the same
idea, i.e., choosing the volatility parameter σ so that the instantaneous volatilities
of the CIR model and the CKLS model considered are equal, we arrive to a new
approximation formula. The logarithm of the approximated bond price is then
given by the CIR bond price formula (see [6])

lnP cir(r, τ) =
2α

σ2
ln

(
2φ e(φ−β)τ/2

(φ− β)(eφτ −1) + 2φ

)
− 2(eφτ −1)

(φ− β)(eφτ −1) + 2φ
r

with φ =
√
β2 + 2σ2, where we substitute σ by σrγ−1/2. Using the same reasoning

as in [16] and [17], we can derive the order of accuracy of this approximation. It
turns out that it is the same as in the approximation based on Vasick model, i.e.,
the difference of logarithms of exact and approximate solution is of order O(τ4)
as τ → 0+. However, the new approximation based on the CIR model lacks the
simple structure of the Vasicek-based approximation (6).

Another approximation, due to Choi and Wirjanto, was suggested in [3] and
subsequently analyzed in [17], where it is proved that the difference of logarithms
of exact and approximate solutions is of order O(τ5) as τ → 0+. It means that the
accuracy is higher by one order, compared to the accuracy of the approximation
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which we use here. However, the approximation reads as (see [3])

lnP ap,ch−w(τ, r) = −rB +
α

β
(τ −B) + (r2γ + qτ)

σ2

4β

[
B2 +

2

β
(τ −B)

]
− q σ

2

8β2

[
B2(2βτ − 1)− 2B

(
2τ − 3

β

)
+ 2τ2 − 6τ

β

]
,

where q(r) = γ(2γ − 1)σ2r2(2γ−1) + 2γr2γ−1(α+ βr) and B(τ) = (eβτ −1)/β, and
therefore, we cannot make a substitution similar to that one which we are going to
use. An alternative might be a definition of two auxiliary variables y = σ2r2γ , z =
σ2q(r). For fixed values of γ and β, the logarithm of the approximated bond price
is then linear in α, r, y, z. As we can see, this leads to an increase of parameters
estimated in the inner optimization step by n (we recall that n is the number of
days for which we have data). Furthermore, in the estimation of σ and γ, we need
to take two criteria into account, coming from definitions of auxiliary variables y
and z, which is not just a direct analogy of our approach.

Finally, we derive a new approximation. We consider a possibility of using an
approximation based on Vasicek model, but aiming for an approximation with
a higher order of accuracy. We show that this is indeed possible. However, the
formula which leads to an error of order O(τ5) as τ → 0+ has already a too compli-
cated form. Let us consider replacing the volatility σ2 in the Vasicek bond pricing
formula by a general function d(r, τ) which may depend on the instantaneous short
rate and the time remaining to maturity of the bond which we are pricing. We
use the methodology from [16] and [17], where the main step is the analysis of
the equation for g = fap − fex, which is shown to be

−∂g
∂τ

+
1

2
σ2r2γ

[(∂g
∂r

)2
+
∂2g

∂r2

]
+ (α+ βr)

∂g

∂r
= h(r, τ)− σ2r2γ

∂fex

∂r

∂g

∂r
.

Here, fex and fap are the logarithms of the exact and approximated bond prices,
respectively, and

h(τ, r) = −∂f
ap

∂τ
+

1

2
σ2r2γ

[(
∂fap

∂r

)2

+
∂2fap

∂r2

]
+ (α+ βr)

∂fap

∂r
− r.

If the function h is O(τω−1), then the order of g, i.e., the order accuracy of the
approximation formula, is O(τω). If we write the function d(r, τ) in a series form
d(r, τ) =

∑∞
i=0 di(r)τ

i, then by a direct substitution, we obtain the function h as

h(r, τ) =
1

2

(
σ2r2γ − d0

)
τ2

+
1

12

(
σ2r2γd′′0 + 2(α+ βr)d′0 + 6β

(
σ2r2γ − d0

)
− 8d1

)
τ3 +O(τ3).

