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RELATING TOTAL DOUBLE ROMAN DOMINATION

TO 2-INDEPENDENCE IN TREES

J. AMJADI and M. VALINAVAZ

Abstract. A double Roman dominating function (DRDF) on a graph G = (V,E)

is a function f : V → {0, 1, 2, 3} having the property that if f(u) = 0, then a vertex
u has at least two neighbors assigned 2 under f or one neighbor w with f(w) = 3,

and if f(u) = 1, then a vertex u must have at least one neighbor w with f(w) ≥ 2. A

total double Roman dominating function (TDRDF) on a graph G with no isolated
vertex is a DRDF f on G with the additional property that the subgraph of G

induced by the set {v ∈ V : f(v) 6= 0} has no isolated vertices. The weight of
a total double Roman dominating function f is the value, f(V ) = Σu∈V (G)f(u).

The total double Roman domination number γtdR(G) is the minimum weight of a
TDRDF on G. A subset S of V is a 2-independent set of G if every vertex of S has

at most one neighbor in S. The maximum cardinality of a 2-independent set of G is

the 2-independence number β2(G). In this paper, we show that if T is a tree, then
γtdR(T ) ≤ 2β2(T ), and we characterize all trees attaining the equality.

1. Introduction

For notation and graph theory terminology, we in general follow Haynes, Hedet-
niemi and Slater [16, 17]. In this paper, G is a simple graph with a vertex
set V = V (G) and a edge set E = E(G). The order |V | of G is denoted
by n = n(G). For every vertex v ∈ V , the open neighborhood of v is the set
N(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is the set
N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is degG(v) = |N(v)|. The mini-
mum degree and the maximum degree of a graph G are denoted by δ = δ(G) and
∆ = ∆(G), respectively. A vertex v with deg(v) = 1 is called a leaf. The neighbor
of a leaf is called a support vertex, while a support vertex having two or more
adjacent leaves is called a strong support vertex. For a vertex v in a (rooted) tree
T , let C(v) and D(v) denote the set of children and descendants of v, respectively,
and let D[v] = D(v) ∪ {v}. Also, the depth of v, depth(v), is the largest distance
from v to a vertex in D[v]. The maximal subtree at v is the subtree of T induced
by D[v], and is denoted by Tv. We denote the set of leaves adjacent to a vertex v
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by Lv. The diameter of a graph G, denoted by diam(G), is the greatest distance
between two vertices of G. We write Pn for the path of order n and K1,n−1 for
the star of order n. A double star DSp,q is a tree with exactly two vertices that
are not leaves, with one adjacent to r leaves and the other one to s leaves. For a
subset S ⊆ V (G) and a function f : V (G)→ R, we define f(S) =

∑
x∈S f(x).

A subset S of vertices of G is a (total) dominating set if N [S] = V (N(S) = V ).
The (total) domination number γ(G) (γt(G)) is the minimum cardinality of a
(total) dominating set of G, and a (total) dominating set of minimum cardinality
is called a γ-set (γt-set). For a positive integer k, the subset S is k-dominating if
every vertex of V − S has at least k neighbors in S. The k-domination number
γk(G) is the minimum cardinality of a k-dominating set of G. The literature on
the subject of domination parameters in graphs surveyed in the three main books
[16, 17, 18].

A subset S ⊆ V (G) is said to be independent if G[S] has no edges. The indepen-
dent domination number (resp., the independence number) of G denoted by i(G)
(resp., β(G)) is the size of the smallest (resp., the largest) maximal independent
set in G. It is well known that

γ(G) ≤ i(G) ≤ β(G).

In [15], Fink and Jacobson generalized the concept of independent sets as fol-
lows. Let k be a positive integer, a subset X of V is k-independent if ∆(G[X]) ≤
k − 1. The k-independence number βk(G) is the maximum cardinality among
all k-independent sets of G. A k-independent set with maximum cardinality of
a graph G is called a βk(G)-set. For additional information we refer the reader
to [12]. Relations between domination parameters and independence studied by
several authors [3, 11, 13, 14, 19, 21].

