RELATING TOTAL DOUBLE ROMAN DOMINATION TO 2-INDEPENDENCE IN TREES

J. AMJADI AND M. VALINAVAZ

ABSTRACT. A double Roman dominating function (DRDF) on a graph G = (V, E)is a function $f: V \to \{0, 1, 2, 3\}$ having the property that if f(u) = 0, then a vertex u has at least two neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if f(u) = 1, then a vertex u must have at least one neighbor w with $f(w) \ge 2$. A total double Roman dominating function (TDRDF) on a graph G with no isolated vertex is a DRDF f on G with the additional property that the subgraph of G induced by the set $\{v \in V : f(v) \neq 0\}$ has no isolated vertices. The weight of a total double Roman dominating function f is the value, $f(V) = \sum_{u \in V(G)} f(u)$. The total double Roman domination number $\gamma_{tdR}(G)$ is the minimum weight of a TDRDF on G. A subset S of V is a 2-independent set of G if every vertex of S has at most one neighbor in S. The maximum cardinality of a 2-independent set of G is the 2-independence number $\beta_2(G)$. In this paper, we show that if T is a tree, then $\gamma_{tdR}(T) \leq 2\beta_2(T)$, and we characterize all trees attaining the equality.

1. INTRODUCTION

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [16, 17]. In this paper, G is a simple graph with a vertex set V = V(G) and a edge set E = E(G). The order |V| of G is denoted by n = n(G). For every vertex $v \in V$, the open neighborhood of v is the set $N(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $\deg_G(v) = |N(v)|$. The minimum degree and the maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. A vertex v with $\deg(v) = 1$ is called a leaf. The neighbor of a leaf is called a strong support vertex. For a vertex v in a (rooted) tree T, let C(v) and D(v) denote the set of children and descendants of v, respectively, and let $D[v] = D(v) \cup \{v\}$. Also, the depth of v, $\operatorname{depth}(v)$, is the largest distance from v to a vertex in D[v]. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . We denote the set of leaves adjacent to a vertex v

Received February 11, 2019; revised June 10, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C69.

Key words and phrases. Total double Roman dominating function; total double Roman domination number; 2-independence number.

by L_v . The diameter of a graph G, denoted by diam(G), is the greatest distance between two vertices of G. We write P_n for the path of order n and $K_{1,n-1}$ for the star of order n. A double star $DS_{p,q}$ is a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and the other one to s leaves. For a subset $S \subseteq V(G)$ and a function $f: V(G) \to \mathbb{R}$, we define $f(S) = \sum_{x \in S} f(x)$. A subset S of vertices of G is a (total) dominating set if N[S] = V(N(S) = V).

A subset S of vertices of G is a (total) dominating set if N[S] = V (N(S) = V). The (total) domination number $\gamma(G)$ ($\gamma_t(G)$) is the minimum cardinality of a (total) dominating set of G, and a (total) dominating set of minimum cardinality is called a γ -set (γ_t -set). For a positive integer k, the subset S is k-dominating if every vertex of V - S has at least k neighbors in S. The k-domination number $\gamma_k(G)$ is the minimum cardinality of a k-dominating set of G. The literature on the subject of domination parameters in graphs surveyed in the three main books [16, 17, 18].

A subset $S \subseteq V(G)$ is said to be *independent* if G[S] has no edges. The *independent domination number* (resp., the independence number) of G denoted by i(G) (resp., $\beta(G)$) is the size of the smallest (resp., the largest) maximal independent set in G. It is well known that

$$\gamma(G) \le i(G) \le \beta(G).$$

In [15], Fink and Jacobson generalized the concept of independent sets as follows. Let k be a positive integer, a subset X of V is k-independent if $\Delta(G[X]) \leq k-1$. The k-independence number $\beta_k(G)$ is the maximum cardinality among all k-independent sets of G. A k-independent set with maximum cardinality of a graph G is called a $\beta_k(G)$ -set. For additional information we refer the reader to [12]. Relations between domination parameters and independence studied by several authors [3, 11, 13, 14, 19, 21].