It follows that we need to set d0 = σ2r2γ in order to have the function h of order at
least O(τ3) and subsequently the approximation of order at least O(τ4). The ap-
proximation which we use in this paper corresponds to taking d as a constant func-
tion of τ , i.e., di(r) = 0 for i ≥ 1. However, taking d1 = 1

8

[
σ2r2γd′′0 + 2(α+ βr)d′0

]
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with d0 = σ2r2γ leads to an approximation of order O(τ5). The simplest approxi-
mation of this form then takes the remaining di for i ≥ 2, equal to zero. However,
replacing the parameter σ2 by

(11) σ2 7→ σ2r2γ +
1

8

[
2γ(γ − 1)σ4r2γ−2 + 4γ(α+ βr)σ2r2γ−1

]
τ

once again leads to a more complicated approximation formula. We may substitute
the right hand side of (11) for y, which leads to the same first step of optimization
as we present in this paper. However, the second step would need a suitable
adjustment.

4. A sample calibration using simulated data

We illustrate this idea on simulated data. We consider the CIR model with pa-
rameters α = 0.00315, β = −0.0555, σ = 0.0894. The parameters are the same
as the risk neutral parameters used in [3] and [16] to check the proposed approx-
imations of the bond prices. We note that the approximation from [16] is used
in our calibration. In this case, we use these parameters as real probability mea-
sure parameters which is equivalent to assuming market price of risk. A different
market price of risk with the same risk neutral parameters would lead to the same
term structures but different distribution properties of the short rate (speed of
mean reversion, limiting value). For a simulation of the short rate, we use Euler-
Maruyama discretization. We note that the way of simulating them as well as
the choice of the market price of risk have no effect on the calibration precision
since the calibration is based only on fitting the term structures. We simulate one
trading year of daily data, where we consider 252 trading days. Afterwards, we
simulate the term structures using the exact closed form formula. We use the exact
closed form formula to simulate the term structures. We consider 12 maturities
randing from 1 to 12 quarters.

We illustrate the calibration procedure from the previous section in a series of
figures:

• In Figure 1, we show the dependence of F̃ and log F̃ as a function of β.
We distinguish the infeasible values of β (the higher value of the objective
function in these cases in the figure is only illustrative). Minimizing this
function with respect to β gives the estimate of β. The corresponding
optimal value of α is given by estimated coefficients in the linear regression
and in the same way we obtain also the estimated evolution of the short
rate.

• As explained above, the parameter γ is obtained by minimizing the coeffi-
cient of variation of the auxiliary variable yi/r

2γ
i (where both ri and yi were

obtained in the previous step by a linear regression), which is displayed in
Figure 2. For a comparison, the figure also shows a histogram of values
of the auxiliary variable obtained for the optimal γ and another selected
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value of γ. Finally, optimal γ allows us to estimate σ2 as the median of the
corresponding auxiliary variable.

• Figure 3 shows a comparison of the fitted yields with their observed values
and comparison of the estimated short rate with its exact behaviour. The
fitted yields are computed using the approximation formula (6) evaluated
with the estimated parameters and short rates values.

We note that results from this sample calibration are typical to those obtained
in another simulation with new simulated data. Therefore, the two quantities of
interest can be obtained with satisfactory results: We have a precise estimate of
the short rate and a reasonable estimate of the parameter γ which provides an
alternative to estimating it using a proxy for the short rate.

Additionally, we add noise to these term structures, which is simulated using
independent normally distributed variables with zero mean and standard deviation
equal to 3× 10−5, and repeat the calibration for new input data. Figure 4 shows
a comparison of the fitted yields with their observed values (which were an input
to calibration) and the exact values (which were treated as unknown during the
calibration, but were used to generate the observed values by adding noise to
them). Here we note that larger errors in fitting the observed term structures can
be caused by noise in the data, while comparison with exact values gives lower
errors.
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Figure 1. Optimal value of modified objective function F (left) and its logarithm (right) as a
function of parameter β for the simulated data.
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Figure 2. Estimation of the parameter γ by minimizing the coefficient of variation of the aux-
iliary variable for the simulated data: dependence of coefficient of variation on γ (left) and

comparison of histograms for auxiliary variable computed with optimal γ and γ = 0.4 (right).

