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COFIBRATIONS IN THE CATEGORY

OF NONCOMMUTATIVE CW COMPLEXES

V. MILANI, S. M. H. MANSOURBEIGI and A.-A. REZAEI

Abstract. Cofibration in the category of noncommutative CW complexes is de-

fined. The C*-algebraic counterparts of topological mapping Cylinder and mapping
cone are presented as examples of noncommutative CW complex cofibres. As a

generalization, the concepts of noncommutative mapping cylindrical and conical

telescope are introduced to provide more examples of noncommutative CW com-
plex cofibres. Their properties and K-theoretic behavior are also studied in detail.

It is seen that they carry the properties similar to the topological properties of their

CW complex counterparts.

1. Introduction

The category of C*-algebras and *-homorphisms can be interpreted as the noncom-
mutative counterpart of the category of topological spaces and continuous maps
[1, 2, 8]. Its origin goes back to the Gelfand duality. The results of the paper [7]
known as the Gelfand-Naimark theorem provide a duality between the topology
of locally compact spaces and the algebraic structure of commutative C*-algebras.
The duality creates a dictionary between the two categories. Topological construc-
tions such as cofibrations, mapping cylinder and mapping cone are translated into
their C*-algebraic counterparts [12, 13]. In the absence of commutativity, the
dictionary may still contain noncommutative CW complexes (NCCW complexes)
as the C*-algebraic version of the topological CW complexes defined in [6]. The
noncommutativity comes from the fact that noncommutative CW complexes are
algebras of matrix-valued continuous functions. In [11], we studied some of the
geometric properties of noncommutative CW complexes. In this paper, we are
motivated by noncommutative constructions through NCCW complex examples
and study their topological properties. In this regard the paper is organized as
follows.

Section 2 is a review of basic tools: extensions, pullbacks, NCCW complexes
and their primary properties. Section 3 is devoted to the study of cofibrations
and cofibres in the category of NCCW complexes. In this section we explain the
C*-algebraic counterparts of the topological mapping cylinder and mapping cone.
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We apply the pull back point of view of Pedersen [12] to the class of NCCW
complexes. We show that the C*-algebraic mapping cylinder and mapping cone
defined in [13] are obtained through the pull back constructions and are examples
of NCCW complexes. We also calculate their dimensions. Our approach is different
from that of Diep in [3, 4, 5] who defined the noncommutative mapping cylinder
and cone in a different way as NCCW complexes. The key concept of this section
is the construction of examples for NCCW complex cofibrations and cofibres. In
Section 4, we generalize the concepts of the previous section to provide more
examples of NCCW complex cofibres and introduce noncommutative mapping
cylindrical and conical telescope. Their properties and K-theoretic behavior are
also studied in detail. We will see that they carry the properties similar to the
topological properties of their CW complex counterparts.

All throughout the paper C∗alg is the category of C*-algebras and *-homomorph-
isms as morphisms. The kernel of a morphism ϕ : A → B in this category is the
embedding kerϕ → A. We also use Pedersen abbreviation [12] “NCCW com-
plexes” for noncommutative CW complexes. The category of topological spaces
and continuous maps is denoted by Top.

2. Background

The notion of NCCW complexes was first introduced by Pedersen et al [6]. They
are in fact the C*-algebraic counterpart of topological CW complexes. We discuss
the category of noncommutatice CW complexes from [6] and refer to [9] for details
on topological CW complexes. First we review basic tools of pullbacks from [10,
12].

Notation. The following notations are used throughout this paper.

I = [0, 1], In = [0, 1]n, In0 = (0, 1)n.

For a C*-algebra A and a compact space X, XA = C(X → A) is the C*-algebra of
continuous functions on X with values in A, and if X is locally compact, C0(X →
A) is the C*-algebra of continuous functions on X vanishing at infinity. Also we
denote C(X → C) by C(X) and

IA = C(I→ A), InA = C(In → A)

In0A = C0(In0 → A), SnA = C(Sn → A).

Here In+1 r In+1
0 is identified with the unit sphere Sn.