A Roman dominating function on a graph G is a function $f: V \to \{0, 1, 2\}$ satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. A total Roman dominating function of a graph G with no isolated vertex, abbreviated TRD-function, is a Roman dominating function $f = (V_0, V_1, V_2)$ on G with the additional property that the subgraph of G induced by the set $V_1 \cup V_2$ has no isolated vertices. The weight of f is defined by $\omega(f) = f(V(G))$. The total Roman domination number $\gamma_{tR}(G)$ is the minimum weight among all total dominating functions on G. A total Roman dominating function with minimum weight $\gamma_{tR}(G)$ in G is called a $\gamma_{tR}(G)$ -function. For a total Roman dominating function f, let $V_i = \{v \in V \mid f(v) = i\}$ for i = 0, 1, 2. Since these three sets determine f, we can equivalently write f = (V_0, V_1, V_2) . The total Roman domination was introduced by Liu and Chang [20] albeit in a more general setting, and studied by several authors [1, 2, 4, 5, 6].

In 2016, Beeler et al. [9] introduced the double Roman domination defined as follows. A function $f: V \to \{0, 1, 2, 3\}$ is a *double Roman dominating function* (DRDF) on a graph G if the following conditions hold: (i) If f(v) = 0, then v must have either at least one neighbor with label 3 or at least two neighbors with label 2, and (ii) If f(v) = 1, then v must have at least one neighbor with label at least 2. The weight of DRDF f is defined by $\omega(f) = f(V(G))$. The double Roman

domination number of a graph G, denoted by $\gamma_{dR}(G)$, is the minimum weight among all double Roman dominating functions of G. A double Roman dominating function with minimum weight $\gamma_{dR}(G)$ in G is called a $\gamma_{dR}(G)$ -function. For a double Roman dominating function f, let $V_i = \{v \in V \mid f(v) = i\}$ for i =0,1,2,3. Since these four sets determine f uniquely, we can equivalently write $f = (V_0, V_1, V_2, V_3)$. We observe that $\omega(f) = |V_1| + 2|V_2| + 3|V_3|$.

A total double Roman dominating function of a graph G with no isolated vertex, abbreviated TDRD-function, is a double Roman dominating function $f = (V_0, V_1, V_2, V_3)$ on G with the additional property that the subgraph of Ginduced by $V_1 \cup V_2 \cup V_3$ has no isolated vertices. The total double Roman domination number $\gamma_{tdR}(G)$ is the minimum weight among all total double Roman dominating functions on G. The concept of total double Roman domination was introduced by Amjadi et al. [7] and has been studied by several authors, eg., [22].

Hao et al. [22] proved that for any connected graph G of order $n \geq 2$, $\gamma_{tdR}(G) \leq 2\gamma_{tR}(G) - 1$ and Abdollahzadeh Ahangar [1] show that $\gamma_{tR}(G) \leq 2\gamma_t(G)$ for every graph G with no isolated vertex. In [10], the authors proved that for every graph G without isolated vertices, $\gamma_t(G) \leq \frac{3}{2}\gamma_2(G) - \frac{1}{2}$. Favaron [14] proved that for any graph G and positive integer k, $\gamma_k(G) \leq \beta_k(G)$. Combining these results, we obtain the next result.

Proposition 1.1. For any graph G without isolated vertices, $\gamma_{tdR}(G) \leq 6\beta_2(G) - 3$.

In this paper, we consider the problem of 2-independent set and total double Roman domination in trees and improve the above bound considerably.

We make use of the following result in this paper.

Observation 1.2. Let v be a support vertex of a graph G and u be a leaf neighbor of v. For any TDRDF of G, $f(u) + f(v) \ge 3$ and $f(v) \ge 1$.

Proposition 1.3 ([8]). Let T' be a tree and let $u \in V(T')$. If T is a tree obtained from T' by adding a path $P_3 = x_1x_2x_3$ and joining u to x_3 , then $\beta_2(T) = \beta_2(T') + 2$.

Proposition 1.4 ([13]). Let T' be a tree and $v \in V(T')$. If T is the tree obtained from T' by adding a path $P_4 = x_1x_2x_3x_4$ and joining v to x_3 , then $\beta_2(T) = \beta_2(T') + 3$.