A Roman dominating function on a graph G is a function f : V → {0, 1, 2}
satisfying the condition that every vertex v for which f(v) = 0 is adjacent to
at least one vertex u for which f(u) = 2. A total Roman dominating function
of a graph G with no isolated vertex, abbreviated TRD-function, is a Roman
dominating function f = (V0, V1, V2) on G with the additional property that the
subgraph of G induced by the set V1 ∪ V2 has no isolated vertices. The weight of
f is defined by ω(f) = f(V (G)). The total Roman domination number γtR(G) is
the minimum weight among all total dominating functions on G. A total Roman
dominating function with minimum weight γtR(G) in G is called a γtR(G)-function.
For a total Roman dominating function f , let Vi = {v ∈ V | f(v) = i} for
i = 0, 1, 2. Since these three sets determine f , we can equivalently write f =
(V0, V1, V2). The total Roman domination was introduced by Liu and Chang [20]
albeit in a more general setting, and studied by several authors [1, 2, 4, 5, 6].

In 2016, Beeler et al. [9] introduced the double Roman domination defined as
follows. A function f : V → {0, 1, 2, 3} is a double Roman dominating function
(DRDF) on a graph G if the following conditions hold: (i) If f(v) = 0, then v
must have either at least one neighbor with label 3 or at least two neighbors with
label 2, and (ii) If f(v) = 1, then v must have at least one neighbor with label at
least 2. The weight of DRDF f is defined by ω(f) = f(V (G)). The double Roman
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domination number of a graph G, denoted by γdR(G), is the minimum weight
among all double Roman dominating functions of G. A double Roman dominating
function with minimum weight γdR(G) in G is called a γdR(G)-function. For a
double Roman dominating function f , let Vi = {v ∈ V | f(v) = i} for i =
0, 1, 2, 3. Since these four sets determine f uniquely, we can equivalently write
f = (V0, V1, V2, V3). We observe that ω(f) = |V1|+ 2|V2|+ 3|V3|.

A total double Roman dominating function of a graph G with no isolated
vertex, abbreviated TDRD-function, is a double Roman dominating function
f = (V0, V1, V2, V3) on G with the additional property that the subgraph of G
induced by V1 ∪ V2 ∪ V3 has no isolated vertices. The total double Roman dom-
ination number γtdR(G) is the minimum weight among all total double Roman
dominating functions on G. The concept of total double Roman domination was
introduced by Amjadi et al. [7] and has been studied by several authors, eg., [22].

Hao et al. [22] proved that for any connected graph G of order n ≥ 2, γtdR(G) ≤
2γtR(G)−1 and Abdollahzadeh Ahangar [1] show that γtR(G) ≤ 2γt(G) for every
graph G with no isolated vertex. In [10], the authors proved that for every graph
G without isolated vertices, γt(G) ≤ 3

2γ2(G) − 1
2 . Favaron [14] proved that for

any graph G and positive integer k, γk(G) ≤ βk(G). Combining these results, we
obtain the next result.

Proposition 1.1. For any graph G without isolated vertices, γtdR(G) ≤
6β2(G)− 3.

In this paper, we consider the problem of 2-independent set and total double
Roman domination in trees and improve the above bound considerably.

We make use of the following result in this paper.

Observation 1.2. Let v be a support vertex of a graph G and u be a leaf
neighbor of v. For any TDRDF of G, f(u) + f(v) ≥ 3 and f(v) ≥ 1.

Proposition 1.3 ([8]). Let T ′ be a tree and let u ∈ V (T ′). If T is a tree
obtained from T ′ by adding a path P3 = x1x2x3 and joining u to x3, then β2(T ) =
β2(T ′) + 2.

Proposition 1.4 ([13]). Let T ′ be a tree and v ∈ V (T ′). If T is the tree
obtained from T ′ by adding a path P4 = x1x2x3x4 and joining v to x3, then
β2(T ) = β2(T ′) + 3.

