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EXISTENCE AND STABILITY FOR NONLINEAR

CAPUTO-HADAMARD FRACTIONAL DELAY

DIFFERENTIAL EQUATIONS

M. HAOUES, A. ARDJOUNI and A. DJOUDI

Abstract. In this paper, we use the modified version of contraction mapping prin-

ciple to obtain the existence and uniqueness of solutions for nonlinear Caputo-

Hadamard fractional delay differential equations. We also use the method of suc-
cessive approximations to show the stability of the equations. An example is given

to illustrate this work.

1. Introduction

Fractional differential equations with and without delay arise from a variety of
applications including various fields of science and engineering such as applied
sciences, physics, chemistry, biology, medicine, etc. In particular, problems con-
cerning qualitative analysis of linear and nonlinear fractional differential equations
with and without delay have received the attention of many authors, see [1]–[5],
[7], [8], [11]–[14], [16], [18]–[21], and the references therein.

Recently, Kucche and Sutar [13] discussed the existence of solutions and sta-
bility results for the delay fractional differential equation{

CDαx(t) = f (t, xt) , t ∈ [0, b] , b > 0,
x (t) = ψ (t) , t ∈ [−r, 0] ,

where CDα is the standard Caputo’s fractional derivative of order m−1 < α ≤ m.
By employing the modified version of contraction principle and the successive
approximation method, the authors obtained existence and stability results.

The implicit fractional differential equation{
CDαx(t) = f

(
t, x(t),C Dαx(t)

)
, t ∈ [0, b] , b > 0,

x(k) (0) = xk ∈ Rn, k = 0, 1, . . . ,m− 1, m− 1 < α ≤ m,
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investigated in [14]. By using the modified version of contraction principle and the
successive approximation method, the existence of solutions and stability results
established.

In [5], Dhaigude and Bhairat investigated the existence of solutions and stability
results of the following nonlinear implicit fractional differential equation{

Dα
1x(t) = f (t, x(t),Dα

1x(t)) , t ∈ [1, b] , b > 1,
x(k) (1) = xk ∈ Rn, k = 0, 1, . . . ,m− 1,

where Dα
1 is the Caputo-Hadamard derivative of order m−1 < α ≤ m. By employ-

ing the modified version of contraction principle and the successive approximation
method, the authors obtained existence and stability results.

In this paper, we are interested in the analysis of qualitative theory of the
problems of the existence of solutions and stability results to delay fractional dif-
ferential equations. Inspired and motivated by the works mentioned above and
the references therein, we concentrate on the existence and uniqueness of solutions
and stability results for the nonlinear delay fractional differential equation

Dα
1x (t) = f (t, xt) , t ∈ [1, b] , b > 1,(1)

x (t) = ψ (t) , t ∈ [1− r, 1] ,(2)

where f [1, b]×C ([1− r, 1] ,Rn)→ Rn is a nonlinear continuous function, and Dα
1

denotes the Caputo-Hadamard derivative of orderm−1 < α ≤ m, m ∈ N. To show
the existence and uniqueness of solutions, we transform (1)–(2) into an integral
equation and then use the modified version of contraction principle. Further, by
the successive approximation method, we obtain Ulam-Hyers, Ulam-Hyers-Rassias,
and Eα-Ulam-Hyers stability results of (1). Finally, we provide an example to
illustrate our obtained results.

2. Preliminaries

In this section, we present some basic definitions, notations, and preliminaries.
Basics of delay differential equations are considered from the monographs by Hale
et al. [9] and Naito et al. [15]. Let Rn be an n-dimensional linear vector space
over the reals with the norm

‖x‖ =

( n∑
k=1

x2
k

) 1
2

, x = (x1, x2, . . . , xn) ∈ Rn.

Let 0 ≤ r <∞ be a given real number, C = C ([1− r, 1] ,Rn) be the Banach space
of continuous functions from [1− r, 1] into Rn with the norm

‖ψ‖C = sup
1−r≤θ≤1

‖ψ (θ)‖ .

By B = C ([1− r, b] ,Rn), b > 1, let us denote the Banach space of all continuous
functions from [1− r, b] into Rn endowed with supremum norm ‖·‖B . For any
x ∈ B and any t ∈ [1, b], by xt, we denote the element of C defined by xt (θ) =
x (t+ θ), θ ∈ [1− r, 1].
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We use the following results in our analysis.

Lemma 2.1 ([15]). If x ∈ C ([1− r, b] ,Rn), then xt is continuous with respect
to t ∈ [1, b].

Lemma 2.2 ([15]). Let x [1− r, b)→ Rn be a continuous function with x1 = ψ.
If

‖x (t)‖ ≤ ‖ψ (1)‖+m (t) , t ∈ [1, b)

where m is a nondecreasing function, then

‖xt‖C ≤ ‖ψ‖C +m (t) , t ∈ [1, b) .

For fundamentals of fractional calculus, we refer the research monographs [7,
12, 16].