Proposition 1.5. Let T' be a tree and let $u \in V(T')$. If T is a tree obtained from T' by adding a path $P_3 = x_1 x_2 x_3$ and joining u to x_2 , then $\beta_2(T) = \beta_2(T') + 2$.

Proof. Clearly, any $\beta_2(T')$ -set can be extended to a 2-independent set of T by adding x_1, x_3 , and so $\beta_2(T) \ge \beta_2(T') + 2$. On the other hand, for any $\beta_2(T)$ -set S, we have $|S \cap \{x_1, x_2, x_3\}| \le 2$, and since $S \smallsetminus \{x_1, x_2, x_3\}$ is a 2-independent set of T', we have $\beta_2(T') \ge |S - \{x_1, x_2, x_3\}|$. This implies that $\beta_2(T') \ge \beta_2(T) - 2$. Thus $\beta_2(T) = \beta_2(T') + 2$.

Proposition 1.6. Let T' be a tree and let $u \in V(T')$. If T is a tree obtained from T' by adding a path $P_3 = x_1 x_2 x_3$ and joining u to x_3 or x_2 , then $\gamma_{tdR}(T) \leq \gamma_{tdR}(T') + 4$.

J. AMJADI AND M. VALINAVAZ

Proof. Clearly, any $\gamma_{tdR}(T')$ -function can be extended to a TDRDF of T by assigning 3 to x_2 , 1 to x_1 , and 0 to x_3 , and so $\gamma_{tdR}(T) \leq \gamma_{tdR}(T') + 4$.

Proposition 1.7. Let T' be a tree and let $u \in V(T')$. If T is a tree obtained from T' by adding a path $P_4 = x_1 x_2 x_3 x_4$ and joining u to x_3 , then $\gamma_{tdR}(T) \leq \gamma_{tdR}(T') + 6$.

Proof. Clearly, any $\gamma_{tdR}(T')$ -function, can be extended to a TDRDF of T by assigning 3 to x_2, x_3 and 0 to x_1, x_4 , and so $\gamma_{tdR}(T) \leq \gamma_{tdR}(T') + 6$. \Box

2. Total double Roman domination and 2-independence

In this section, we show that if T is a tree, then $\gamma_{tdR}(T) \leq 2\beta_2(T)$ and we provide a constructive characterization of all trees T with $\gamma_{tdR}(T) = 2\beta_2(T)$. We start with a definition.

Definition 2.1. Let u be a vertex of a graph G. A function $f: V(G) \rightarrow \{0, 1, 2, 3\}$ is said to be an *almost total double Roman dominating function* (almost TDRDF) with respect to u if each element $v \in V(G) - \{u\}$ is total double Roman dominated under f, that is:

- (i) if $v \in V \{u\}$ and f(v) = 0, then v must have at least one neighbor with label 3 or at least two neighbors with label 2,
- (ii) if $v \in V \{u\}$ and f(v) = 1, then v must have at least one neighbor with label at least 2, and
- (iii) if $v \in V \{u\}$ and $f(v) \ge 1$, then v must have at least one neighbor with positive label.

 $\gamma_{tdR}(G; u) = \min\{\omega(f) \mid f \text{ is an almost TDRDF with respect to } u\}.$

Clearly, any total double Roman dominating function on G is an almost TDRDF with respect to each vertex of G. Hence $\gamma_{tdR}(G; u) \leq \gamma_{tdR}(G)$ for each $u \in V(G)$. For a graph G, define W_G^1 and W_G^2 as follows:

$$W_G^1 = \{ v \in V(G) \mid \gamma_{tdR}(G; v) = \gamma_{tdR}(G) \}$$

and

$$W_G^2 = \{ v \in V(G) \mid \text{ for any } \gamma_{tdR}(G) \text{-function } f, f(v) \le 1 \}$$

Let \mathcal{T} be the family of unlabeled trees T that can be obtained from a sequence $T_1, T_2, \ldots, T_m \ (m \ge 1)$ of trees such that $T_1 \in \{P_3, P_4\}$, and if $m \ge 2, T_{i+1}$ can be obtained recursively from T_i by the following operations for $1 \le i \le m-1$.