Proposition 1.5. Let T ′ be a tree and let u ∈ V (T ′). If T is a tree obtained
from T ′ by adding a path P3 =x1x2x3 and joining u to x2, then β2(T )=β2(T ′)+2.

Proof. Clearly, any β2(T ′)-set can be extended to a 2-independent set of T by
adding x1, x3, and so β2(T ) ≥ β2(T ′) + 2. On the other hand, for any β2(T )-set
S, we have |S ∩ {x1, x2, x3}| ≤ 2, and since S r {x1, x2, x3} is a 2-independent set
of T ′, we have β2(T ′) ≥ |S − {x1, x2, x3}|. This implies that β2(T ′) ≥ β2(T )− 2.
Thus β2(T ) = β2(T ′) + 2. �

Proposition 1.6. Let T ′ be a tree and let u ∈ V (T ′). If T is a tree obtained
from T ′ by adding a path P3 = x1x2x3 and joining u to x3 or x2, then γtdR(T ) ≤
γtdR(T ′) + 4.
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Proof. Clearly, any γtdR(T ′)-function can be extended to a TDRDF of T by
assigning 3 to x2, 1 to x1, and 0 to x3, and so γtdR(T ) ≤ γtdR(T ′) + 4. �

Proposition 1.7. Let T ′ be a tree and let u ∈ V (T ′). If T is a tree obtained
from T ′ by adding a path P4 = x1x2x3x4 and joining u to x3, then γtdR(T ) ≤
γtdR(T ′) + 6.

Proof. Clearly, any γtdR(T ′)-function, can be extended to a TDRDF of T by
assigning 3 to x2, x3 and 0 to x1, x4, and so γtdR(T ) ≤ γtdR(T ′) + 6. �

2. Total double Roman domination and 2-independence

In this section, we show that if T is a tree, then γtdR(T ) ≤ 2β2(T ) and we provide
a constructive characterization of all trees T with γtdR(T ) = 2β2(T ). We start
with a definition.

Definition 2.1. Let u be a vertex of a graph G. A function f : V (G) →
{0, 1, 2, 3} is said to be an almost total double Roman dominating function (almost
TDRDF) with respect to u if each element v ∈ V (G)−{u} is total double Roman
dominated under f , that is:

(i) if v ∈ V − {u} and f(v) = 0, then v must have at least one neighbor with
label 3 or at least two neighbors with label 2,

(ii) if v ∈ V − {u} and f(v) = 1, then v must have at least one neighbor with
label at least 2, and

(iii) if v ∈ V − {u} and f(v) ≥ 1, then v must have at least one neighbor with
positive label.

Let

γtdR(G;u) = min{ω(f) | f is an almost TDRDF with respect to u}.
Clearly, any total double Roman dominating function on G is an almost TDRDF
with respect to each vertex of G. Hence γtdR(G;u) ≤ γtdR(G) for each u ∈ V (G).
For a graph G, define W 1

G and W 2
G as follows:

W 1
G = {v ∈ V (G) | γtdR(G; v) = γtdR(G)}

and
W 2

G = {v ∈ V (G) | for any γtdR(G)-function f, f(v) ≤ 1}.

Let T be the family of unlabeled trees T that can be obtained from a sequence
T1, T2, . . . , Tm (m ≥ 1) of trees such that T1 ∈ {P3, P4}, and if m ≥ 2, Ti+1 can
be obtained recursively from Ti by the following operations for 1 ≤ i ≤ m− 1.

Operation O1. If u ∈ W 1
Ti
∩W 2

Ti
, then Operation O1 adds a path P3 = x1x2x3

and the edge ux3 to obtain Ti+1.

Operation O2. If u ∈ W 1
Ti

, then Operation O2 adds P3 = x1x2x3 and the edge
ux2 to obtain Ti+1.