Definition 2.3 ([12]). The one parameter Mittag-Leffler function is defined
by

(3) Eγ (z) =

∞∑
k=0

zk

Γ (γk + 1)
, z ∈ R, γ > 0,

where Γ(x) =
∫∞

0
exp (−t) tx−1, x > 0, is the Gamma function.

Definition 2.4 ([12]). The Hadamard fractional integral of order α > 0 for a
continuous function g [1,+∞)→ R, is defined as

(4) Iα1 g (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

g (s)
ds

s
, α > 0.

Definition 2.5 ([12]). The Caputo-Hadamard fractional derivative of order α
for a continuous function g [1,+∞)→ R, is defined as

(5) Dα
1 g (t) =

1

Γ (n− α)

∫ t

1

(
log

t

s

)n−α−1

δn (g) (s)
ds

s
, n− 1 < α < n,

where δn =
(
t

d

dt

)n
, n ∈ N.

Lemma 2.6 ([12]). Let m− 1 < α < m, m ∈ N, and g ∈ Cm [1, b]. Then

Iα1 [Dα
1 g(t)] = g(t)−

m−1∑
k=0

g(k) (1)

Γ (k + 1)
(log t)

k
.

Lemma 2.7 ([10]). For any t ∈ [1, b],

u(t) ≤ a(t) + c(t)

∫ t

1

(
log

t

s

)α−1

u (s)
ds

s
,

where all the functions are not negative and continuous. The constant α > 0, c is
a bounded and monotonic increasing function on [1, b), then

u(t) ≤ a(t) +

∫ t

1

[ ∞∑
n=1

(c(t)Γ (α))
n

Γ (nα)

(
log

t

s

)nα−1

a(s)

]
ds

s
, t ∈ [1, b) .
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Remark. Under the hypothesis of Lemma 2.7, let a be a nondecreasing function
on [1, b). Then

u(t) ≤ a(t)Eα (c(t)Γ (α) (log t)α) .

Lemma 2.8 ([12]). For all µ > 0 and ν > −1,

1

Γ (µ)

∫ t

1

(
log

t

s

)µ−1

(log s)
ν ds

s
=

Γ (ν + 1)

Γ (µ+ ν + 1)
(log t)µ+ν .

3. Existence and uniqueness results

To obtain existence and uniqueness of solution to the initial value problem (1)–(2),
we use the following lemma.

Lemma 3.1 (Modified version of contraction principle [6, 17]). Let X be a
Banach space and let D be an operator which maps the element of X into itself
for which Dr is a contraction, where r is a positive integer, then D has a unique
fixed point.

Definition 3.2. A function x is said to be a solution of (1)–(2) if x satisfies
nonlinear implicit fractional differential system of equations Dα

1x(t) = f (t, xt) on
[1, b] and x(t) = ψ(t) on [1− r, 1].

The proof of the following Lemma is close to the proof of Lemma 6.2 given
in [7].

Lemma 3.3. Let f [1, b] × C → Rn is continuous, then (1)–(2) is equivalent
to the following fractional integral equation

x(t) =


ψ(t), t ∈ [1− r, 1] ,
m−1∑
k=0

ψ(k)(1)

Γ (k + 1)
(log t)k +

1

Γ (α)

∫ t
1

(
log

t

s

)α−1

f (s, xs)
ds

s
, t ∈ [1, b] .

Next theorem guarantees existence and uniqueness of solution to initial value
problem (1)–(2).

Theorem 3.4. If f [1, b]×C → Rn a continuous function that satisfies Lipschitz
condition with respect to the second variable

‖f(t, u)− f(t, v)‖ ≤M ‖u− v‖C , t ∈ [1, b] , u, v ∈ C,
then (1)–(2) has unique solution x [1− r, b]→ Rn.

Proof. Consider the operator F B → B defined by

(Fx) (t) =


ψ(t), t ∈ [1− r, 1] ,

m−1∑
k=0

ψ(k)(1)

Γ(k + 1)
(log t)k +

1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, xs)
ds

s
, t ∈ [1, b] .

Note that by definition of operator F , for any x, z ∈ B, we have

(6)
∥∥(F jx) (t)−

(
F jz

)
(t)
∥∥ = 0 for all t ∈ [1− r, 1] and j ∈ N.
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By using mathematical induction, for any x, z ∈ B and t ∈ [1, b], we prove that

(7)
∥∥(F jx) (t)−

(
F jz

)
(t)
∥∥ ≤ (M(log t)α)

j

Γ (jα+ 1)
‖x− z‖B for all j ∈ N.

By definition of operator F and using Lipschitz condition, for any x, z ∈ B and
t ∈ [1, b], we have

‖(Fx) (t)− (Fz) (t)‖ ≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

‖f (s, xs)− f (s, zs)‖
ds

s

≤ M

Γ (α)

∫ t

1

(
log

t

s

)α−1

‖xs − zs‖C
ds

s
.