Operation \mathcal{O}_1 . If $u \in W_{T_i}^1 \cap W_{T_i}^2$, then Operation \mathcal{O}_1 adds a path $P_3 = x_1 x_2 x_3$ and the edge ux_3 to obtain T_{i+1} .

Operation \mathcal{O}_2 . If $u \in W_{T_i}^1$, then Operation \mathcal{O}_2 adds $P_3 = x_1 x_2 x_3$ and the edge ux_2 to obtain T_{i+1} .

Operation \mathcal{O}_3 . If $u \in W_{T_i}^1$, then Operation \mathcal{O}_3 adds a path $P_4 = x_1 x_2 x_3 x_4$ and the edge ux_3 to obtain T_{i+1} .

188

Lemma 2.2. If T_i is a tree with $\gamma_{tdR}(T_i) = 2\beta_2(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_1 , then $\gamma_{tdR}(T_{i+1}) = 2\beta_2(T_{i+1})$.

Proof. By Propositions 1.3 and 1.6, $\beta_2(T_{i+1}) = \beta_2(T_i) + 2$ and $\gamma_{tdR}(T_{i+1}) \leq \gamma_{tdR}(T_i) + 4$. Assume that f is a $\gamma_{tdR}(T_{i+1})$ -function. Clearly, $f(x_2) + f(x_1) \geq 3$. If $f(x_3) \geq 1$ or $f(x_2) + f(x_1) \geq 4$, then the function f restricted to T_i is an almost TDRDF of T_i with respect to u and we deduce from the assumption $u \in W_{T_i}^1$ that $\gamma_{tdR}(T_{i+1}) \geq \gamma_{tdR}(T_i; u) + 4 = \gamma_{tdR}(T_i) + 4$.

Assume that $f(x_3) = 0$ and $f(x_2) + f(x_1) = 3$. Then $f(u) \ge 2$ and the function f restricted to T_i is an TDRDF of T_i of weight $\gamma_{tdR}(T_{i+1}) - 3$ with $f(u) \ge 2$. We deduce from $u \in W_{T_i}^2$ that $\gamma_{tdR}(T_{i+1}) - 3 = \omega(f|_{T_i}) \ge \gamma_{tdR}(T_i) + 1$, and so $\gamma_{tdR}(T_{i+1}) \ge \gamma_{tdR}(T_i) + 4$. Therefore, $\gamma_{tdR}(T_{i+1}) = \gamma_{tdR}(T_i) + 4$. It follows from $\gamma_{tdR}(T_i) = 2\beta_2(T_i)$ that

$$2\beta_2(T_{i+1}) = 2\beta_2(T_i) + 4 = \gamma_{tdR}(T_i) + 4 = \gamma_{tdR}(T_{i+1})$$

as desired.

Lemma 2.3. If T_i is a tree with $\gamma_{tdR}(T_i) = 2\beta_2(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_2 , then $\gamma_{tdR}(T_{i+1}) = 2\beta_2(T_{i+1})$.

Proof. The proof is similar to the proof of Lemma 2.2 and therefore, omitted. \Box

Lemma 2.4. If T_i is a tree with $\gamma_{tdR}(T_i) = 2\beta_2(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_3 , then $\gamma_{tdR}(T_{i+1}) = 2\beta_2(T_{i+1})$.