Operation O3. If u ∈ W 1
Ti

, then Operation O3 adds a path P4 = x1x2x3x4 and
the edge ux3 to obtain Ti+1.
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Lemma 2.2. If Ti is a tree with γtdR(Ti) = 2β2(Ti) and Ti+1 is a tree obtained
from Ti by Operation O1, then γtdR(Ti+1) = 2β2(Ti+1).

Proof. By Propositions 1.3 and 1.6, β2(Ti+1) = β2(Ti) + 2 and γtdR(Ti+1) ≤
γtdR(Ti) + 4. Assume that f is a γtdR(Ti+1)-function. Clearly, f(x2) + f(x1) ≥ 3.
If f(x3) ≥ 1 or f(x2)+f(x1) ≥ 4, then the function f restricted to Ti is an almost
TDRDF of Ti with respect to u and we deduce from the assumption u ∈W 1

Ti
that

γtdR(Ti+1) ≥ γtdR(Ti;u) + 4 = γtdR(Ti) + 4.
Assume that f(x3) = 0 and f(x2)+f(x1) = 3. Then f(u) ≥ 2 and the function

f restricted to Ti is an TDRDF of Ti of weight γtdR(Ti+1) − 3 with f(u) ≥ 2.
We deduce from u ∈ W 2

Ti
that γtdR(Ti+1) − 3 = ω(f |Ti

) ≥ γtdR(Ti) + 1, and so
γtdR(Ti+1) ≥ γtdR(Ti) + 4. Therefore, γtdR(Ti+1) = γtdR(Ti) + 4. It follows from
γtdR(Ti) = 2β2(Ti) that

2β2(Ti+1) = 2β2(Ti) + 4 = γtdR(Ti) + 4 = γtdR(Ti+1),

as desired. �

Lemma 2.3. If Ti is a tree with γtdR(Ti) = 2β2(Ti) and Ti+1 is a tree obtained
from Ti by Operation O2, then γtdR(Ti+1) = 2β2(Ti+1).

Proof. The proof is similar to the proof of Lemma 2.2 and therefore, omitted.
�

Lemma 2.4. If Ti is a tree with γtdR(Ti) = 2β2(Ti) and Ti+1 is a tree obtained
from Ti by Operation O3, then γtdR(Ti+1) = 2β2(Ti+1).

Proof. Let Operation O3 add a path P4 = x4x3x2x1 and the edge ux3 to obtain
Ti+1. By Propositions 1.4 and 1.7, we have β2(Ti+1) = β2(Ti)+3 and γtdR(Ti+1) ≤
γtdR(Ti) + 6. We now prove that γtdR(Ti+1) ≥ γtdR(Ti) + 6-function. Let f be a
γtdR(Ti+1). By Observation 1.2, f(x1) + f(x2) ≥ 3 and f(x3) + f(x4) ≥ 3. We
may assume that f(x3) = f(x2) = 3 and f(x1) = f(x4) = 0. Then the function
f restricted to Ti is an almost TDRDF of Ti with respect to u and we deduce
from the assumption u ∈ W 1

Ti
that γtdR(Ti+1) ≥ γtdR(Ti;u) + 6 = γtdR(Ti) + 6.

Hence γtdR(Ti+1) = γtdR(Ti) + 6. As in the proof of Lemma 2.2, we obtain
γtdR(Ti+1) = 2β2(Ti+1). �

Lemma 2.5. If T ∈ T , then γtdR(T ) = 2β2(T ).

Proof. Let T ∈ T . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1)
such that T1 ∈ {P3, P4} and if k ≥ 2, then Ti+1 can be obtained recursively from
Ti by one of Operations O1,O2, and O3 for i = 1, 2, . . . , k − 1.