For any t ∈ [1, b] and θ ∈ [1− r, 1], we have 1− r ≤ t+ θ ≤ b, and hence

‖xt‖C = sup {xt (θ) : θ ∈ [1− r, 1]} = sup {x (t+ θ) : θ ∈ [1− r, 1]}
≤ sup {x (t+ θ) : 1− r ≤ t+ θ ≤ b} ≤ ‖x‖B .

Thus

‖(Fx) (t)− (Fz) (t)‖ ≤ M

Γ (α)

∫ t

1

(
log

t

s

)α−1

‖x− z‖B
ds

s

≤ M

Γ (α)

(∫ t

1

(
log

t

s

)α−1 ds

s

)
‖x− z‖B .

Therefore,

‖(Fx) (t)− (Fz) (t)‖ ≤ M(log t)α

Γ (α+ 1)
‖x− z‖B , t ∈ [1, b] .

Thus the inequality (7) is true for j = 1. Let us suppose that the inequality (7)
holds for j = r ∈ N, hence

(8) ‖(F rx) (t)− (F rz) (t)‖ ≤ (M(log t)α)
r

Γ (rα+ 1)
‖x− z‖B , t ∈ [1, b] .

We prove that inequality (7) holds for j = r + 1. Let any x, z ∈ B and denote
x̂ = F rx and ẑ = F rz. Then using definition of operator F and the Lipschitz
condition of f , for any t ∈ [1, b], we get∥∥(F r+1x

)
(t)−

(
F r+1z

)
(t)
∥∥ = ‖F ((F rx) (t))− F ((F rz) (t))‖

= ‖F (x̂(t))− F (ẑ(t))‖

≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

‖f (t, x̂s)− f (t, ẑs)‖
ds

s
(9)

≤ M

Γ (α)

∫ t

1

(
log

t

s

)α−1

‖x̂s − ẑs‖C
ds

s
.

From (8), we write

‖x̂(t)− ẑ(t)‖ = ‖(F rx) (t)− (F rz) (t)‖ ≤ (M(log t)α)
r

Γ (rα+ 1)
‖x− z‖B .
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An application of Lemma 2.2 gives

‖x̂t − ẑt‖C ≤
(M(log t)α)

r

Γ (rα+ 1)
‖x− z‖B .

By using the above inequality in (9), and then applying Lemma 2.8, we get∥∥(F r+1x
)

(t)−
(
F r+1z

)
(t)
∥∥

≤ M

Γ (α)

∫ t

1

(
log

t

s

)α−1 (M(log t)α)
r

Γ (rα+ 1)
‖x− z‖B

ds

s

=
Mr+1

Γ (α) Γ (rα+ 1)

(∫ t

1

(
log

t

s

)α−1

(log s)
αr ds

s

)
‖x− z‖B

=
Mr+1

Γ (α) Γ (rα+ 1)
(log t)(r+1)α Γ (α) Γ (rα+ 1)

Γ ((r + 1)α+ 1)
‖x− z‖B

=
(M(log t)α)

r+1

Γ ((r + 1)α+ 1)
‖x− z‖B .

Thus∥∥(F r+1
)
x(t)−

(
F r+1z

)
(t)
∥∥ ≤ (M(log t)α)

r+1

Γ ((r + 1)α+ 1)
‖x− z‖B , t ∈ [1, b] .

We have proved that the inequality (7) holds for j = r + 1. By the principle of
mathematical induction, the proof of inequality (7) is completed. Combining (6)
and (7), we obtain

(10)
∥∥(F jx) (t)−

(
F jz

)
(t)
∥∥ ≤ (M(log t)α)

j

Γ (jα+ 1)
‖x− z‖B

for t ∈ [1− r, b] and for all j ∈ N.
This gives ∥∥(F jx)− (F jz)∥∥

B
= sup
t∈[1−r,b]

∥∥(F jx) (t)−
(
F jz

)
(t)
∥∥

≤ (M (log b)
α

)
j

Γ (jα+ 1)
‖x− z‖B .

By definition of Mittag-Leffler function, we have

Eα (M (log b)
α

) =

∞∑
j=0

(M (log b)
α

)
j

Γ (jα+ 1)
.

Note that (M(log b)α)j

Γ(jα+1) is the jth term of the convergent series of nonnegative real

numbers, this gives

lim
j→∞

(M (log b)
α

)
j

Γ (jα+ 1)
= 0.

Thus we can choose j ∈ N such that (M(log b)α)j

Γ(jα+1) < 1 so that F j is a contraction.

Therefore, by modified version of contraction principle, F has a unique fixed point
x [1− r, b]→ Rn in B, which is the unique solution of (1)–(2). �
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4. Ulam-Hyers stability

We adopt the definitions of Ulam-Hyers stability, generalized Ulam-Hyers stability,
and Ulam-Hyers-Rassias stability given in [20].

