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ON ϕ− |A, δ|k SUMMABILITY OF ORTHOGONAL SERIES

Xh. Z. KRASNIQI

Abstract. We prove two theorems on ϕ−|A, δ|k summability of orthogonal series.
In addition, several known and new results are deduced as corollaries of the main

results.

1. Introduction

Let
∑∞
n=0 an be a given infinite series with its partial sums sn, (C,α) the Cesàro

matrix with index α. If σαn denotes the nth term of the (C,α)−transform of
s := {sn}, then Flett [3] define absolute summability of order k ≥ 1 as follows. A
series

∑∞
n=0 an is said to be summable |C,α|k, k ≥ 1 if,

(1)

∞∑
n=1

nk−1|σαn − σαn−1|k <∞.

Let {pn} be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv

defines the sequence {tn} of the Riesz means of the sequence {sn}, generated by the
sequence of the coefficients {pn} (see [4]), where the sequence {sn} is a sequence
of partial sums of

∑∞
n=0 an.

The series
∑∞
n=0 an is said to be summable |R, pn|k, k ≥ 1, if (see [2])

(2)

∞∑
n=1

nk−1|tn − tn−1|k <∞.

Let A := (anv) be a normal matrix, i.e., a lower triangular matrix of non-
zero diagonal entries. Then A defines the sequence-to-sequence transformation,
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mapping the sequence s := {sn} to As := {An(s)}, where

An(s) :=

n∑
v=0

anvsv, n = 0, 1, 2, . . .

The infinite series
∑∞
n=0 an is said to be absolutely summable |A|k (|A, δ|k),

k ≥ 1, δ ≥ 0, if (see [3])
∞∑
n=1

nk−1|∆̄An(s)|k
( ∞∑
n=1

nδk+k−1|∆̄An(s)|k
)

converges, where
∆̄An(s) = An(s)−An−1(s),

and, we write
∞∑
n=0

an ∈ |A|k
(
∈ |A, δ|k

)
,

respectively.
Let {ψn(x)} be an orthonormal system defined in the interval (a, b). We assume

that f(x) belongs to L2(a, b) and

(3) f(x) ∼
∞∑
n=0

cnψn(x),

where cn =
∫ b
a
f(x)ψn(x)dx, (n = 0, 1, 2, . . . ).

Let pn be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞.

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pn−vsv

defines the sequence {tn} of the Nörlund means of the sequence {sn}, generated
by the sequence of the coefficients {pn}, where the sequence {sn} is a sequence of
partial sums of

∑∞
n=0 an.

The series
∑∞
n=0 an is said to be summable |N, pn|k, k ≥ 1, if

∞∑
n=1

(Pn/pn)
k−1 |tn − tn−1|k <∞.

Among others, Y. Okuyama [6] concerning the |N, pn|k, 1 ≤ k ≤ 2, summability
of orthogonal series (3) proved the following two theorems.

Theorem 1.1. Let 1 ≤ k ≤ 2 and {λn} be a positive sequence. If {pn} is a
positive sequence and the series

∞∑
n=0

pn
PnP kn−1

{ n∑
j=1

p2
n−j

(Pn
pn
− Pn−j
pn−j

)2

λ2
j |cj |2

} k
2
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converges, then the orthogonal series

∞∑
n=0

λncnψn(x)

is summable |N, pn|k almost everywhere.

For the second one, first of all he write

w(k)(j) = j−1
∞∑
n=j

n
2
k p

2
k
n p2

n−j

P
2+ 2

k
n

(Pn
pn
− Pn−j
pn−j

)2

.

Theorem 1.2. Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n) converges. If

{pn} is a positive non-increasing sequence and the series
∑∞
n=1|cn|2Ω

2
k−1(n)w(k)(n)

converges, then the orthogonal series
∑∞
n=0 cnψn(x) is |N, pn|k summable almost

everywhere.

Theorem 1.1 includes a result of Singh [10] which is an extension, for trigono-
metric series due to Pati [9], Ul’yanov [11], and Wang [12], until Theorem 1.2
generalizes a theorem of Okuyama [7].

Given a normal matrix A := (anv), we associate two lower semi matrices Ā :=

(ānv) and Â := (ânv) as follows:

ānv :=

n∑
i=v

ani, n, i = 0, 1, 2, . . .

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . .

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively.

We have generalized Theorems 1.1–1.2 proving the following (since, if we take
anv = pv

Pv
, δ = 0, then |A, δ|k summability is the same as |R, pn|k summability).