(All the above sets together with the usual pointwise operations, and supremum
norm are C*-algebras).

Definition 2.1. For a C*-algebra A and for t ∈ I , the morphism

ev(t) : IA→ A, ev(t)f := f(t)

is called the evaluation map.

Definition 2.2 ([8]). Two morphisms α, β : A → B are said to be homotopic
if there exists a morphism H : A → IB called homotopy such that ev(1)H = α
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and ev(0)H = β. A is a retraction of B if there are morphisms i : A → B and
r : B → A such that ri = idA and ir is homotopic to the idB . The C*-algebra A
is contractible if its identity map idA is homotopic to the zero map.

Definition 2.3 ([10, 12]). Let A and C be two C*-algebras. An extension for
A with respect to C is a C*-algebra B together with two morphisms α and β for
which the following sequence is exact

0 −−→ A
α−−→ B

β−−→ C −−→ 0.

Definition 2.4 ([10, 12]). A pull-back for the C*-algebra C via morphisms
α1 : A1 → C and α2 : A2 → C is the C*-subalgebra PB of A1 ⊕A2 defined by

PB := {a1 ⊕ a2 ∈ A1 ⊕A2 : α1(a1) = α2(a2)}.
From now on the pull-back decomposition, notation PB := A1

⊕
C

A2 is used all

throughout this paper.

Remark 2.5. Since α1 and α2 are continuous maps, PB is closed in A1 ⊕ A2,
and so it is a C*-subalgebra.

Remark 2.6. It follows from the definition that the pull-back satisfies the fol-
lowing universality properties:
• It commutes the following diagram

PB
π2−−−−→ A2

π1

y yα2

A1
α1−−−−→ C

(π1 and π2 are projections onto the first and second coordinates).
• For any C*-algebra D and any two C*-morphisms δ1 : D → A1 and δ2 : D → A2

satisfying the following commutative diagram

D
δ2−−−−→ A2

δ1

y yα2

A1
α1−−−−→ C

there exists a unique C*-morphism ∆: D → PB which commutes the diagram

-

-
? ?

U

A1 C

PB A2

α1

π2

α2π1

∆ δ2

δ1

W

j

D
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Definition 2.7 ([6]). The noncommutative CW complexes are defined by in-
duction on their dimension as follows.
A NCCW complex of dimension zero is defined to be a finite linear dimensional
C*-algebra A0 corresponding to the decomposition A0 =

⊕
kMn(k) of finite di-

mensional matrix algebras.
In dimension n, a NCCW complex is defined as a sequence of C*-algebras
{A0, A1, . . . An}, where each Ak is obtained inductively from the previous one
by the following pullback construction

0 −−−−→ Ik0Fk −−−−→ Ak
π−−−−→ Ak−1 −−−−→ 0∥∥∥ yρk yσk

0 −−−−→ Ik0Fk −−−−→ Ik0Fk
∂−−−−→ Sk−1Fk −−−−→ 0.

In the above diagram, the rows are extensions, Fk is some C*-algebra of finite
dimension, ∂ – the boundary map – is the restriction morphism, σk the connecting
morphism can be any morphism, and finally, ρk and π are projections onto the
first and second factors in the pullback decomposition

Ak = Ik0Fk
⊕

Sk−1Fk

Ak−1.

Example 2.8. C(I) is a 1-dimensional NCCW complex. To see this, let F1 = C,
A0 = C ⊕ C and A1 = C(I), then we have I10F1 = C0((0, 1)), I1F1 = C(I), and
S0F1 = C⊕ C. The pullback construction diagram becomes

0 −−−−→ C0((0, 1)) −−−−→ C(I) π−−−−→ C⊕ C −−−−→ 0∥∥∥ yρ1 y
0 −−−−→ C0((0, 1)) −−−−→ C(I) ∂−−−−→ C⊕ C −−−−→ 0.

where C(I) is identified with

C(I) ' {f ⊕ (λ⊕ µ) ∈ C(I)⊕ (C⊕ C) : f(0) = λ, f(1) = µ}

= C(I)
⊕
C⊕C

(C⊕ C).