Definition 4.1. We say that (1) has Ulam-Hyers stability if there exists a real
number Kf > 0 such that for each ε > 0, if y [1− r, b]→ Rn in B satisfies

‖Dα
1 y(t)− f (t, yt)‖ ≤ ε, t ∈ [1, b] ,

then there exists a solution x [1− r, b]→ Rn of (1) in B with

‖y(t)− x(t)‖ ≤ Kfε, t ∈ [1− r, b] .

Moreover, if x(k)(1) = y(k)(1), k = 0, 1, 2, . . . ,m−1, (1) is Ulam-Hyers stable with
initial conditions.

Definition 4.2. We say that (1) has generalized Ulam-Hyers stability if there
exists ϕf ∈ C (R+,R+), ϕf (0) = 0, such that for each ε > 0, if y [1− r, b] → Rn
in B satisfies

‖Dα
1 y(t)− f (t, yt)‖ ≤ ε, t ∈ [1, b] ,

then there exists a solution x [1− r, b]→ Rn of (1) in B with

‖y(t)− x(t)‖ ≤ ϕf (ε) , t ∈ [1− r, b] .

Definition 4.3. We say that (1) has Ulam-Hyers-Rassias stability with respect
to η ∈ C ([1, b] ,R+) if there exists a real number Kf,η > 0 such that for each ε > 0,
if y [1− r, b]→ Rn in B satisfies

‖Dα
1 y(t)− f (t, y(t))‖ ≤ εη(t), t ∈ [1, b] ,

then there exists a solution x [1− r, b]→ Rn of (1) in B with

‖y(t)− x(t)‖ ≤ εKf,ηη(t), t ∈ [1− r, b] .

Definition 4.4. We say that (1) has generalized Ulam-Hyers-Rassias stability
with respect to η ∈ C ([1, b] ,R+), if there exists a real number Kf,η > 0 such that
if y [1− r, b]→ Rn in B satisfies

‖Dα
1 y(t)− f (t, y(t))‖ ≤ η(t), t ∈ [1, b] ,

then there exists a solution x [1− r, b]→ Rn of (1) in B with

‖y(t)− x(t)‖ ≤ Kf,ηη(t), t ∈ [1− r, b] .

In the following theorem, by method of successive approximation, we prove that
(1) is Ulam-Hyers stable.

Theorem 4.5. Let f [1, b]× C ([1− r, 1] ,Rn) → Rn be a continuous function
that satisfies Lipschitz condition

‖f(t, u)− f(t, v)‖ ≤M ‖u− v‖C , t ∈ [1, b] , u, v ∈ C.
For every ε > 0, if y [1− r, b]→ Rn in B satisfies

‖Dα
1 y(t)− f (t, yt)‖ ≤ ε, t ∈ [1, b] ,
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then there exists a unique solution x [1− r, b] → Rn of (1) in B with x(k)(1) =
y(k)(1), k = 0, 1, 2, . . . ,m− 1, that satisfies

‖y(t)− x(t)‖ ≤
(Eα (M (log b)

α
)− 1

M

)
ε, t ∈ [1− r, b] .

Proof. For every ε > 0, let y [1− r, b]→ Rn in B satisfy,

(11) ‖Dα
1 y(t)− f (t, yt)‖ ≤ ε, t ∈ [1, b]

Then there exists a function σy ∈ B (depending on y) such that

‖σy(t)‖ ≤ ε, t ∈ [1, b]

and

(12) Dα
1 y(t) = f (t, yt) + σy(t), t ∈ [1, b] .

In the light of Lemma 3.3, y satisfies the fractional integral equation

(13)

y(t) =

m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k +

1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, ys)
ds

s

+
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

σy(s)
ds

s
, t ∈ [1, b]

Define
x0(t) = y(t), t ∈ [1− r, b] ,

and consider the sequence
{
xj
}
⊆ B defined by

(14) xj(t) =


y(t), t ∈ [1− r, 1] ,
m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k

+
1

Γ(α)

∫ t
1

(
log

t

s

)α−1

f
(
s, xj−1

s

) ds

s
, t ∈ [1, b] .

By using the principle of mathematical induction, we prove that

(15)
∥∥xj(t)− xj−1(t)

∥∥ ≤ ε (M(log t)α)
j

MΓ (jα+ 1)
, j ∈ N, t ∈ [1, b] .

First we show that inequality (15) is true for j = 1. By definition of successive
approximations, for any t ∈ [1, b], we obtain

‖x1(t)− x0(t)‖ =

∥∥∥∥m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k +

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f
(
s, x0

s

) ds

s
− y(t)

∥∥∥∥
=

∥∥∥∥m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k +

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f (s, ys)
ds

s
− y(t)

∥∥∥∥
=

∥∥∥∥ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

σy(s)
ds

s

∥∥∥∥
≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

‖σy(s)‖ ds

s
≤ ε (log t)α

Γ (α+ 1)
,
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which proves the inequality (15) for j = 1. Let us suppose that the inequality (15)
holds for j = h ∈ N prove it also holds for j = h+ 1 ∈ N.