Proof. Let Operation \mathcal{O}_3 add a path $P_4 = x_4 x_3 x_2 x_1$ and the edge ux_3 to obtain T_{i+1} . By Propositions 1.4 and 1.7, we have $\beta_2(T_{i+1}) = \beta_2(T_i) + 3$ and $\gamma_{tdR}(T_{i+1}) \leq \gamma_{tdR}(T_i) + 6$. We now prove that $\gamma_{tdR}(T_{i+1}) \geq \gamma_{tdR}(T_i) + 6$ -function. Let f be a $\gamma_{tdR}(T_{i+1})$. By Observation 1.2, $f(x_1) + f(x_2) \geq 3$ and $f(x_3) + f(x_4) \geq 3$. We may assume that $f(x_3) = f(x_2) = 3$ and $f(x_1) = f(x_4) = 0$. Then the function f restricted to T_i is an almost TDRDF of T_i with respect to u and we deduce from the assumption $u \in W_{T_i}^1$ that $\gamma_{tdR}(T_{i+1}) \geq \gamma_{tdR}(T_i; u) + 6 = \gamma_{tdR}(T_i) + 6$. Hence $\gamma_{tdR}(T_{i+1}) = \gamma_{tdR}(T_i) + 6$. As in the proof of Lemma 2.2, we obtain $\gamma_{tdR}(T_{i+1}) = 2\beta_2(T_{i+1})$.

Lemma 2.5. If $T \in \mathcal{T}$, then $\gamma_{tdR}(T) = 2\beta_2(T)$.

Proof. Let $T \in \mathcal{T}$. Then there exists a sequence of trees T_1, T_2, \ldots, T_k $(k \ge 1)$ such that $T_1 \in \{P_3, P_4\}$ and if $k \ge 2$, then T_{i+1} can be obtained recursively from T_i by one of Operations $\mathcal{O}_1, \mathcal{O}_2$, and \mathcal{O}_3 for $i = 1, 2, \ldots, k - 1$.

We proceed by induction on the number of operations applied to construct T. Clearly, the statement is true for T_1 , that is $\gamma_{tdR}(T_1) = 2\beta_2(T_1)$. Suppose that the result is true for each tree $T \in \mathcal{T}$ which can be obtained from a sequence of operations of length k - 1 and let $T' = T_{k-1}$. By the induction hypothesis, we have $\gamma_{tdR}(T') = 2\beta_2(T')$. By construction, T is obtained from T' by using one of the operations $\mathcal{O}_1, \mathcal{O}_2$, or \mathcal{O}_3 . It follows from Lemmas 2.2, 2.3 and 2.4 that $\gamma_{tdR}(T) = 2\beta_2(T)$, and the proof is complete. \Box

Next, we are ready to prove the main result of this paper.

Theorem 2.6. For every tree T of order $n \ge 2$,

$$\gamma_{tdR}(T) \le 2\beta_2(T)$$

with equality if and only if $T \in \mathcal{T}$.

Proof. Let T be a tree of order $n \geq 2$. The proof is by induction on n. If n = 2, then $T = P_2$ and we have $\gamma_{tdR}(T) = 3 < 4 = 2\beta_2(T)$. If n = 3, then $T = P_3$ and we have $\gamma_{tdR}(T) = 4 = 2\beta_2(T)$. Let $n \geq 3$ and let the statement hold for any tree of order less than n. If diam(T) = 2, then T is the star $K_{1,n-1}$ and we have $\gamma_{tdR}(T) = 4 \leq 2(n-1) = 2\beta_2(T)$ with equality if and only if n = 3, that is, $T = P_3 \in \mathcal{T}$. If diam(T) = 3, then T is a double star $DS_{p,q}$ $(q \geq p \geq 1)$, and we have $\gamma_{tdR}(T) = 6 \leq 2\beta_2(T)$ with equality if and only if p = q = 1, that is, $T = P_4 \in \mathcal{T}$. Assume that diam $(T) \geq 4$ and let $v_1v_2 \dots v_{d+1}$ be a diametrical path in T such that deg (v_2) is as large as possible. Root T at v_{d+1} .

Assume first that $k = \deg(v_2) \ge 4$. Let $T' = T - T_{v_2}$. Clearly, every $\beta_2(T')$ -set can be extended to a 2-independent set of T by adding all leaves adjacent to v_2 , and this implies that $\beta_2(T) \ge \beta_2(T') + k - 1$. On the other hand, any $\gamma_{tdR}(T')$ -function can be extended to a TDRDF of T by assigning the value 3 to v_2 , 1 to v_1 , and 0 to other leaves of T_{v_2} , and this implies that $\gamma_{tdR}(T) \le \gamma_{tdR}(T') + 4$. It follows from the induction hypothesis that

$$2\beta_2(T) \ge 2\beta_2(T') + 2k - 2 \ge \gamma_{tdR}(T') + 2k - 2 \ge \gamma_{tdR}(T) - 4 + 2k - 2 > \gamma_{tdR}(T).$$

Let $\deg(v_2) \leq 4$. We consider the following cases.