For each f ∈ C(I) and λ, µ ∈ C,

π(f ⊕ (λ⊕ µ)) = λ⊕ µ
ρ1(f ⊕ (λ⊕ µ)) = f

∂f = f(0)⊕ f(1).

Now the sequence {A0 = C ⊕ C, A1 = C(I)} makes C(I) into a 1-dimensional
NCCW complex. In a similar way we can see that both C0((0, 1]) and C0((0, 1))
are 1-dimensional NCCW complexes. We go back to this construction from a
different point of view in the following sections.
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Remark 2.9 ([12]). It follows from the definition of NCCW complexes that for
each n-dimensional NCCW complex An, a decreasing family of closed ideals, called
canonical ideals, corresponds

An = I0 ⊃ I1 ⊃ · · · ⊃ In−1 ⊃ In 6= 0,

where In = In0Fn and for each k ≥ 1, Ik/Ik+1 = Ik0Fk. Moreover, for each 0 ≤ k ≤
n− 1, An/Ik+1 is a k-dimensional NCCW complex.

Example 2.10. For the NCCW complex of C(I), the canonical ideals are

C(I) = I0 ⊃ I1 = I10F1 = C0((0, 1)).

The noncommutative analog of simplicial maps between CW complexes are
defined as follows.

Definition 2.11 ([6]). A simplicial morphism from the n-dimensional NCCW
complex An into them-dimensional NCCW complex Bm is a mapping α :An →Bm
satisfying the following two conditions:
• If

An = I0 ⊃ I1 ⊃ · · · ⊃ In−1 ⊃ In 6= 0

Bm = J0 ⊃ J1 ⊃ · · · ⊃ Jm−1 ⊃ Jm 6= 0

are the sequences of canonical ideals for An and Bm, then α(Ik) ⊂ Jk for all k.
Particularly α(Ik) = 0 for k > m.
• For 0 ≤ k ≤ n, if Ik/Ik−1 = Ik0Fk, Jk/Jk−1 = Ik0Gk and α̃k : Ik0Fk −→ Ik0Gk is
the homomorphism induced by α, then there exist a morphism ϕk : Fk −→ Gk and
a homeomorphism ik of Ik0 such that α̃k = i∗k ⊗ϕk, where i∗k : C0(Ik0) −→ C0(Ik0) is
induced by ik. Here Ik0Fk is identified with C0(Ik0)⊗ Fk and the same for Ik0Gk.

The category of NCCW complexes and simplicial morphisms is denoted by
Cnccw.

Remark 2.12. Some facts on simplicial morphisms are stated here. For more
details on the proof, see [12].

1. The kernel and the image of a simplicial morphism are NCCW complexes.

2. The pullback of a NCCW complex C via simplicial morphisms α : An → C
and β : Bm → C is a NCCW complex of dimension max{n,m}.

3. If An and Bm are NCCW complexes of dimensions n,m, respectively, then
their tensor product An ⊗ Bm is a NCCW complex of dimension n + m.
Moreover, for each k ≤ n, l ≤ m, the quotient morphism

An ⊗Bm → Ak ⊗Bl
onto the tensor product of subcomplexes is a simplicial morphism.

3. Cofibrations in the category NCCW complexes

In this section, we review the concept of cofibration in the category C∗alg from

[13, 14] and modify it to define cofibrations on the category Cnccw. We see how
the C*-algebraic mapping cylinder and mapping cone defined in [13] are obtained
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through the pull back constructions of [12] and study their relation with cofibra-
tions and cofibres in the category Cnccw.

The notion of cofibration in the category C∗alg is the C*-algebraic translation of
the concept of fibration for the category Top. It is defined in the following way.

Definition 3.1 ([13, 14]). A morphism f : A→ B in the category C∗alg is called
a cofibration if it satisfies the following property.

Given a C*-algebra D, a homotopy g : D → IB and a morphism g0 : D → A
lifting g at zero, i.e., fg0(x) = g(x)(0), then there exists a homotopy h : D → IA
lifting g, i.e., h(x)(0) = g0(x) and f(h(x)(t)) = g(x)(t) for x ∈ D, t ∈ I.