By using the definition of successive approximations and Lipschitz condition of
f , for any t ∈ [1, b], we obtain

(16)

∥∥xh+1(t)− xh(t)
∥∥ ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 ∥∥f (s, xhs )− f (s, xh−1
s

)∥∥ ds

s

≤ M

Γ(α)

∫ t

1

(
log

t

s

)α−1 ∥∥xhs − xh−1
s

∥∥
C

ds

s
.

Since (15) holds for j = h, we have

∥∥xh(t)− xh−1(t)
∥∥ ≤ ε (M(log t)α)

h

MΓ (hα+ 1)
, t ∈ [1, b] .

Therefore, by using Lemma 2.2, we get

∥∥xht − xh−1
t

∥∥
C
≤ ε

M

(M(log t)α)
h

Γ (hα+ 1)
, t ∈ [1, b] .

Thus the inequality (16) reduces to

∥∥xh+1(t)− xh(t)
∥∥ ≤ ε

Γ(α)

∫ t

1

(
log

t

s

)α−1 (M(log t)α)
h

Γ (hα+ 1)

ds

s

=
εMh

Γ (hα+ 1)

(
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

(log s)
hα ds

s

)
.

Using Lemma 2.8 in the above inequality, we get∥∥xh+1(t)− xh(t)
∥∥ ≤ εMh

Γ (hα+ 1)

Γ (hα+ 1)

Γ ((h+ 1)α+ 1)
(log t)(h+1)α.

Therefore,

∥∥xh+1(t)− xh(t)
∥∥ ≤ ε

M

(M(log t)α)
h+1

Γ ((h+ 1)α+ 1)
, t ∈ [1, b]

which is the inequality (15) for j = h + 1. Using the principle of mathematical
induction, the proof of the inequality (15) is completed.

Furthermore, for any t ∈ [1, b], from inequality (15), we obtain

(17)

∞∑
j=1

∥∥xj(t)− xj−1(t)
∥∥ ≤ ε

M

∞∑
j=1

(M (log b)
α

)
j

Γ (jα+ 1)
=

ε

M
Eα (M (log b)

α − 1) .

Hence the series

x0(t) +

∞∑
j=1

[
xj(t)− xj−1(t)

]
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converges absolutely and uniformly on [1, b], with respect to the norm ‖·‖. Let us
suppose

(18) x̃(t) = x0(t) +

∞∑
j=1

[
xj(t)− xj−1(t)

]
, t ∈ [1, b] .

Then

(19) xh(t) = x0(t) +

h∑
j=1

[
xj(t)− xj−1(t)

]
is the hth partial sum of the series (18). Therefore, we can write,

lim
h→∞

∥∥xh(t)− x̃(t)
∥∥ = 0 for all t ∈ [1, b] .

Further by definition of successive approximations, we have,

xh(t) = y(t), t ∈ [1− r, 1] .

Therefore,

lim
h→∞

xh(t) = y(t), t ∈ [1− r, 1] .

Define

x(t) =

{
y(t), t ∈ [1− r, 1] ,

x̃(t), t ∈ [1, b] .

Clearly x ∈ B. We prove that this limit function is the solution of fractional
integral equation
(20)

x(t) =


y(t), t ∈ [1− r, 1] ,

m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k +

1

Γ(α)

∫ t
1

(
log

t

s

)α−1

f (s, xs)
ds

s
, t ∈ [1, b] .

Using definition of successive approximations for any t ∈ [1, b], we have∥∥∥∥x(t)−
m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k − 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f (s, xs)
ds

s

∥∥∥∥
=

∥∥∥∥x̃(t)−
(
xh(t)− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f
(
s, xh−1

s

) ds

s

)
− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f (s, xs)
ds

s

∥∥∥∥(21)

≤
∥∥x̃(t)− xh(t)

∥∥+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 ∥∥f (s, xh−1
s

)
− f (s, xs)

∥∥ ds

s

≤
∥∥x̃(t)− xh(t)

∥∥+
M

Γ(α)

∫ t

1

(
log

t

s

)α−1 ∥∥xh−1
s − xs

∥∥
C

ds

s
.
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Now for any t ∈ [1, b], from equations (18) and (19), we write∥∥x̃(t)− xh(t)
∥∥ =

∥∥∥∥ ∞∑
j=h+1

[
xj(t)− xj−1(t)

] ∥∥∥∥ ≤ ∞∑
j=h+1

∥∥xj(t)− xj−1(t)
∥∥ .

Using the inequality (15), we obtain

(22)
∥∥x(t)− xh(t)

∥∥ =
∥∥x̃(t)− xh(t)

∥∥ ≤ ∞∑
j=h+1

ε

M

(M(log t)α)
j

Γ (jα+ 1)
, t ∈ [1, b] .

Applying Lemma 2.2, we get

(23)
∥∥xt − xht ∥∥C ≤ ∞∑

j=h+1

ε

M

(M(log t)α)
j

Γ (jα+ 1)
.

