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ON ALMOST KENMOTSU MANIFOLDS

WITH GENERALIZED NULLITY DISTRIBUTION

G. GHOSH and U. C. DE

Abstract. The object of the present paper is to classify generalized (k, µ)′-almost

Kenmotsu manifolds satisfying certain semisymmetry conditions. We prove that
Weyl semisymmetric and h′-semisymmetric almost Kenmotsu manifolds with gen-

eralized (k, µ)′-nullity distribution are both locally isometric to the Riemannian

product Hn+1(−4) × Rn. Also we characterize Weyl Ricci semisymmetric almost
Kenmotsu manifolds with generalized (k, µ)′-nullity distribution.

1. Introduction

Geometry of Kenmotsu manifolds was originated by Kenmotsu [8] and became an
interesting area of research in differential geometry. As a generalization of Ken-
motsu manifolds, the notion of almost Kenmotsu manifolds was first introduced by
Janssens and Vanhecke [7]. In recent years, some results regarding such manifolds
were given in ([4], [5], [13], [14], [15]). Almost Kenmotsu manifolds satisfying
the (k, µ) and (k, µ)′-nullity conditions were introduced by Dileo and Pastore [4],
where both k and µ are constants. In 2011, Pastore and Saltarelli in [10] extended
the above nullity conditions to the corresponding generalized nullity conditions for
which both k and µ are smooth functions. Recently some results on generalized
(k, µ) and (k, µ)′-almost Kenmotsu manifolds satisfying some curvature conditions
were obtained by Wang et al. ([12],[16]).

A Riemannian manifoldM2n+1 is called locally symmetric if its curvature tensor
R is parallel, that is, ∇R = 0, where ∇ is the Levi-Civita connection. It was
introduced by Shirokov in [9]. The notion of semisymmetric manifolds, a proper
generalization of locally symmetric manifolds worked out by Catan in 1927, is
defined by R(X,Y ) ·R = 0, where R(X,Y ) acts on R as a derivation. A complete
intrinsic classification of these manifolds was given by Szabo [11]. A Riemannian
manifold is said to be Weyl semisymmetric if R(X,Y ) · C = 0, where C is the
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Weyl curvature tensor of type (1, 3) and defined by [18],

(1)

C(X,Y )Z = R(X,Y )Z − 1

(2n− 1)
[S(Y,Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ]

+
r

2n(2n− 1)
[g(Y,Z)X − g(X,Z)Y ],

where X,Y, Z are any vector fields, S is the Ricci tensor of type (0, 2), and Q
is the Ricci operator defined by S(X,Y ) = g(QX,Y ). Semisymmetry implies
Weyl semisymmetry, but the converse is not true in general. Recently in [16],
Wang et al. proved that semisymmetric almost Kenmotsu manifold with general-
ized (k, µ)′-nullity distribution is locally isometric to either the hyperbolic space
H2n+1(−1) or the Riemannian product Hn+1(−4)× Rn.

On the other hand, an almost Kenmotsu manifinold with generalized (k, µ)-nul-
lity distribution is said to be h′-semisymmetric if the curvature tensor satisfies
(R(X,Y ) · h′)Z = 0 for all smooth vector fields X,Y, Z.

In [17], Yildiz and De studied φ-semisymmetric and h-semisymmetric (k, µ)-con-
tact manifolds. In [6], De et al. studied φ-concircularly semisymmetric and h-con-
circularly semisymmetric (k, µ)-contact manifolds, and they proved that in both
cases the manifolds become η-Einstein.

Motivated by the above studies, in this paper, we study Weyl semisymmetric
almost Kenmotsu manifinolds with generalized (k, µ)′-nullity distribution. Besides
this, we study h′-semisymmetric almost Kenmotsu manifolds and the curvature
condition Weyl Ricci semisymmetric (C ·S = 0) almost Kenmotsu manifolds with
generalized (k, µ)′-nullity distribution. Our results give some complete classifica-
tion of such manifolds with some semisymmetry conditions and generalize some
corresponding results obtained by Wang et al. Precisely, we state that on any al-
most Kenmotsu manifold with generalized (k, µ)′ of dimension ≥ 5, the following
two assertions:

(1) Weyl semisymmetric almost Kenmotsu manifinolds with generalized
(k, µ)′-nullity distribution,

(2) h′-semisymmetric almost Kenmotsu manifinolds with generalized (k, µ)′-
nullity distribution, are both locally isometric to the Riemannian product
Hn+1(−4)× Rn.

2. Almost Kenmotsu manifolds

A differentiable (2n+1)-dimensional manifoldM is said to have a (φ, ξ, η)-structure
or an almost contact structure if it admits a (1, 1) tensor field φ, a characteristic
vector field ξ, and a 1-form η

(2) φ2 = −I + η ⊗ ξ, η(ξ) = 1,

satisfying ([2],[3]), where I denotes the identity endomorphism. Here also φξ = 0
and η ◦ φ = 0, both can be derived easily from (2).
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If a manifold M with a (φ, ξ, η)-structure admits a Reimannian metric g such that

g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X, Y of TpM
2n+1, then M is said to have an almost con-

tact structure (φ, ξ, η, g). The fundamental 2-form Φ on an almost contact metric
manifold is defined by Φ(X,Y ) = g(X,ΦY ) for any X, Y of TpM

2n+1. The con-
dition for an almost contact metric manifold being normal is equivalent to the
vanishing of the (1, 2)-type torsion tensor Nφ, defined by Nφ = [φ, φ] + 2dη ⊗ ξ,
where [φ, φ] is the Nijenhuis torsion of φ. Recently in ([4],[5],[12]), almost contact
metric manifold, such that η is closed and dΦ = 2η ∧ Φ, are studied. They are
called almost Kenmotsu manifolds. Obviously, a normal almost Kenmotsu mani-
fold is a Kenmotsu manifold. Also Kenmotsu manifolds can be characterized by
(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX for any vector fields X,Y . It is well known [8]
that a Kenmotsu manifold M2n+1 is locally a warped product I ×f N2n, where
N2n is a Kähler manifold, I is an open interval with coordinate t, and the warp-
ing function f , defined by f = cet for a positive constant c. Let us denote the
distribution orthogonal to ξ by D and defined by D = Ker(η) = Im(φ). In an
almost Kenmotsu manifold, since η is closed, D is an intregrable distribution. Let
M2n+1 be an almost Kenmotsu manifold. By h = 1

2£ξφ, we denote l = R(·, ξ)ξ on

M2n+1. The tensor fields l and h are symmetric operators and satisfy the following
relations [4]:

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ+ φh = 0,(3)

∇Xξ = −φ2X − φhX(⇒ ∇ξξ = 0),(4)

φlφ− l = 2(h2 − φ2),(5)

R(X,Y )ξ = η(X)(Y − φhY )− η(Y )(X − φhX) + (∇Y φh)X − (∇Xφh)Y(6)

for any vector fields X,Y . The (1, 1)-type symmetric tensor field h′ = h ◦ φ is
anticommuting with φ and h′ξ = 0. