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DEGREE OF CONVERGENCE OF AN INTEGRAL OPERATOR

R. N. MOHAPATRA aND B. SZAL

ABSTRACT. In this paper, we define an integral operator on LP and obtain its degree
of convergence in the appropriate norm. By specializing the kernel of the integral
operator, we get many known results as corollaries. We also apply our results to
obtain results on singular integral operators.

1. INTRODUCTION

Let LP = LP (R) with fixed 1 < p < oo be the space of all real-valued functions
Lebesgue integrable to the p—th power over R if 1 < p < oo, and uniformly
continuous and bounded on R if p = co. We define the norm in LP, as usual, by
the formula

P P <
B 11, = 1Ol = { { el @Pde} i1 <p<oo,
SWyep |f@)] ifp = ox.
By w(f;-)p denote the modulus of continuity of f € L?, i.e.,
w(f;t)p = sup [Anf()llp, £ >0,
0<h<t
where Ay, f(x) = f(z + h) — f(x).

Consider the family of integral operators

(2) E\(f;z) = /\/ FOKN( — x))dt, A >0,
with Fejér type kernel K [1, p. 126]:
(3) =K(z),
(4) / K(a
(5) sup |K(x)] < oo,
—1<z<1
(6) sup 22 |K(z)| < oo.
zeR
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Under these conditions, the integral (2) represents a linear operator acting from
LP to LP.

For fixed m € NU {0} and 1 < p < oo by LE,, we denote the set of all f € L?
whose derivatives f’, f”,..., f™) also belong to LP. The norm in these L?, is
defined by (1), i.e., for f € L? | we have || f||p, m = || fllp, where ||f]l, is defined by

(1). It is clear that LE = LP.

Definition 1.1. Let f € LP, for fixed m € NU{0} and 1 < p < oco. We define
a family of modified integral operators by the formula

o [ S
(7) Fy, m(fi2) = A / g

for x € R and A > 0.
In particular, we have Fy o(f;-) = Fa(f;-) for f € L.

;),(t) (x — )T K\t — x))dt

It is obvious that the formula (7) can be rewritten in the following form

— (1)
§=0

for every f € LP , x € R, and A > 0.

If (3) holds and for any j =0,1,2,...,m,

/ W K()] < oo,
0

then for fixed m € NU {0} and A > 0, the integral (7) is a linear operator from
space L, into L? (see Remark 2).

By H“ P denote the set of all functions f € LP (1 < p < oo) satisfying the
condition

A / FO(t + ) K(A)dt
R

sup h*" P(f;h) < oo,
h#0

hw*,p(f;h) — ”i)’:{'(h)l)p’

and for t > 0, w*(t) is a nondecreasing function. We can show that H* > ? is a
Banach space with respect to the generalized Hoélder norm

(8) [ £llw = I£llp + sup B P (£; 1).
h#£0

where
hOP(f;h) =0,

Suppose that H*? is the set of functions f € LP (1 < p < 00) satisfying the con-

dition | Ol
Apf(-
sup h*P(f; h) = sup ——= 22
h£0 3 nto w(|h])
and contained in the space H¥ ?, H*P C H¥ P where for t > 0, w(t) is a
nondecreasing function. In particular, setting

w(t) =t w(t) =17, t>0 and 0<B<a<l,

< 0
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for H¥"> P, we obtain the spaces
HOP = {f €L w(fit), <C tﬁ}

with Holder norm

1ALl
In|?

)

/]

and for the set H*P, we have

g.p = || fllp +sup
h+£0

HOP = {f €L w(fit), < Co ta},
Her c go».

For fixed m € NU{0} and 1 < p < oo, by HY P (or H%P) we denote the set of
all f € HY P (f € H*P) whose derivatives f/, f”,..., f(™ also belong to H< P
(or H¥P), where for t > 0, w*(t) (or w(t)) is a nondecreasing function. The norm
in these H% 7 is defined by (8), i.e., for f € H P, we have || f |l p. m = || f]lw.p;
where || f||.~ p is defined by (8). It is clear that H(‘)"*’p = Hv P,

Throughout the paper, we use the following notation:
Ex\(z) = Ex(f;2) = Fx(f;2) — f(2),
E/\ (l’—f—h,l‘) = E)\ (f,$+h,$) = E)\(J?—Fh) - E/\(.’II),

and

6u(t) = flz+1)+ f(a — 1) — 2f(x).
The object of this paper is to study degree of convergence of the integral operator
Fxm(f) to f in the appropriate norm and to deduce many interesting results as

corollaries. We also apply our results to obtain degree of convergence of singular
integrals.

2. STATEMENT OF THE RESULTS

Theorem 2.1. Suppose that 0 < 8 < n <1 and (3)—(6) hold. Then, for any
feHYP(1<p< o), the following relation is true

(w((h])) 7

r =0 ST [ GG o)

(9) 1EA(f) = f]

where X > 1.
Remark 1. For p = oo (9), was proved in [6, Theorem 1].
Theorem 2.2. Suppose that 0 < B <n <1, A\> Xg >0, and (3)-(5) hold. If,

(10) /100 w K ()] du < oo,
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then for f € H*P (1 <p < o0)

3

B

1) = Fll- , = O(1) sup m L)

Remark 2. Let m € NU {0}, 1 < p < oo, and (3) hold. If for any j =
0,1,2,...,m,

(11) / u |K(u)] du < oo,
0
then for every f € LP and X > 0, we have

1E5 m(Pl, = O 3 =5

Jj=0

Moreover, if f € H,“j: P and A > 0, then

m ||f(])| wrp
15, i (F)le,, = O BNV

Jj=0

Theorem 2.3. Suppose that 0 < f<n <1, meN, A > Xy >0, and (3)—(4)
hold. If for any 7 =1,2,...,m+1,

(12) / u! |KC(u)] du < oo,
0
then for f € H2P (1 < p < 00),
8
(w([p[) 1 1\\1-5
F m - * o 1 _— .
() = Fllr = O S0p =0 i (#(5)
Setting
wt)=t, w'@®)=t", 0<B<a<l, n=a

in the assumptions of Theorem 2.1, 2.2, and 2.3, we obtain the following corollaries:

Corollary 2.4. Suppose that 0 < < «a <1, and (3)—(6) hold. Then, for any
fe H¥P (1 <p<o0), the following relation is true
O (M=) ifa-B<1,
F — =
|| )\(f) fH,@,p { O(%) ifa—B=1,
where A > 1.

Corollary 2.5. Suppose that 0 < < a <1, A > Xy >0, and (3)—(5) hold. If

/oou|/C(u)|du < o0,
1
then for f € H*P (1 < p < c0),
IE5(f) = fllg,, = O (A7)
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Corollary 2.6. Suppose that 0 < f<a <1, meN, A> Xy >0, and (3)—(4)
hold. If for any j =1,2,...,m+1,

/ u! |K(w)| du < oo,
0

then for f € HYP (1 < p < o0),
1Fx, m(f) = fllg, = O (A7)

3. EXAMPLES

3.1. The Fejér means of the Fourier series

Suppose that the kernel K satisfies the conditions (3)—(6). Then, as is well known
(see [1, p. 132]), if we consider 27 periodic function f € LP with the Fourier series
o0
S(f)= > c(f)e*,
k=—oc0
the family of operators of Fejér type (2) can be transformed into sequences of
linear means of series of the function f

oo

k .
Fo(f; = (7) 1kz’ N,
(0= 2 (3 )ane e
where the values of ¢ (%) coincide for ¢t = %, with the values of the function ¢(t),

which is the Fourier transform of the kernel K.
Consider the Fejér kernel
2 rsin(t/2)\2
ot = 2 (S22
™ t
and consequently, the Fejér means of the Fourier series S(f) is given by

on(fix) = i w(%)ck(f)e“m: zn: ( _%)Ck(f)eikm.

It is clear that the kernel I, (¢) satisfies the conditions (3), (4), (5), and (6). Hence,
by Theorem 2.1, we obtain the following corollaries ([3], [6], and [10]):
Corollary 3.1. Suppose that 0 < g < n < 1. Then, for any 27 periodic
function f € H*P (1 < p < 0), the following relation is true
B n 8
(w ()" {1 I\
oy = Oy CUDIT L 19y
» = 0@ “Ciman 4 2 (5
Corollary 3.2. Suppose that 0 < g < a < 1. Then, for any 27 periodic
function f € H®P (1 < p < 00), the following relation holds
O(nﬁ_a) ifa— 0 <1,
||Un<f)_f‘|6,p: O(ln(n+1)> ZfOé*ﬂil

llon(f) = /]

n
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3.2. The Poisson operator

Let L1 )
()= A= - ,
Kplt) w1412’ g’ e>0

Then from (2), we obtain the Poisson singular integral of a function f € L?, i.e

_ 1
P.(f;z) = %/Rf(x"'t)mdt

The approximation properties of this integral were given for example in [5]. It is
clear that the kernel K satisfies conditions (3)—(6). Hence, by Theorem 2.1, we
obtain the following assertion.

Corollary 3.3. Suppose that 0 < g < n < 1. Then, for any 2w periodic
function f € HP (1 < p < o0), the following relation is true

w % 1/e _g
oW e[ () ),

Corollary 3.4. Suppose that 0 < f < a < 1. Then, for any 27 periodic
function f € H¥P (1 < p < 00), the following relation is true

B - O(Eﬁ_a) ifa—0<1,
HPAf)—fHa,p—{ O(n(1/e) ifa—pf=1

||Ps(f) 7f| w*,p

where 0 < e < 1.

as e — 07T,

3.3. The Picard and Gauss-Weierstrass operators

Taking
Kp(t) = gep(- ), A= >0,
and ) )
ICW(t):ﬁeXp(—tQ)7 )\:\/—27, r >0,

we obtain from (2), respectively, the Picard singular integral and the Gauss-
Weierstrass singular integrals of a function f € LP,

_ /f z+ 1) exp ( H)dt

W.(f;x) m/f:lH—t exp(——)dt

The limit properties (as 7 — 07) of these integrals were given in many papers and
monographs (see, e.g., [2, 3, 4]).
It is clear (see [6, Lemma 1]) that for every m € NU {0},

oo |
/ U™ |Kp (u) du =
O 2
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and
: if m =0,
/ u™ Ky (u)| du = (25,;11)” ifm=2k>2,
’ k! ifm=2k+1>1.

27
Hence, by Theorems 2.2 and 2.3, we obtain the following assertion.

Corollary 3.5. Let 0 < f<n <1, me NU{0}, and f € H2? (1 < p < 0).
Then .
@(RD))" -
(w(r))

||Pr(f)_f|w*,p:O(]‘)ii%WT "
and 5
_ (D))" ) 1-2
HWT(f)_f|w*,p_O(1) 21;% w*(|h]) r 2(w (\/;))
asr — 0T,

Corollary 3.6. Let 0 < < a <1, meNU{0}, and f € H2P (1 < p < 0).
Then
1P-(f) = fllg,, = O (r™o7)

and
W (f) — f”g,p = O(r(era*ﬁ)/?)

asrT — 0.

4. PROOFS OF THE THEOREMS

4.1. Proof of Theorem 2.1

Proof. For p = oo, (9) was proved in [6, Theorem 1]. Let 1 < p < oo. Then
using (3) and (4), we get

Bx(z) = A /0 T oa (B (M) dt

and
By (z+ hya) = A / (Gusn(t) — 6 (8)) K (L) .

Applying the Fubini inequality [11], we have
Y
d;v}

(13)
<a [ o {/Rmh(t) —¢x<t>|”dx};dt

B+l =2 [
_ A(/Ol/ﬁ/l:;/f) K001 [ 1ot —asm(t)f’dx}'l’dt

:Il+11+13.

/ " (Gasn(t) — 6o(0) K (M)
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It is clear that for 1 < p < oo,

(14) { 162000 = ut7 as}” < 7,10,
and for t >0
(15) { [162000 - 6a07 0} < 1020,

Then, in view of the property (5) of the kernel K, and inequalities (14) and (15),
we obtain for f € H¥P

Ly e o) {[16ceatt) - ¢m(t)lpdw};

» | [lonintt |Pdw}”(1_g) at 7

/A 1—
= O()A (w((h))’ / O0] (w(f.0),) "t

= 00 () (« (i)) .

Further, in view of property (6) of the kernel IC, by (14) and (15), we have for
feH?,

3w

1 1-8

IC ()] (w (f, t)p) T dt

17 81 i 1 1-2
—omn)t 5 [ (w(riy) ) au
= 01) ()7 IA (w(2)) " au

Applying (6), (14), we get for f € HP

n=af e o) { bosnlt) - ¢m<t>|’°dx}’1’

< [16e1ntt |”d:c}l(1")dt

= O(L)A (w(|h])) 7 / K ()] (8] £11,) ™7 dt = O(D)A (w(|h])) " /100(/\1)2dt

3w

y\»—'

= 0(1) (w(lh])" 5 —

5 -

= 0(1) (w(Jh]))" T



DEGREE OF CONVERGENCE OF AN INTEGRAL OPERATOR 287

If A > 1, then w(f;l)p < 2w (f,%) Thus

b o (1) =omeons ()
From relation (13), (16), (17), and (18), we obtain

I+l =0m @t { (o) + 3 [ () ).

Since
A 1-£ A 1-£
) Q) T () e
_By _
2 () e
therefore,
IBat el =0t {3 [ (@(2) ).
Hence

I1E ('+ha')||p w 0 A 1-£
a9) s 200 =0 SRS [ () e

We can easily see that

e 0l =omy [ u(G)in =03 [ (+(7))"
From (19) and (20), we finally obtain

1Ex (- + )l
Ex ()|« .. = |Ex ()], +sup ———-L
By Ol = 15 Ol +s0p == T
B
(w(|n]))” 1/A 1\\1=%
=0(1 — — du p.
W= >, (“(u)) Y
This completes the proof of Theorem 2.1. O

4.2. Proof of Theorem 2.2
Proof. Let p = co. Then by (3) and (4), we get

(21) " N
-(/ +/m) OO [bsan®) = a(O]dt = Js + o,

It is clear that
|pz4n(t) — ¢z(B)] < 4w (f;|h])y,,  and
(22) |¢w+h(t) - ¢1E (t)| < 4w (f7 t)oo .
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Using this and (5), we have for f € H¥P,
(23)

/A
7= A / O] (dasn(t) — 0(8)])

3w

(an(t) = du (D)7 dt

B

= O(D)A (w(|A])" /Om (@ (f50).0)" 7 dt = O(1) (w(|h])) " (”(i))l

Further, by (22) and (10), we obtain for f € H“?P,

B
n

2= A/:; D] (16541(5) = S (D)) (Dan(t) — do(t))' 7 at

= O0(1) (w(|A]))
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Suppose 1 < p < co. Then using (3), (4), and the Fubini inequality [11], we get
1
|EX(- + h, - ||p—)\ /‘/ (Pzrn(t) () K (At dt‘ dx}p
</\/ K (\t)] /1 )P dz ¢ " dt
- | Buan(t) — (P da}”
1/ 1
= / / |IC ()| /\th — a(t \”dx}
1/x
=51 + 5.

In view of property (5) of the kernel K, and inequalities (14) and (15), we obtain
for f € HYP,
/A
si=2 [ w0l { [ lorsnto) - exol asf

o < [ 1owaatt |”dx}”(1g) at

1-8
n

5 /A
= O(WA (A" / KO0 (w(,0),) " a

— o («(3)) .

Further, in view of property (10) of the kernel IC, by (14), and (15) we have for
feHP,

=
3w

1— B

52 = OWAw(H) | iiC(At)I(W(ﬁt) ) ar

*wfit)p\ s
, ) 70 |K (M) dt

1—-8 0o
) ) "AQ—?/ 170 [k ()| dt
P 1/x

1-8 (%S)
")\2/ t|IC (At)| dt
/X

Il
)
—~
—
S~—
—
&
=
=
N—
Sy
>
»\
~
>
/-\

> =

N———

-
|
S|

~— ~— ~—

=

|

I

—

3
<
=
£
o
<

>l >l >

N—

— O()(w(|h]))"

We can easily see that

1B Oll, =0w(fi3) =0 (w(fi5.))

~ofe(l))

(29)
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Hence, by (26)—(29),

1Ex (- +h, -l
Ex( Wl = II1EX O], +sup —————L
” X()|w P ” A()”p h;é% w*(|h\)
8
EDERNEE
=0(1 < :
o Ciny (¢(5))
The proof is complete. O

4.2.1. Proof of Remark 2.

Proof. Let p = oo. Then by (3) and (11), we get
(30)

m (4)
I, m<f>||ms2 C"”A/sz”C () |dt—2Z ”f ” | (M)] dt

0

S Hf(”Hoo * o [T
=2y /O W ()| du = ();0 T

Suppose that 1 < p < co. Then using the Fubini inequality [11], (3), and (11), we

obtain

1Fm(Ol, = | 3 S [ 19 @+ veona,

J=0 J!
< ij:;\{ Rf(j)(t+m)thC()\t)dtpdm};
(31) LA PP
A, () !
s;ﬂ /|t K(At>|{/RIf (t-+ )| do}
N f(j o m f])
:Z” ‘!HPA/O t K (At)] dt = O(1) ZH wH'
3=0 =
Using (30) and (31), we get
IAREN, m(f; )l
1B, ()l p = 1A, m (), + stup == 5"
[ Exm (Anf;oll,
= HF/\, m(f)||p+sup - w*(‘ZD
m £ || ™ || ARfD (|
-0 BIVEINE
(1){; N ii%; JINw*(|h) }
— o(1) -
= JIAI

This ends our proof. U
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4.3. Proof of Theorem 2.3
Proof. We use the following modified Taylor formula for f € L?  with m € N

m_ () oy [ X
f@) = S oy E2 [y () rata—) -1 (0}

=0 J! (m=1)! Jo

for a fixed ¢t € R and every z € R.
By (3), we get

—)\/f At — x))

(J) Tz —1)™
)\/Zf JIC()\(t—x)dt+>\/IC t—m))gmti)!