Using (22) and (23) in (21), we obtain∥∥∥∥x(t)−
m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k − 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f (s, xs)
ds

s

∥∥∥∥
≤

∞∑
j=h+1

ε

M

(M(log t)α)
j

Γ (jα+ 1)
+

M

Γ(α)

∫ t

1

(
log

t

s

)α−1 ∞∑
j=h+1

ε

M

(M (log s)
α

)
j

Γ (jα+ 1)

ds

s

=

∞∑
j=h+1

ε

M

(M(log t)α)
j

Γ (jα+ 1)
+ ε

∞∑
j=h+1

M j

Γ (jα+ 1)

(
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

(log s)
jα ds

s

)

=

∞∑
j=h+1

ε

M

(M(log t)α)
j

Γ (jα+ 1)
+ ε

∞∑
j=h+1

M j

Γ (jα+ 1)

Γ (jα+ 1)

Γ ((j + 1)α+ 1)
(log t)(j+1)α

=
ε

M

∞∑
j=h+1

(M(log t)α)
j

Γ (jα+ 1)
+

ε

M

∞∑
j=h+1

(M(log t)α)
(j+1)

Γ ((j + 1) alpha+ 1)
, t ∈ [1, b] .

Since both series on the right hand side of the above inequality are convergent, by
taking limit as j →∞, we obtain∥∥∥∥x(t)−

m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k − 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f (s, xs)
ds

s

∥∥∥∥ ≤ 0, t ∈ [1, b] .

This implies

(24) x(t) =

m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k +

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f (s, xs)
ds

s
, t ∈ [1, b] .

Therefore, x is a solution of (1) with the initial condition

x(k)(1) = y(k)(1), k = 0, 1, 2, . . . ,m− 1.

Further, from equations (17), (18), and (20), we have

‖y(t)− x(t)‖ ≤
(Eα (M (log b)

α
)− 1

M

)
ε, t ∈ [1− r, b] .
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This proves that (1) is Ulam-Hyers stable. Moreover, as x(k)(1) = y(k)(1), k =
0, 1, . . . ,m− 1, (1) has Ulam-Hyers stability with the initial conditions.

It remains to prove the uniqueness of x. Assume x̄ is another solution of (1)
with the initial conditions x̄(1) = y(k)(1), k = 0, 1, . . . ,m− 1. Then

x̄(t) =


y(t), t ∈ [1− r, 1] ,
m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k +

1

Γ(α)

∫ t
1

(
log

t

s

)α−1

f (s, x̄s)
ds

s
, t ∈ [1, b] .

Note that

‖x(t)− x̄(t)‖ = 0, t ∈ [1− r, 1] .

By using Lipschitz condition, we find that

‖x(t)− x̄(t)‖ ≤ M

Γ(α)

∫ t

1

(
log

t

s

)α−1

‖xs − x̄s‖C
ds

s
, t ∈ [1, b] .

Using Lemma 2.2,

‖xt − x̄t‖C ≤
M

Γ(α)

∫ t

1

(
log

t

s

)α−1

‖xs − x̄s‖C
ds

s
, t ∈ [1, b] .

By applying Lemma 2.7 to the above inequality with u(t) = ‖xt − x̄t‖C and a(t) =
0, we obtain

‖xt − x̄t‖C = 0, t ∈ [1, b] .

Hence ‖x(t)− x̄(t)‖ = 0 for all t ∈ [1− r, b]. This completes the proof. �

Remark. If we set ϕf (ε) =
(
Eα(M(log b)α)−1

M

)
ε, then ϕf (0) = 0. Hence (1) is

generalized Ulam-Hyers stable with the initial conditions.

Next we obtain Ulam-Hyers-Rassias stability result for (1) by method of suc-
cessive approximations.

Theorem 4.6. Let f [1, b] × C → Rn be a continuous function that satisfies
Lipschitz condition with respect to the second variable

‖f(t, u)− f(t, v)‖ ≤M ‖u− v‖C , t ∈ [1, b] , u, v ∈ C.

For every ε > 0, if y [1− r, b]→ Rn in B satisfies

‖Dα
1 y(t)− f‖ ≤ εη(t), t ∈ [1, b] ,

where η ∈ C ([1, b] ,R+) is a nondecreasing function such that∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

η(s)
ds

s

∣∣∣∣ ≤ λη(t), t ∈ [1, b] ,

and λ > 0 is a constant satisfying 0 < λM < 1, then there exists a unique solution
x [1− r, b] → Rn of (1) in B with x(k)(1) = y(k)(1), k = 0, 1, 2, . . . ,m − 1, that
satisfies

‖y(t)− x(t)‖ ≤ λ

(1− λM)
εη(t), t ∈ [1− r, b] .
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Proof. For every ε > 0, let y [1− r, b]→ Rn in B satisfy

(25) ‖Dα
1 y(t)− f (t, yt)‖ ≤ εη(t), t ∈ [1, b] .