Remark 3.2. A cofibration is surjective [14].

Definition 3.3. A cofibration in the category of NCCW complexes Cnccw is a
cofibration in the category C∗alg which is also simplicial. The kernel of a cofibration
is called a cofiber.

Proposition 3.4. For each NCCW complex A of dimension n, IA is a NCCW
complex of dimension n+ 1. Moreover, the evaluation map ev(1) : IA→ A defined
by f 7→ f(1) is a simplicial morphism and a cofibration (the same is true for ev(t0)
for each t0 ∈ I).

Proof. IA can be identified with the tensor product C(I)⊗A. So it is a NCCW
complex of dimension n+1. A is embedded in IA and we can regard A as a NCCW
subcomplex of IA. ev(1) (and also ev(t0) for each t0 ∈ I), is a quotient morphism,
and so by the property §3 of remark 2.12, it is simplicial morphism.

To show that it is a cofibration, let D be a C*-algebra and G : D → IA be a
homotopy with a lift g0 : D → IA at zero, i.e., (ev(1)g0)(d) = G(d)(0) for d ∈ D.
Define the homotopy H : D → I(IA) by

H(d)(t) = ft

for d ∈ D and t ∈ I. Let g0(d) = f , then f(1) = G(d)(0). ft must be defined so
that

ev(1)(H(d)(t)) = G(d)(t) =⇒ ft(1) = G(d)(t)

H(d)(0) = g0(d) =⇒ f0 = f.

Set

f̂t(s) =


G(d)(t− 2s) 0 ≤ s ≤ t

2

f
(2− 2s

2− t

) t

2
≤ s ≤ 1.

Now set ft(s) = f̂t(1− s).
In the same way we can see ev(t0) is a cofibration. �

Example 3.5. C0((0, 1]) is a cofiber. To see this, we notice that C is a zero di-
mensional NCCW complex with the only nonzero ideal C. Now by Proposition 3.4,
C(I) = IC is a 1=dimensional NCCW complex. Moreover, the evaluation map

ev(0) : C(I) −→ C, f 7−→ f(0),
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is a simplicial cofibration. Its kernel is C0((0, 1]) which is the cofiber of this
cofibration. Also from property §1 of remark 2.12, C0((0, 1]) is a NCCW complex.
Its dimension is one, because it is not of finite linear dimension(and so it is not a
0-dimensional NCCW complex). C0([0, 1)) being identical to C0((0, 1]) is a NCCW
complex of dimension one. In a similar way, C0((0, 1)) is the kernel of the simplicial
morphism

β : C0((0, 1]) −→ C, f 7−→ f(1)

and so it is a 1-dimensional NCCW complex cofiber.

Definition 3.6 ([13]). For a morphism α : A → B in the category C∗alg, the
noncommutative mapping cylinder is defined by

Cyl(α) := {a⊕ f ∈ A⊕ IB : f(1) = α(a)}.

Proposition 3.7. For an arbitrary morphism α : A→ B between C*-algebras,
the induced morphism p : Cyl(α) → B defined by p(a, f) = f(0) for (a, f) ∈
Cyl(α), is a cofibration in the category C∗alg.

Proof. See [13]. �

Proposition 3.8. If An and Bm are NCCW complexes of dimensions n,m,
respectively, and if α : An → Bm is a simplicial morphism, then Cyl(α) is a NCCW
complex of dimension max{n,m+ 1}.

Proof. Cyl(α) satisfies the following pullback diagram

Cyl(α)
π2−−−−→ IBm

π1

y yev(1)
An

α−−−−→ Bm,

where π1 and π2 are projections onto the first and second coordinates.
IBm is a NCCW complex of dimension m+ 1, ev(1) and α are simplicial mor-

phisms in the pullback diagram for Cyl(α). Now it follows from Remark 2.12 that
Cyl(α) is a NCCW complex of dimension max{n,m+ 1}. �

Definition 3.9 ([9, 13]). For a C*-algebra A, the noncommutative cone over
A, CA, and the noncommutative suspension of A, SA, respectively, are defined by

CA := {f ∈ IA; f(0) = 0}
SA := {f ∈ IA; f(0) = f(1) = 0}.