X (/01 (1—u)™! {f<m> (t+u(z —t)) f(m)(t)} du)dt

= F,\,m(f;l‘) +/\/]RIC()\(t_ :L,))M

X (/01 (1—u)™" {f<m> (t+u(z —t)) f(m)(t)} du)dt.

Therefore, by (3),
f(@) = Fxm(fi @)

o (iL’ B t)m ! m—1 m
(32) = )\/R <(m T /0 (1= )" Aygan f* )(t)du> KAt = z))dt
_ " ! m—1 (m)
)\/R<(m_1)!/o (1—mu) Ay f (:ct)du)lC(/\t)dt.
Set
E)\,m(m) = E)\,m(f; I) = f(fE) - FA,m(f§:C)
and

E/\,m (.23 + h,l‘) = E)\,m(f;x + hvx) = Ek,m(x + h) - Ek,m(aj)'
Let p = co. Then
™

(m —1)!

1
X (/(1_u)m—1 Bt f ™ (4 het) = By (1) du ) .
0
It is clear that

AuefT (4B — 1) — A f™ (2 — t)‘ < % (f<m>; |ut|)oo

|Exm (@ + h,2)| < A/vcwn
R

and

AuefT™ (24 b — 1) = Aurf™ (& — t)‘ <% (f(m>; |h\)oo
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This and the properties of the modulus of continuity yield for f € H®P,
[Exm (4 h, z)]

<A (rm) ) / (m't'_ml)! K )

([ a0 (st ) awar

= O(MA(w([n))
x /R ((7n|t| 1)! |K: ()‘t)‘ (w(f(m); |t| )00)17; /0 (1 _ u)m—l dU)dt

= o a)® (o(r: 1) )AL o A ar

m!

3w

Using (3) and (12),
(33)

1 1-8 Y (%s)
(m). 1 AT
£ 5 Oo) m!/o ™ (14 At) |KC (M) dt
1-8 o] 0o
N (A/ t’”\IC(/\t)|dt+)\2/ gm1 |IC()\t)|dt)
0 0
1

)
) ([ wnans [T a)
)

&
/N /N /N /N

P S S

We can easily see that

39 B Ol = 005w (£: 1) =0ms (w(5)) "
Hence, by (33) and (34),

[ Exmll
IExm (Mlr 0o = 1Exm ()l + sUp—72-22
’ ' nzo w*(|h])

oS )

Suppose 1 < p < co. Using (32), the Fubini inequality [11], we get
[Exm (- 4 1)

I,

_ (mil)!{/R‘/RtmIC()\t)

X (/ (1—w)™ ! (Autf(’”) (@ +h—1t) — Ay f™(z — t)) du) dt)pdx}%
0
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SL/W;C ()]
m 1!
/‘/ N N N GO +h—t)—Autf(m)(x—t))du’pda:};dt

<7 m
’(m—l)!/ue“ K ()]

x (/01 (1- U)m_l { /R ‘Autf(m) (x+h—1t)— Autf(m)(:r — t)‘pdx}%du)dt.

It is clear that for 1 < p < oo,

{/
{/

Using this, (3), (12), and the properties of the modulus of continuity, we get for
feHy”r,

Autf(m) (x+h—1t)— Autf(m)(x — t)‘pdx}; < 2w(f(m); |ut| )p

and

Aucf™ (@ +h—t) = Ao f™ (2 — t)’pdx}% < 20(f"™;|n]),-

[Ev 00,
< o wnl)
X/R(m 1K ( )\t|/ 1) (w0 ut]), ) %du)
0(1)(m )( w(|h]))7
X/R(mm K ()| f<m> 1) )1_7/0 (1—u)m*1du)dt
- 00) Al

></ \t| )] f<m 1) ) _5/01 (1—u)m*1du)dt
- (w(\h|)>%(w(f<m>;§)p ) [ e o A an
)l?’;n(/oooum |1C(u)|du+/0°°um+1/c<u)|du)
)

= 0(1) (w(I)? (o(5)
= 0(1) (w(IA)? (o(5)

Similarly, we can prove

B 01, = 005 (7 1) — ok (1))
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Hence, for 1 < p < oo,

[ Exm (- + Byl
Exon O v = 1Exm (] +su ’ P
” A,m ( )Hw D ” A,m ( )Hp h;aé% w*(|h\)
s 8
(w(hD)™ ¢ INVIE
= O(1)sup————+—— (w(7>> .
W o ny WS
Thus, the proof is completed. U
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