We proceed by induction on the number of operations applied to construct T .
Clearly, the statement is true for T1, that is γtdR(T1) = 2β2(T1). Suppose that
the result is true for each tree T ∈ T which can be obtained from a sequence of
operations of length k − 1 and let T ′ = Tk−1. By the induction hypothesis, we
have γtdR(T ′) = 2β2(T ′). By construction, T is obtained from T ′ by using one
of the operations O1,O2, or O3. It follows from Lemmas 2.2, 2.3 and 2.4 that
γtdR(T ) = 2β2(T ), and the proof is complete. �
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Next, we are ready to prove the main result of this paper.

Theorem 2.6. For every tree T of order n ≥ 2,

γtdR(T ) ≤ 2β2(T )

with equality if and only if T ∈ T .

Proof. Let T be a tree of order n ≥ 2. The proof is by induction on n. If n = 2,
then T = P2 and we have γtdR(T ) = 3 < 4 = 2β2(T ). If n = 3, then T = P3

and we have γtdR(T ) = 4 = 2β2(T ). Let n ≥ 3 and let the statement hold for
any tree of order less than n. If diam(T ) = 2, then T is the star K1,n−1 and we
have γtdR(T ) = 4 ≤ 2(n − 1) = 2β2(T ) with equality if and only if n = 3, that
is, T = P3 ∈ T . If diam(T ) = 3, then T is a double star DSp,q (q ≥ p ≥ 1), and
we have γtdR(T ) = 6 ≤ 2β2(T ) with equality if and only if p = q = 1, that is,
T = P4 ∈ T . Assume that diam(T ) ≥ 4 and let v1v2 . . . vd+1 be a diametrical path
in T such that deg(v2) is as large as possible. Root T at vd+1.

Assume first that k = deg(v2) ≥ 4. Let T ′ = T − Tv2 . Clearly, every β2(T ′)-set
can be extended to a 2-independent set of T by adding all leaves adjacent to v2,
and this implies that β2(T ) ≥ β2(T ′) + k − 1. On the other hand, any γtdR(T ′)-
function can be extended to a TDRDF of T by assigning the value 3 to v2, 1 to
v1, and 0 to other leaves of Tv2 , and this implies that γtdR(T ) ≤ γtdR(T ′) + 4. It
follows from the induction hypothesis that

2β2(T ) ≥ 2β2(T ′) + 2k − 2 ≥ γtdR(T ′) + 2k − 2

≥ γtdR(T )− 4 + 2k − 2 > γtdR(T ).

Let deg(v2) ≤ 4. We consider the following cases.

Case 1. deg(v2) = 3.
Let Lv2 = {v1, u} and T ′ = T − Tv2

. Clearly, any β2(T ′)-set can be extended to
a 2-independent set of T by adding two leaves of Tv2 , and so β2(T ) ≥ β2(T ′) + 2.
On the other hand, any γtdR(T ′)-function g can be extended to a TDRDF of T
by assigning 3 to v2, 1 to v1, and 0 to u, implying that γtdR(T ) ≤ γtdR(T ′) + 4. It
follows from the induction hypothesis that

2β2(T ) ≥ 2β2(T ′) + 4 ≥ γtdR(T ′) + 4 ≥ γtdR(T )− 4 + 4 = γtdR(T ).

Let the equality hold. Then all inequalities occurring in the above inequality
chain, become equalities and so β2(T ) = β2(T ′) + 2, γtdR(T ) = γtdR(T ′) + 4 and
γtdR(T ′) = 2β2(T ′). We conclude from the induction hypothesis that T ′ ∈ T .
We show that v3 ∈ W 1

T ′ . Suppose to the contrary that v3 6∈ W 1
T ′ and let g be a

almost TDRDF of T ′ with respect to v3 of weight at most γtdR(T ′) − 1. Define
h : V (T ) → {0, 1, 2, 3} by h(w) = g(w) for w ∈ V (T ′), h(v2) = 3, h(v1) = 1, and
h(u) = 0. Clearly, h is a TDRDF of T of weight γtdR(T ′) + 3, which leads to a
contradiction. Hence, v3 ∈ W 1

T ′ . Now, T can be obtained from T ′ by Operation
O2, and so T ∈ T .