Remark 3.10. It follows that:
• SA ⊂ CA ⊂ IA.

• CA is contractible.

• SA is contractible only if A is contractible.
See[15] for details.

Proposition 3.11. For every NCCW complex A of dimension n, the cone CA
and the suspension SA are NCCW complexes of dimension n+ 1.
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Proof. This follows from Example 3.5, property §3 of Remark 2.12, and the
following identifications

CA = C0((0, 1])→ A) ' C0((0, 1])⊗A
SA = C0((0, 1))→ A) ' C0((0, 1))⊗A.

�

Definition 3.12 ([13]). For a morphism α : A→ B, the noncommutative map-
ping cone of α is defined by

Cone(α) := {a⊕ f ∈ A⊕ CB : f(1) = α(a)}.

Proposition 3.13. If α : An → Bm is a morphism between NCCW complexes
of dimension n and m, then Cone(α) is a cofiber in the category Cnccw. Moreover,
if α is a simplicial morphism, then Cone(α) is a NCCW complex of dimension
max{n,m+ 1}.

Proof. By Propositions 3.7 and 3.8, the morphism p : Cyl(α) → Bm induced
by α is a cofibration with Cone(α) as its kernel. So Cone(α) is a cofiber for this
cofibration. Also Cone(α) satisfies the following pullback diagram

Cone(α)
π2−−−−→ CBm

π1

y yev(1)
An

α−−−−→ Bm.

where π1 and π2 are projections onto the first and second coordinates.
Since CBm is a NCCW complex of dimension m+ 1, ev(1) and α are simplicial

morphisms in the pullback diagram for Cone(α), it follows from Remark 2.12 that
Cone(α) is a NCCW complex of dimension max{n,m+ 1}. �

Remark 3.14. Since CB ⊂ IB, so for any *-morphism α, we have the inclusion
Cone(α) ⊂ Cyl(α). Also for the zero morphism 0: A→ B, we have

Cone(0) = {a⊕ f ∈ A⊕ CB : f(1) = 0} = A⊕ C0((0, 1)→ b) = A⊕ SB
Cyl(0) = {a⊕ f ∈ A⊕ IB : f(1) = 0} = A⊕ C0([0, 1)→ B) ' A⊕ CB.

Proposition 3.15. For the morphism α : A → B between C*-algebras, A is a
retraction of Cyl(α).

Proof. Let π : Cyl(α) → A be given by π(a ⊕ f) := a and η : A → Cyl(α) by
η(a) := a⊕α(a), where α(a) denotes the constant map t 7→ α(a). Then π◦η = idA.
Now let the homotopy ψ : Cyl(α)→ ICyl(α) be defined by

ψ(a⊕ f) : I −→ Cyl(α), t 7−→ a⊕ ft,
where ft : I→ B is defined as ft(s) = f((1− s)t+ s) for each s ∈ I. Then we can
see that

ψ(a⊕ f)(0) = a⊕ f = idCyl(α)(a⊕ f)

ψ(a⊕ f)(1) = a⊕ f(1) = a⊕ α(a) = η ◦ π(a⊕ f)),

and so η ◦ π and idCyl(α) are homotopic. �
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4. Noncommutative mapping cylindrical and conical telescope

In this part we generalize the notions of noncommutative mapping cylinder and
noncommutative mapping cone. Conditions for the existence of their NCCW com-
plex structure are specified. It is seen that they provide examples of NCCW
complex cofibers. Their topological properties are studied in detail.

Definition 4.1. For a sequence of length n of C*-algebras

A1
α1−−−→ A2

α2−−−→ · · · αn−1−−−→ An
αn−−−→ An+1,

the NC mapping cylindrical telescope is defined by

Tn := {a⊕ f2 ⊕ · · · ⊕ fn+1 ∈ A1 ⊕ IA2 ⊕ · · · ⊕ IAn+1 :

fk+1(1) = αk ◦ αk−1 ◦ · · · ◦ α1(a), k = 1, 2, . . . , n}.