Theorem 1.3 ([5]). If for 1 ≤ k ≤ 2, the series

∞∑
n=1

[
n2(δ+1−1/k)

n∑
j=0

|ân,j |2λ2
j |cj |2

] k
2

converges, then the orthogonal series

(4)

∞∑
n=0

λncnψn(x)

is |A, δ|k summable almost everywhere.

Theorem 1.4 ([5]). Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n) converges. If
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the following series
∑∞
n=1 |cn|2Ω

2
k−1(n)w(k)(A, δ;n) converges, then the orthogonal

series
∑∞
n=0 cnψn(x) ∈ |A, δ|k almost everywhere, where w(k)(A, δ;n) is defined by

w(k)(A, δ; j) :=
1

j
2
k−1

∞∑
n=j

n2(δ+1)|ân,j |2.

Let (ϕn) be a sequence of positive real numbers. The infinite series
∑∞
n=0 an is

said to be summable ϕ− |A, δ|k, k ≥ 1, δ ≥ 0, if (see [8])
∞∑
n=1

ϕδk+k−1
n |∆̄An(s)|k <∞,

and in brief, we write
∞∑
n=0

an ∈ ϕ− |A, δ|k.

The main purpose of the present paper is to generalize further Theorems 1.3–1.4
for ϕ− |A, δ|k summability of the orthogonal series (3), where 1 ≤ k ≤ 2, δ ≥ 0.

Due to B. Levi (see, for example [1]), the following lemma is often used in the
theory of functions. It will help us to prove main results.

Lemma 1.5. If hn(t) ∈ L(U) are non-negative functions and
∞∑
n=1

∫
U

hn(t)dt <∞,

then the series
∞∑
n=1

hn(t)

converges (absolutely) almost everywhere on U to a function h(t) ∈ L(U).

Throughout this paper, K denotes a positive constant that it may depend only
on k, and be different in different relations.

2. Main results

We prove the following two theorems.

Theorem 2.1. If for 1 ≤ k ≤ 2, the series

∞∑
n=1

[
ψ2(δ+1−1/k)
n

n∑
j=0

|ân,j |2λ2
j |cj |2

] k
2

converges, then the orthogonal series

(5)

∞∑
n=0

λncnψn(x)

is ϕ− |A, δ|k summable almost everywhere.
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Proof. For the matrix transform An(s)(x) of the partial sums of the orthogonal
series

∑∞
n=0 λncnψn(x), we have

An(s)(x) =

n∑
v=0

anvsv(x) =

n∑
v=0

anv

v∑
j=0

λjcjψj(x)

=

n∑
j=0

λjcjψj(x)

n∑
v=j

anv =

n∑
j=0

ānjλjcjψj(x),

where
∑v
j=0 λjcjψj(x) is the partial sum of order v of the series (5). Hence

∆̄An(s)(x) =

n∑
j=0

ānjλjcjψj(x)−
n−1∑
j=0

ān−1,jλjcjψj(x)

= ānnλncnψn(x) +

n−1∑
j=0

(ān,j − ān−1,j)λjcjψj(x)

= ânnλncnψn(x) +

n−1∑
j=0

ân,jλjcjψj(x) =

n∑
j=0

ân,jλjcjψj(x).

Using Hölder’s inequality with p = 2
k > 1 and orthogonality to the latter equality,

we have that∫ b

a

|∆̄An(s)(x)|kdx ≤ (b− a)
1− k

2

(∫ b

a

|An(s)(x)−An−1(s)(x)|2dx

) k
2

= (b− a)
1− k

2

(∫ b

a

∣∣∣ n∑
j=0

ân,jλjcjψj(x)
∣∣∣2dx

) k
2

= (b− a)
1− k

2

[ n∑
j=0

|ân,j |2λ2
j |cj |2

] k
2

.

Thus, the series

(6)

∞∑
n=1

ϕδk+k−1
n

∫ b

a

|∆̄An(s)(x)|kdx ≤ K
∞∑
n=1

ϕδk+k−1
n

[ n∑
j=0

|ân,j |2λ2
j |cj |2

] k
2

converges by the assumption. According to the Lemma of Beppo-Lévi, the proof
of the theorem ends. �

If, we put

(7) Φ(k)(A, δ; j) :=
1

ϕ
2
k−1
j

∞∑
n=j

ϕ
2(δ+ 1

k )
n |ân,j |2,

then the following theorem holds true.

Theorem 2.2. Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/ψn} is a non-increasing sequence and the series

∑∞
n=1

1
ψnΩ(n) converges. If
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the following series
∑∞
n=1 |cn|2Ω

2
k−1(n)Φ(k)(A, δ;n) converges, then the orthogonal

series
∑∞
n=0 cnψn(x) ∈ ϕ−|A, δ|k almost everywhere, where Φ(k)(A, δ;n) is defined

by (7).