<u>Case 1.</u> $\deg(v_2) = 3.$

Let $L_{v_2} = \{v_1, u\}$ and $T' = T - T_{v_2}$. Clearly, any $\beta_2(T')$ -set can be extended to a 2-independent set of T by adding two leaves of T_{v_2} , and so $\beta_2(T) \ge \beta_2(T') + 2$. On the other hand, any $\gamma_{tdR}(T')$ -function g can be extended to a TDRDF of Tby assigning 3 to v_2 , 1 to v_1 , and 0 to u, implying that $\gamma_{tdR}(T) \le \gamma_{tdR}(T') + 4$. It follows from the induction hypothesis that

$$2\beta_2(T) \ge 2\beta_2(T') + 4 \ge \gamma_{tdR}(T') + 4 \ge \gamma_{tdR}(T) - 4 + 4 = \gamma_{tdR}(T).$$

Let the equality hold. Then all inequalities occurring in the above inequality chain, become equalities and so $\beta_2(T) = \beta_2(T') + 2$, $\gamma_{tdR}(T) = \gamma_{tdR}(T') + 4$ and $\gamma_{tdR}(T') = 2\beta_2(T')$. We conclude from the induction hypothesis that $T' \in \mathcal{T}$. We show that $v_3 \in W_{T'}^1$. Suppose to the contrary that $v_3 \notin W_{T'}^1$ and let g be a almost TDRDF of T' with respect to v_3 of weight at most $\gamma_{tdR}(T') - 1$. Define $h: V(T) \to \{0, 1, 2, 3\}$ by h(w) = g(w) for $w \in V(T'), h(v_2) = 3, h(v_1) = 1$, and h(u) = 0. Clearly, h is a TDRDF of T of weight $\gamma_{tdR}(T') + 3$, which leads to a contradiction. Hence, $v_3 \in W_{T'}^1$. Now, T can be obtained from T' by Operation \mathcal{O}_2 , and so $T \in \mathcal{T}$.

<u>Case 2.</u> $\deg(v_2) = 2.$

By the choice of diametrical path, all children of v_3 with depth 1, have degree 2.

190

Assume that v_3 has t children with depth 1. Then $t \ge 1$. We distinguish the following subcases.

<u>Subcase 2.1.</u> $\deg(v_3) = 2.$

Let $T' = T - T_{v_3}$. By Propositions 1.3 and 1.6, $\beta_2(T) \ge \beta_2(T') + 2$ and $\gamma_{tdR}(T) \le \gamma_{tdR}(T') + 4$. It follows from the induction hypothesis that

$$2\beta_2(T) \ge 2\beta_2(T') + 4 \ge \gamma_{tdR}(T') + 4 \ge \gamma_{tdR}(T) - 4 + 4 = \gamma_{tdR}(T).$$

If the equality holds, then all inequalities occurring in the above inequality chain, become equalities, and so $\beta_2(T) = \beta_2(T') + 2$, $\gamma_{tdR}(T) = \gamma_{tdR}(T') + 4$, and $\gamma_{tdR}(T') = 2\beta_2(T')$. We conclude from the induction hypothesis that $T' \in \mathcal{T}$. We prove now that $v_4 \in W_{T'}^1 \cap W_{T'}^2$. First we show that $v_4 \in W_{T'}^1$. Suppose to the contrary that $v_4 \notin W_{T'}^1$ and let g be an almost TDRDF of T' with respect to v_4 of weight at most $\gamma_{tdR}(T') - 1$. Define $h: V(T) \to \{0, 1, 2, 3\}$ by h(u) = g(u) for $u \in V(T')$, $h(v_2) = 3$, $h(v_3) = 1$, and $h(v_1) = 0$. Clearly, h is a TDRDF of T of weight $\gamma_{tdR}(T') + 3$, which leads to a contradiction. Hence, $v_4 \in W_{T'}^1$. Next, we show that $v_4 \in W_{T'}^2$. Suppose to the contrary that $v_4 \notin W_{T'}^2$ and let g be a $\gamma_{tdR}(T')$ -function with $g(v_4) \geq 2$. Define $h: V(T) \to \{0, 1, 2, 3\}$ by h(u) = g(u) for $u \in V(T')$, $h(v_1) = 1$, $h(v_2) = 2$, and $h(v_3) = 0$. Obviously h is a TDRDF of T of weight $\gamma_{tdR}(T') + 3$, which leads to a contradiction. Hence $v_4 \in W_{T'}^2$. Now, T can be obtained from T' by Operation \mathcal{O}_1 , and so $T \in \mathcal{T}$.