Since each αk is continuous, Tn is a closed subalgebra of the C*-algebra A1 ⊕
IA2 ⊕ · · · ⊕ IAn+1, and hence is itself a C*-algebra. Also we note that for n = 1,
T1 = Cyl(α1).

Proposition 4.2. For each n ≥ 2, Tn−1 is a retraction of Tn.

Proof. The proof is done by induction on n. For n = 1, let β2 : T1 → A3

be defined by β2(a ⊕ f2) = α2 ◦ α1(a). Then β2 is a C*-morphism and from
Proposition 3.15, T1 is a retraction of Cyl(β2). But Cyl(β2) = T2, since

Cyl(β2) = {(a⊕ f2)⊕ f3 ∈ T1 ⊕ IA3 : β2(a⊕ f2) = f3(1)}
= {a⊕ f2 ⊕ f3 ∈ A1 ⊕ IA2 ⊕ IA3 : f2(1) = α1(a), f3(1) = α2 ◦ α1(a)}
= T2.

Now by induction, if we define βn : Tn−1 → An+1 by βn(a ⊕ f2 ⊕ · · · ⊕ fn) =
αn ◦ αn−1 ◦ · · · ◦ α1(a), we see that Tn−1 is a retraction of Tn. �

Corollary 4.3. For the sequence of Definition 4.1, A1 is a retraction of Tn.

Proof. From the Proposition 4.2, Tn retracts to T1 = Cyl(α1) and since by
Proposition 3.15, Cyl(α1) retracts to A1, so A1 is a retraction of Tn. �

Corollary 4.4. For the sequence of Definition 4.1, K0(A1) = K0(T1) = · · · =
K0(Tn).

Proposition 4.5. For the sequence of Definition 4.1, if αm ◦ αm−1 ◦ · · · ◦
αm−k = 0 for some k < m ≤ n, then

Tn ' Tm−1 ⊕
( n+1⊕
i=m+1

CAi

)
.
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Proof.

Tn = {a⊕ f2 ⊕ · · · ⊕ fn+1 ∈ A1 ⊕ IA2 ⊕ · · · ⊕ IAn+1 :

fk+1(1) = αk ◦ αk−1 ◦ · · · ◦ α1(a), k = 1, 2, . . . , n}
= {a⊕ f2 ⊕ · · · ⊕ fn+1 ∈ A1 ⊕ IA2 ⊕ · · · ⊕ IAn+1 :

fk+1(1) = αk ◦ αk−1 ◦ · · · ◦ α1(a), 1 ≤ k < m, fk+1(1) = 0, m ≤ k ≤ m}
' Tm−1 ⊕ CAm+1 ⊕ · · · ⊕ CAn+1.

�

Corollary 4.6. For the exact sequence A1
α1−→ A2

α2−→ · · · αn−1−−−→ An
αn−−→ An+1

of length n, Tn ' Tn−1 ⊕ CAn+1 and in particular,

Tn ' Cyl(α1)⊕
( n+1⊕
i=3

CAi

)
.

Proposition 4.7. If A1
α1−−−−→ A2

α2−−−−→ · · · αn−1−−−→ An
αn−−−−→ An+1 is

a sequence of simplicial morphisms between NCCW complexes of dimensions
m1,m2, . . . ,mn+1 then Tn is a NCCW complex of dimension max{m1, 1 + m2,
1 +m3, . . . , 1 +mn+1}.

Proof. Since α1 : A1 → A2 is a simplicial morphism, by Proposition 3.8, T1 =
Cyl(α1) is a NCCW complex of dimension max{m1, 1 + m2}. Let β2 : T1 → A3

be the *-morphisms of Proposition 4.2. Since α1 and α2 are simplicial morphisms,
then so is β2, and T2 = Cyl(β2) is a NCCW complex of dimension max{max{m1,
1 +m2}, 1 +m3} = max{m1, 1 +m2, 1 +m3}. Inductively, the morphism