Proof. Using (6) and applying Hölder’s inequality with p = 2
2−k > 1, we get

that

∞∑
n=1

ϕδk+k−1
n

∫ b

a

|∆̄An(s)(x)|kdx

≤ K
∞∑
n=1

ϕδk+k−1
n

[ n∑
j=0

|ân,j |2|cj |2
] k

2

= K

∞∑
n=1

1

(ϕnΩ(n))
2−k
2

[
(ϕnΩ(n))

2
k−1

ϕ2(δ+1−1/k)
n

n∑
j=0

|ân,j |2|cj |2
] k

2

≤ K
( ∞∑
n=1

1

(ϕnΩ(n))

) 2−k
2
[ ∞∑
n=1

(ϕnΩ(n))
2
k−1

ϕ2(δ+1−1/k)
n

n∑
j=0

|ân,j |2|cj |2
] k

2

≤ K
{ ∞∑
j=1

|cj |2
∞∑
n=j

(
ϕ2
nΩ(n)

ϕn

) 2
k−1

ϕ2(δ+1−1/k)
n |ân,j |2

} k
2

≤ K
{ ∞∑
j=1

|cj |2
(

Ω(j)

ϕj

) 2
k−1 ∞∑

n=j

ϕ
4
k−2
n ϕ2(δ+1−1/k)

n |ân,j |2
} k

2

≤ K
{ ∞∑
j=1

|cj |2
(

Ω(j)

ϕj

) 2
k−1 ∞∑

n=j

ϕ2(δ+1/k)
n |ân,j |2

} k
2

= K

{ ∞∑
j=1

|cj |2Ω
2
k−1(j)Φ(k)(A, δ; j)

} k
2

,

which is finite by virtue of the hypothesis of the theorem, and this completes the
proof of the theorem. �

Remark. If, we take ψn = n, then Theorems 1.3–1.4 are implied as immediate
consequences of the the main results.

Remark. Let us show that Theorem 1.1 is included in Theorem 2.1. Namely,
for an,v = pn−v

Pn
, we get

ân,j = ān,j − ān−1,j

=
1

Pn

n∑
i=j

pn−i −
1

Pn−1

n−1∑
i=j

pn−1−i

=
1

PnPn−1
(Pn−1Pn−j − PnPn−1−j)
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=
1

PnPn−1
((Pn − pn)Pn−j − Pn(Pn−j − pn−j))

=
pn

PnPn−1

(
Pn
pn
− Pn−j
pn−j

)
pn−j .

Whence, putting this equality to Theorem 2.1, for δ = 0 and ϕn = Pn

pn
, we imme-

diately obtain Theorem 1.1.

The following corollaries follow also from the main results (δ = 0, ψn = n).

Corollary 2.3 ([5]). If for 1 ≤ k ≤ 2, the series

∞∑
n=1

[
n2(1−1/k)

n∑
j=0

|ân,j |2λ2
j |cj |2

] k
2

converges, then the orthogonal series
∞∑
n=0

λncnψn(x)

is |A|k summable almost everywhere.

Corollary 2.4 ([5]). Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n) converges. If

the following series
∑∞
n=1 |cn|2Ω

2
k−1(n)w(k)(A;n) converges, then the orthogonal

series
∑∞
n=0 cnψn(x) ∈ |A|k almost everywhere, where

w(k)(A;n) =
1

j
2
k−1

∞∑
n=j

n2|ân,j |2.

Also, taking δ = 0, ψn = n, and k = 1 in our main results, we obtain the
following corollary

Corollary 2.5 ([5]). If the series

∞∑
n=1

( n∑
j=0

|ân,j |2λ2
j |cj |2

) 1
2

converges, then the orthogonal series
∑∞
n=0 λncnψn(x) is |A| summable almost

everywhere.

Corollary 2.6 ([5]). Let {Ω(n)} be a positive sequence such that {Ω(n)/n} is
a non-increasing sequence and the series

∞∑
n=1

1

nΩ(n)

converges. If the following series
∞∑
n=1

|cn|2Ω(n)w(A;n)
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converges, then the orthogonal series
∑∞
n=0 cnψn(x) ∈ |A| almost everywhere,

where w(A;n) is defined by

w(A; j) := j−1
∞∑
n=j

n2|ân,j |2.

Remark. Finally, it should be also noted that our main results, as special cases,
contain the results on |C, 1|, |C, 1|k, |C,α|, |C,α|k, |H, p|, |H, p|k, |N̄ , pn|, |N̄ , pn|k
|N, pn, qn|, and |N, pn, qn|k summabilities of orthogonal series (1 ≤ k ≤ 2, δ ≥ 0).
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