Then there exists a function σy ∈ B (depending on y) such that

‖σy(t)‖ ≤ εη(t), t ∈ [1, b] ,

and

Dα
1 y(t) = f (t, yt) + σy(t), t ∈ [1, b] .

By Lemma 3.3, y satisfies the fractional integral equation

y(t) =

m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k +

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f (s, ys)
ds

s

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

σy(s)
ds

s
, t ∈ [1, b] .

Let define the sequence of approximation
{
xj
}
⊆ B as in proof of Theorem 4.5,

starting with x0(t) = y(t) for t ∈ [1− r, b]. By using mathematical induction, we
prove that

(26)
∥∥xj(t)− xj−1(t)

∥∥ ≤ ε

M
(λM)

j
η(t), j ∈ N, t ∈ [1, b] .

First we show that inequality (26) is true for j = 1. By definition of successive
approximations, for any t ∈ [1, b], we obtain∥∥x1(t)− x0(t)

∥∥
=

∥∥∥∥m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k +

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f
(
s, x0

s

) ds

s
− y(t)

∥∥∥∥
=

∥∥∥∥m−1∑
k=0

y(k)(1)

Γ(k + 1)
(log t)k +

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f (s, ys)
ds

s
− y(t)

∥∥∥∥
=

∥∥∥∥ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

σy(s)
ds

s

∥∥∥∥ ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

‖σy(s)‖ ds

s

≤ ε

Γ(α)

∫ t

1

(
log

t

s

)α−1

η(t)
ds

s
≤ ελη(t).

Therefore, ∥∥x1(t)− x0(t)
∥∥ ≤ ε

M
(λM) η(t), t ∈ [1, b] ,

which is the inequality (26) for j = 1.
Let us suppose that the inequality (26) holds for j = h ∈ N. Then by definition

of successive approximations and Lipschitz condition of f for any t ∈ [1, b], we
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obtain

(27)

∥∥xh+1(t)− xh(t)
∥∥ ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 ∥∥f (s, xhs )− f (s, xh−1
s

)∥∥ ds

s

≤ M

Γ(α)

∫ t

1

(
log

t

s

)α−1 ∥∥xhs − xh−1
s

∥∥
C

ds

s
.

Since (26) holds for j = h, we have∥∥xh(t)− xh−1(t)
∥∥ ≤ ε

M
(λM)

h
η(t), t ∈ [1, b] .

Therefore, by using Lemma 2.2, we get∥∥xht − xh−1
t

∥∥
C
≤ ε

M
(λM)

h
η(t), t ∈ [1, b] .

Thus the inequality (27) reduces to∥∥xh+1(t)− xh(t)
∥∥ ≤ M

Γ(α)

∫ t

1

(
log

t

s

)α−1 ε

M
(λM)

h
η(t)

ds

s

= ε (λM)
h

(
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

η(t)
ds

s

)
≤ ε (λM)

h
λη(t) ≤ ε

M
(λM)

h+1
η(t).

Therefore, ∥∥xh+1(t)− xh(t)
∥∥ ≤ ε

M
(λM)

h+1
η(t), t ∈ [1, b] ,

which is the inequality (26) for j = h+ 1. Using principle of mathematical induc-
tion, the proof of the inequality (26) is completed.

Using the inequality (26) and the fact 0 < λM < 1, for any t ∈ [1, b],

(28)

∞∑
j=1

∥∥xj(t)− xj−1(t)
∥∥ ≤ ε

M

∞∑
j=1

(λM)
h
η(t) =

ε

M

λM

(1− λM)
η(t).

Thus

(29)

∞∑
j=1

∥∥xj(t)− xj−1(t)
∥∥ ≤ λ

(1− λM)
εη(t), t ∈ [1, b] .

Since η is continuous on compact set [1, b], it is bounded. Clearly, from the above
inequality (29), it follows that the series

x0(t) +

∞∑
j=1

[
xj(t)− xj−1(t)

]
converges absolutely and uniformly on [1, b], say to x̂(t) in the norm ‖·‖. Define

x(t) =

{
y(t), t ∈ [1− r, 1] ,

x̂(t), t ∈ [1, b] .
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Proceeding as in the proof of Theorem 4.5, one can show that x is a solution of
(1) with x(k)(1) = y(k)(1), k = 0, 1, 2, . . . ,m− 1, that satisfies

‖y(t)− x(t)‖ ≤ λ

(1− λM)
εη(t), t ∈ [1− r, b] .

Therefore, (1) is Ulam-Hyers-Rassias stable. �

5. Eα-Ulam-Hyers stability

Now we consider the following definitions of Eα-Ulam-Hyers stability introduced
by Wang and Li [19].

Definition 5.1. The equation (1) is Eα-Ulam-Hyers stable if there exists a real
number Kf > 0 such that for each ε > 0 and each y [1− r, b]→ Rn in B satisfies
the inequality

‖Dα
1 y(t)− f (t, yt)‖ ≤ ε, t ∈ [1, b] ,

then there exists a solution x [1− r, b]→ Rn of (1) in B with

‖y(t)− x(t)‖ ≤ KfEα (δf (log t)α) ε, δf ≥ 0, t ∈ [1− r, b] .