Note higher variability of the auxiliary variable for a nonoptimal value of γ.
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Figure 3. Assessing the calibration using simulated data: error of fitted yields, compared with
real yields. The first boxplot shows the accuracy of estimated short rate which as an unobservable

variable does not enter the calibration but is only used to generate the term structures.
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Figure 4. Assessing the calibration using simulated data: error of fitted yields, compared with

real yields (without the added noise) and observed yields (with the added noise) for the simulated

data.

5. Application to real data

We apply the proposed algorithm to calibration of Canadian zero coupon yield
curves with maturities from 1 to 12 quarters from 2017 year [22]. We follow the
steps of the calibration procedure as described above. Here we note that for certain
input data, the dependence of either optimal (optimal for given β) F̃ or log F̃ on β
is not necessarily convex, as shown in Figure 5. We give answers to the following
two problems that we are interested in:

• estimation of the unobservable short rate,
• estimation of the form of volatility in terms of estimated parameter γ.

They are shown in Figure 6. We also show the quality of fitting the observed yield
curves in Figure 7 by boxplots of errors from yield curves fitting, similarly as in
case of the simulated data, but this time we naturally have no error for the short
rate, as it is an unobservable quantity.

We can notice that the behaviour of the estimated short rate changes around
the day 100. Before, at the beginning of the year, it has low values and around
this time we see a start of an increasing trend. This motivates us to divide the
data into two parts, the first one consisting of the first 100 days and the second
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Figure 5. Optimal value of modified objective function F (left) and its logarithm (right) as a
function of parameter β for the Canada data. We note the nonconvexity of both functions.
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Figure 6. Results from calibration of Canadian data: estimated short rate (left) and optimiza-

tion of the parameter γ by minimizing the coefficient of variation (right).

containing the last 100 days (the middle of the data set is omitted). Interestingly,
we get very different estimates of the parameter γ. In the first period it equals
approximately 1.486, while in the second period it is order 10−5 which is, when
restricted to nonnegative values, is essencially a zero, a Vasicek model. The shape
of the estimated short rate remains similar, although a little shifted upwards in
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Figure 7. Assessing the calibration using Canadian data: error of fitted yields, compared with

observed yields.

the first period and with a larger downwards shift in the second period. The fit is
better in the first period of the data, as it is shown in Figure 8.

6. Conclusions

We have proposed an algorithm for estimating the unobservable short rate together
with the risk neutral parameters of the CKLS process based on fitting the market
yield curves. In particular, we address the question of the correct form of the
volatility which is usually studied using a proxy for the short rate, selected from
the available market data. Several approximations used in the estimation make
the procedure quick and at the same time they give good results when tested on
simulated data.

We see three ways for the future research: Firstly, the approximations discussed
in Section 3 might be useful, in spite of their more complicated form. The ap-
proximation based on the CIR model yields positive interest rates, regardless of
the model parameters. The other two approximations have a higher order of ac-
curacy. It might be useful to try to find a simple procedure for calibration also in
these cases. Secondly, our estimation is based solely on fitting the term structures
and for every day we estimate the value of the short rate. This may cause an
overfitting of the model, and therefore, it would be useful to observe its predictive
power. In order to make predictions, we need not only risk neutral parameters
(which we can obtain using our methodology) but the parameters under the real
probability measure or equivalently, the market price of risk which allows us to
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Figure 8. Assessing the calibration using Canadian data in the two periods: comparison of

boxplots of the errors (left) and comparison of histograms of errors for interest rates with maturity
of 1.5 year, i.e., 6 quarters (right).

compute real parameters from the risk neutral ones. Therefore, a natural task is
to find a meaningful parametrization of the market price of risk and its subsequent
estimation. Finally, another possibility lies in studying other models for the given
data, such as multifactor models, estimating the short rate in these models and
comparing the results. We have seen in the simulation that errors in fitting the
observed yields can be caused by a noise in them, but naturally it can be also
caused by a misspecification of the model. Since multifactor models bring even
more parameters to estimate, the question of a possible overfitting needs to be
studied too, This brings us again to constriction of predictions.
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B. Stehĺıková, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská
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