βn : Tn−1 −→ An+1, a⊕ f2 ⊕ · · · ⊕ fn 7−→ αn ◦ αn−1 ◦ · · · ◦ α1(a)

is simplicial, and so Tn = Cyl(βn) is a NCCW complex of dimension max{m1,
1 +m2, 1 +m3, . . . , 1 +mn+1}. �

Definition 4.8. Let A1
α1−−→ A2

α2−−→ · · · αn−1−−−→ An
αn−−→ An+1 be a sequence of

morphisms between C*-algebras. The NC mapping conical telescope is defined as

TnC := {a⊕ f2 ⊕ · · · ⊕ fn+1 ∈ A1 ⊕ CA2 ⊕ · · · ⊕ CAn+1 :

fk+1(1) = αk ◦ αk−1 ◦ · · · ◦ α1(a), k = 1, 2, . . . , n}.

As in the case Tn, for n = 1, T1C = Cone(α1).

Proposition 4.9. For the sequence of Definition 4.1, if αm ◦ αm−1 ◦ · · · ◦
αm−k=0 for some k < m ≤ n, then

TnC = Tm−1C ⊕
( n+1⊕
i=m+1

SAi

)
.
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Proof.

TnC = {a⊕ f2 ⊕ · · · ⊕ fn+1 ∈ A1 ⊕ CA2 ⊕ · · · ⊕ CAn+1 :

fk+1(1) = αk ◦ αk−1 ◦ · · · ◦ α1(a), k = 1, 2, . . . , n}
= {a⊕ f2 ⊕ · · · ⊕ fn+1 ∈ A1 ⊕ CA2 ⊕ · · · ⊕ CAn+1 :

fk+1(1) = αk ◦ αk−1 ◦ · · · ◦ α1(a), 1 ≤ k < m, fk+1(1) = 0, m ≤ k ≤ m}
= Tm−1C ⊕ SAm+1 ⊕ · · · ⊕ SAn+1.

�

Corollary 4.10. If the sequence of definition 4.1 is exact, then TnC = Tn−1⊕
SAn+1, and in particular,

TnC = Cone(α1)⊕
( n+1⊕
i=3

SAi

)
.

Proposition 4.11. For each sequence of length n > 1, there is an exact se-
quence

0 −→ SAn+1 −→ TnC −→ Tn−1 −→ 0

Proof. Let i : SAn+1 → TnC be the inclusion morphism f 7→ 0 ⊕ 0 ⊕ · · · ⊕ f
and π : TnC → Tn−1C be the projection a⊕ f2 ⊕ · · · ⊕ fn+1 7→ a⊕ f2 ⊕ · · · ⊕ fn,
then kerπ = i(SAn+1). �

Proposition 4.12. For each sequence of length n, there exists an exact sequence

0 −→ TnC −→ Tn −→
n+1⊕
k=2

Ak −→ 0.

Proof. Let i : TnC → Tn be the obvious inclusion and p : Tn →
n+1⊕
k=2

Ak be

defined by p(a⊕ f2 ⊕ · · · ⊕ fn+1) := f2(0)⊕ · · · ⊕ fn+1(0). Then ker p = TnC. �

Proposition 4.13. Let

(4.1) A1
α1−−−−→ A2

α2−−−−→ · · · αn−1−−−→ An
αn−−−−→ An+1

be an arbitrary sequence of length n of C*-algebras, then:
• All the morphisms

pj : Tn → Aj , pj(a⊕ f2 ⊕ · · · ⊕ fn+1) = fj(0)

for j = 2, . . . , n+ 1 are cofibrations.

• The morphism p : Tn → A2 ⊕ · · · ⊕An+1 defined by

p(a⊕ f2 ⊕ · · · ⊕ fn+1) = (f2(0)⊕ · · · ⊕ fn+1(0))

is a cofibration.

• TnC is a cofiber of the cofibration p.
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Proof. Fix j. Let a homotopy G : D → IAj and a lift g0 : D → Tn, of G at zero
be given. So pjg0(d) = G(d)(0) for d ∈ D. Write g0(d) = (a⊕ f2⊕, . . . ,⊕fn+1) so
that for k = 1, 2, . . . , n,

fk+1(1) = αk ◦ αk−1 ◦ · · · ◦ α1(a).