<u>Subcase 2.2.</u> $t \geq 2$ and v_3 is not a support vertex. Let $T' = T - T_{v_3}$. Obviously, any $\beta_2(T')$ -set can be extended to a 2-independent set of T by adding all vertices of T_{v_3} except v_3 , and so $\beta_2(T) \geq \beta_2(T') + 2t$. On the other hand, any $\gamma_{tdR}(T')$ -function can be extended to a TDRDF of T by assigning 1 to v_3 , 3 to all children of v_3 with depth 1 and, 0 to all leaves of T_{v_3} , and so $\gamma_{tdR}(T) \leq \gamma_{tdR}(T') + 1 + 3t$. It follows from the induction hypothesis that

$$2\beta_2(T) \ge 2\beta_2(T') + 4t \ge \gamma_{tdR}(T') + 4t \ge \gamma_{tdR}(T) - 1 - 3t + 4t$$

= $\gamma_{tdR}(T) + t - 1 > \gamma_{tdR}(T).$

<u>Subcase 2.3.</u> v_3 has $\ell \geq 1$ children with depth 0 and $t \geq 1$ children with depth 1. Assume that $T' = T - T_{v_3}$. First let $\ell + t \geq 3$. Obviously, any $\beta_2(T')$ -set can be extended to a 2-independent set of T by adding $D(v_3)$, and so $\beta_2(T) \geq \beta_2(T') + 2t + l$. On the other hand, any $\gamma_{tdR}(T')$ -function can be extended to a TDRDF of T by assigning 3 to v_3 , and all children of v_3 with depth 1, and 0 to all leaves of T_{v_3} , and hence $\gamma_{tdR}(T) \leq \gamma_{tdR}(T') + 3 + 3t$. It follows from the induction hypothesis that

$$2\beta_2(T) \ge 2\beta_2(T') + 4t + 2l \ge \gamma_{tdR}(T') + 4t + 2l \\ \ge \gamma_{tdR}(T) - 3 - 3t + 4t + 2l = \gamma_{tdR}(T) + t + 2l - 3 > \gamma_{tdR}(T).$$

Now let $\ell + t = 2$. Then we have $\ell = t = 1$. Suppose w is the leaf adjacent to v_3 . As mentioned above, $\beta_2(T) \ge \beta_2(T') + 3$ and $\gamma_{tdR}(T) \le \gamma_{tdR}(T') + 6$. It follows from the induction hypothesis that

$$2\beta_2(T) \ge 2\beta_2(T') + 6 \ge \gamma_{tdR}(T') + 6 \ge \gamma_{tdR}(T).$$

If the equality holds, then all inequalities occurring in above inequality chain, become equalities, and so $\beta_2(T) = \beta_2(T') + 3$, $\gamma_{tdR}(T) = \gamma_{tdR}(T') + 6$, and $\gamma_{tdR}(T') = 2\beta_2(T')$. We conclude from the induction hypothesis that $T' \in \mathcal{T}$. We prove now that $v_4 \in W_{T'}^1$. Suppose to the contrary that $v_4 \notin W_{T'}^1$ and let g be an almost TDRDF of T' with respect to v_4 of weight at most $\gamma_{tdR}(T') - 1$. Define $h: V(T) \to \{0, 1, 2, 3\}$ by h(u) = g(u) for $u \in V(T')$, $h(v_2) = h(v_3) = 3$, and $h(v_1) = h(w) = 0$. Clearly, h is a TDRDF of T of weight $\gamma_{tdR}(T') + 3$, which leads to a contradiction. Hence, $v_4 \in W_{T'}^1$. Now, T can be obtained from T' by Operation \mathcal{O}_3 , and so $T \in \mathcal{T}$.