Case 2. deg(v2) = 2.
By the choice of diametrical path, all children of v3 with depth 1, have degree 2.
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Assume that v3 has t children with depth 1. Then t ≥ 1. We distinguish the
following subcases.

Subcase 2.1. deg(v3) = 2.
Let T ′ = T −Tv3 . By Propositions 1.3 and 1.6, β2(T ) ≥ β2(T ′) + 2 and γtdR(T ) ≤
γtdR(T ′) + 4. It follows from the induction hypothesis that

2β2(T ) ≥ 2β2(T ′) + 4 ≥ γtdR(T ′) + 4 ≥ γtdR(T )− 4 + 4 = γtdR(T ).

If the equality holds, then all inequalities occurring in the above inequality chain,
become equalities, and so β2(T ) = β2(T ′) + 2, γtdR(T ) = γtdR(T ′) + 4, and
γtdR(T ′) = 2β2(T ′). We conclude from the induction hypothesis that T ′ ∈ T .
We prove now that v4 ∈ W 1

T ′ ∩W 2
T ′ . First we show that v4 ∈ W 1

T ′ . Suppose to
the contrary that v4 6∈W 1

T ′ and let g be an almost TDRDF of T ′ with respect to
v4 of weight at most γtdR(T ′) − 1. Define h : V (T ) → {0, 1, 2, 3} by h(u) = g(u)
for u ∈ V (T ′), h(v2) = 3, h(v3) = 1, and h(v1) = 0. Clearly, h is a TDRDF of
T of weight γtdR(T ′) + 3, which leads to a contradiction. Hence, v4 ∈W 1

T ′ . Next,
we show that v4 ∈ W 2

T ′ . Suppose to the contrary that v4 6∈ W 2
T ′ and let g be a

γtdR(T ′)-function with g(v4) ≥ 2. Define h : V (T ) → {0, 1, 2, 3} by h(u) = g(u)
for u ∈ V (T ′), h(v1) = 1, h(v2) = 2, and h(v3) = 0. Obviously h is a TDRDF of
T of weight γtdR(T ′) + 3, which leads to a contradiction. Hence v4 ∈ W 2

T ′ . Now,
T can be obtained from T ′ by Operation O1, and so T ∈ T .

Subcase 2.2. t ≥ 2 and v3 is not a support vertex.
Let T ′ = T − Tv3 . Obviously, any β2(T ′)-set can be extended to a 2-independent
set of T by adding all vertices of Tv3 except v3, and so β2(T ) ≥ β2(T ′) + 2t. On
the other hand, any γtdR(T ′)-function can be extended to a TDRDF of T by
assigning 1 to v3, 3 to all children of v3 with depth 1 and, 0 to all leaves of Tv3 ,
and so γtdR(T ) ≤ γtdR(T ′) + 1 + 3t. It follows from the induction hypothesis that

2β2(T ) ≥ 2β2(T ′) + 4t ≥ γtdR(T ′) + 4t ≥ γtdR(T )− 1− 3t+ 4t

= γtdR(T ) + t− 1 > γtdR(T ).

Subcase 2.3. v3 has ` ≥ 1 children with depth 0 and t ≥ 1 children with depth 1.
Assume that T ′ = T − Tv3 . First let ` + t ≥ 3. Obviously, any β2(T ′)-set can be
extended to a 2-independent set of T by adding D(v3), and so β2(T ) ≥ β2(T ′) +
2t+ l. On the other hand, any γtdR(T ′)-function can be extended to a TDRDF of
T by assigning 3 to v3, and all children of v3 with depth 1, and 0 to all leaves of Tv3 ,
and hence γtdR(T ) ≤ γtdR(T ′) + 3 + 3t. It follows from the induction hypothesis
that

2β2(T ) ≥ 2β2(T ′) + 4t+ 2l ≥ γtdR(T ′) + 4t+ 2l

≥ γtdR(T )− 3− 3t+ 4t+ 2l = γtdR(T ) + t+ 2l − 3 > γtdR(T ).