From the lifting property of g0, fj(0) = G(d)(0). Let the lift H : D → ITn for G,
be defined by

H(d)(t) = (a⊕ k2,t⊕, . . . ,⊕kn+1,t).

To fulfil the homotopy lifting properties H must satisfy
• pj(H(d)(t)) = G(d)(t) for d ∈ D and t ∈ I, i.e., kj,t(0) = G(d)(t).

• H(d)(0) = g0(d), i.e., ki,0 = fi for i = 2, . . . , n+ 1.
To complete the definition of the homotopy H, for i = 2, . . . , n+ 1, set

ki,t(s) =


G(d)(t− 2s) 0 ≤ s ≤ t

2

fi

(2s− t
2− t

) t

2
≤ s ≤ 1

for s ∈ I.
So pjs are cofibrations. This completes the first part of the proposition.
For the second part as in part one, let

G : D → I(A2 ⊕ · · · ⊕An+1)

be a homotopy with ĝ0 : D → Tn as its lift at zero. Define the homotopy

H : D → ITn, H(d)(t) = (a⊕ k2,t ⊕ · · · ⊕ kn+1,t)

where

ĝ0(d) = (a⊕ f2 ⊕ · · · ⊕ fn+1)

and for k = 1, 2, . . . , n,

fk+1(1) = αk ◦ αk−1 ◦ · · · ◦ α1(a).

Let G(d)(t) = (g2,t ⊕ · · · ⊕ gn+1,t). For i = 2, . . . , n+ 1, define

ki,t(s) =


gi,t(t− 2s) 0 ≤ s ≤ t

2

fi

(2s− t
2− t

) t

2
≤ s ≤ 1.

Then H satisfies the properties of the homotopy lift for G.
The third part of the proposition follows from the fact that the mapping conical

telescope TnC is the kernel of the cofibtation p. So it is a cofiber by definition. �

The following proposition studies the K-theoretic behaviour of mapping cylin-
drical and conical telescope. For more details on K-theory and C*-algebras, we
refer to [15].
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Proposition 4.14. For each sequence of length n, there exists a cyclic six term
exact Sequence,

K0(TnC) −−−−→ K0(Tn) −−−−→
n+1⊕
i=2

K0(Ai)x y
n+1⊕
i=2

K1(Ai) ←−−−− K1(Tn) ←−−−− K1(TnC).

Proof. Since TnC is an ideal in Tn, Tn/TnC =
n+1⊕
i=2

Ai, K0

( n+1⊕
i=2

Ai
)

=
n+1⊕
i=2

K0(Ai)

and K1

( n+1⊕
i=2

Ai
)

=
n+1⊕
i=2

K1(Ai), the exactness of the six term sequence follows from

[15, 9.3.2]. �

Proposition 4.15. If A1
α1−−→ A2

α2−−→ · · · αn−1−−−→ An
αn−−→ An+1 is a sequence of

simplicial morphisms between NCCW complexes of dimensions m1,m2, . . . ,mn+1,
then TnC is a NCCW complex of dimension max{m1, 1+m2, 1+m3, . . . , 1+mn+1}.

Proof. Since α1 : A1 → A2 is a simpicial morphism, by Proposition 3.13 , T1C =
Cone(α1) is a NCCW complex of dimension max{m1, 1+m2}. Let β2 : T1C → A3

be defined as β(a⊕f2) = α2◦α1(a). Since α1 and α2 are simplicial morphisms, then
so is β2, and T2C = Cone(β2) is a NCCW complex of dimension max{max{m1,
1 +m2}, 1 +m3} = max{m1, 1 +m2, 1 +m3}. Inductively, the morphism

βn : Tn−1C −→ An+1, a⊕ f2 ⊕ · · · ⊕ fn 7→ αn ◦ αn−1 ◦ · · · ◦ α1(a)

is simplicial, and so TnC = Cone(βn) is a NCCW complex of dimension max{m1,
1 +m2, 1 +m3, . . . , 1 +mn+1}. �
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