This completes the proof.

References

- Abdollahzadeh Ahangar H., Henning M. A., Samodivkin V. and Yero I. G., Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016), 501–517.
- 2. Abdollahzadeh Ahangar H., Amjadi J., Sheikholeslami S. M. and Soroudi M., Bounds on the total Roman domination number of graphs, Ars Combin., to appear.
- Amjadi J., Dehgardi N., Sheikholeslami S. M. and Valinavaz M., Independent Roman domination and 2-independence in trees, Discrete Math. Algorithms Appl. 10 (2018), # 1850052.
- Amjadi J., Nazari-Moghaddam S., Sheikholeslami S. M. and Volkmann L., Total Roman domination number of trees, Australas. J. Combin. 69 (2017), 271–285.
- Amjadi J., Sheikholeslami S. M. and Soroudi M., Nordhaus–Gaddum bounds for total Roman domination, J. Comb. Optim. 35 (2018), 126–133.
- Amjadi J., Sheikholeslami S. M. and Soroudi M., On the total Roman domination in trees, Discuss. Math. Graph Theory 39 (2019), 519-532.
- Amjadi J., Sheikholeslami S. M., Shao Z. and Valinavaz M., On the total double Roman domination, IEEE Access 7 (2019), 52035–52041.
- Aram H., Dehgardi N., Sheikholeslami S. M., Valinavaz M. and Volkmann L., Domination number, independent domination number and 2-independence number in trees, Discuss. Math. Graph Theory, to appear.
- 9. Beeler R. A., Haynes T. W. and Hedetniemi S. T., *Double Roman domination*, Discrete Appl. Math. 211 (2016), 23–29.
- Bonomo F., Brešar B., Grippo L., Milanič M. and Safe M., Domination parameters with number 2: interrelations and algorithmic consequences, Discrete Appl. Math. 235 (2018), 23–50.
- Chellali M. and Meddah N., Trees with equal 2-domination and 2-independence numbers, Discuss. Math. Graph Theory 32 (2012), 263–270.
- Chellali M., Favaron O., Hansberg A. and Volkmann L., k-domination and k-independence in graphs: A survey, Graphs Combin. 28 (2012), 1–55.
- Dehgardi N., Mixed Roman domination and 2-independence in trees, Commun. Comb. Optim. 3 (2018), 79–91.
- 14. Favaron O., On a conjecture of Fink and Jacobson concerning k-domination and kdependence, J. Combin. Theory Ser. B 39 (1985), 101–102.
- 15. Fink J. F. and Jacobson M. S., On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York, 1985, 301–311.
- Haynes T. W., Hedetniemi S. T. and Slater P. J. (eds.), Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
- 17. Haynes T. W., Hedetniemi S. T. and Slater P. J. (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York, 1998.

- Henning M. A. and Yeo A., *Total Domination in Graphs*, Springer Monographs in Mathematics, 2013.
- Jacobson M. S., Peters K. and Rall D. F., On n-irredundance and n-domination, Ars Combin. 29 (1990), 151–160.
- Liu C.-H. and Chang G. J., Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013), 608–619.
- Meddah N. and Chellali M., Roman domination and 2-independence in trees, Discrete Math. Algorithms Appl. 9 (2017), #1750023.
- Hao G., Mojdeh D. and Volkmann L., Total double Roman domination in graphs, Commun. Comb. Optim. 5 (2020), 27–39.

J. Amjadi, Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran,e-mail: j-amjadi@azaruniv.ac.ir

M. Valinavaz, Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran, *e-mail*: m.valinavaz@azaruniv.ac.ir