Definition 5.2. The equation (1) is generalized Eα-Ulam-Hyers stable if there
exists ϕf ∈ C (R+,R+), ϕf (0) = 0 such that for each ε > 0, if y [1− r, b]→ Rnin
B satisfies

‖Dα
1 y(t)− f (t, yt)‖ ≤ ε, t ∈ [1, b] ,

then there exists a solution x [1− r, b]→ Rn of (1) in B with

‖y(t)− x(t)‖ ≤ ϕf (ε)Eα (δf (log t)α) , δf ≥ 0, t ∈ [1− r, b] .

Theorem 5.3. Let f [1, b] × C → Rn be a continuous function that satisfies
Lipschitz condition with respect to the second variable

‖f(t, u)− f(t, v)‖ ≤M ‖u− v‖C , t ∈ [1, b] , u, v ∈ C.
For every ε > 0, if y [1− r, b]→ Rn in B satisfies

‖Dα
1 y(t)− f (t, yt)‖ ≤ ε, t ∈ [1, b] ,

then there exists unique solution x [1− r, b] → Rn of (1) in B with x(k)(1) =
y(k)(1), k = 0, 1, 2, . . . ,m− 1, that satisfies,

‖y(t)− x(t)‖ ≤ 1

M
Eα (M(log t)α) ε, t ∈ [1− r, b] .

Proof. We define the sequence of approximations as in Theorem 4.5. Noting
that x0(t) = y(t), and from (15), (18), and (20), we write

‖y(t)− x(t)‖ ≤
∞∑
j=1

∥∥xj(t)− xj−1(t)
∥∥ ≤ ε

M

∞∑
j=0

(M(log t)α)
j

Γ (jα+ 1)

≤ 1

M
Eα (M(log t)α) ε, t ∈ [1− r, b] .
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This means the problem (1) is Eα-Ulam-Hyers stable with the initial conditions.
�

Remark. If we set ϕf (ε) = ε
M , then ϕf (0) = 0, the proves that the equa-

tion (1) is generalized Eα-Ulam-Hyers stable with the initial conditions.

6. An example

To illustrate existence and stability results for fractional delay differential equation
obtained in this paper, we give the following example. Since any two norms on
a finite dimensional linear spaces are equivalent, here we consider the example in
R2 with the norm

‖x‖ = |x1|+ |x2| , x = (x1, x2) ∈ R2.

Consider the fractional delay differential equation of the form

D
7
2
1 x(t) = f (t, xt) =

( xt1
1 + xt1

, sin (xt2)
)
, t ∈ [1, e] ,(30)

x(t) = (2, 1 + t) , t ∈ [−1, 1] ,(31)

where x [−1, e]→ R2 and f [1, e]× C
(
[−1, 1] ,R2

)
→ R2 is a nonlinear function.

Let

f (t,Ψ) = f (t, (Ψ1,Ψ2))
( Ψ1

1 + Ψ1
, sin (Ψ2)

)
.

Then for any Ψ, φ ∈ C
(
[−1, 1] ,R2

)
, we find

‖f (t,Ψ)− f (t, φ)‖

= ‖f (t, (Ψ1,Ψ2))− f (t, (φ1, φ2))‖ =

∥∥∥∥( Ψ1

1 + Ψ1
, sin (Ψ2)

)
−
( φ1

1 + φ1
, sin (φ2)

)∥∥∥∥
=

∥∥∥∥( Ψ1

1 + Ψ1
− φ1

1 + φ1
, sin (Ψ2)− sin (φ2)

)∥∥∥∥
=

∣∣∣∣ Ψ1

1 + Ψ1
− φ1

1 + φ1

∣∣∣∣+ |sin (Ψ2)− sin (φ2)| ≤ |Ψ1 − φ1|+ |Ψ2 − φ2| = ‖Ψ− φ‖ .

Therefore, ‖f (t,Ψ)− f (t, φ)‖ ≤ ‖Ψ− φ‖ for all Ψ, φ ∈ C
(
[−1, 1] ,R2

)
. This

implies f satisfies Lipschitz condition with Lipschitz constant M = 1. Hence by
Theorem 3.4, (30)–(31) has a unique solution. Further, if y ∈ B = C

(
[−1, e] ,R2

)
satisfies ∥∥∥D 7

2
1 y(t)− f

∥∥∥ ≤ ε, t ∈ [1, e] ,

then as shown in Theorem 4.5, there exists a solution x ∈ B of (30) such that

‖y(t)− x(t)‖ ≤
(
E 7

2

((
log e

) 7
2
)
− 1

1

)
ε =

(
E 7

2
(1)− 1

)
ε, t ∈ [−1, e] .

Other stability results for (30) can be discussed similarly.
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