Now let `+ t = 2. Then we have ` = t = 1. Suppose w is the leaf adjacent to v3.
As mentioned above, β2(T ) ≥ β2(T ′) + 3 and γtdR(T ) ≤ γtdR(T ′) + 6. It follows
from the induction hypothesis that

2β2(T ) ≥ 2β2(T ′) + 6 ≥ γtdR(T ′) + 6 ≥ γtdR(T ).
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If the equality holds, then all inequalities occurring in above inequality chain,
become equalities, and so β2(T ) = β2(T ′) + 3, γtdR(T ) = γtdR(T ′) + 6, and
γtdR(T ′) = 2β2(T ′). We conclude from the induction hypothesis that T ′ ∈ T .
We prove now that v4 ∈ W 1

T ′ . Suppose to the contrary that v4 6∈ W 1
T ′ and let

g be an almost TDRDF of T ′ with respect to v4 of weight at most γtdR(T ′) − 1.
Define h : V (T ) → {0, 1, 2, 3} by h(u) = g(u) for u ∈ V (T ′), h(v2) = h(v3) = 3,
and h(v1) = h(w) = 0. Clearly, h is a TDRDF of T of weight γtdR(T ′) + 3, which
leads to a contradiction. Hence, v4 ∈ W 1

T ′ . Now, T can be obtained from T ′ by
Operation O3, and so T ∈ T .
This completes the proof. �
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10. Bonomo F., Brešar B., Grippo L., Milanič M. and Safe M., Domination parameters with

number 2: interrelations and algorithmic consequences, Discrete Appl. Math. 235 (2018),
23–50.

11. Chellali M. and Meddah N., Trees with equal 2-domination and 2-independence numbers,

Discuss. Math. Graph Theory 32 (2012), 263–270.
12. Chellali M., Favaron O., Hansberg A. and Volkmann L., k-domination and k-independence

in graphs: A survey, Graphs Combin. 28 (2012), 1–55.

13. Dehgardi N., Mixed Roman domination and 2-independence in trees, Commun. Comb. Op-
tim. 3 (2018), 79–91.

14. Favaron O., On a conjecture of Fink and Jacobson concerning k-domination and k-
dependence, J. Combin. Theory Ser. B 39 (1985), 101–102.

15. Fink J. F. and Jacobson M. S., On n-domination, n-dependence and forbidden subgraphs,

in: Graph Theory with Applications to Algorithms and Computer Science, John Wiley and
Sons, New York, 1985, 301–311.

16. Haynes T. W., Hedetniemi S. T. and Slater P. J. (eds.), Fundamentals of Domination in

Graphs, Marcel Dekker, Inc. New York, 1998.
17. Haynes T. W., Hedetniemi S. T. and Slater P. J. (eds.), Domination in Graphs: Advanced

Topics, Marcel Dekker, Inc. New York, 1998.



RELATING TOTAL DOUBLE ROMAN DOMINATION . . . 193

18. Henning M. A. and Yeo A., Total Domination in Graphs, Springer Monographs in Mathe-

matics, 2013.
19. Jacobson M. S., Peters K. and Rall D. F., On n-irredundance and n-domination, Ars Com-

bin. 29 (1990), 151–160.

20. Liu C.-H. and Chang G. J., Roman domination on strongly chordal graphs, J. Comb. Optim.
26 (2013), 608–619.

21. Meddah N. and Chellali M., Roman domination and 2-independence in trees, Discrete Math.

Algorithms Appl. 9 (2017), #1750023.
22. Hao G., Mojdeh D. and Volkmann L., Total double Roman domination in graphs, Commun.

Comb. Optim. 5 (2020), 27–39.

J. Amjadi, Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran,
e-mail : j-amjadi@azaruniv.ac.ir

M. Valinavaz, Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran,

e-mail : m.valinavaz@azaruniv.ac.ir


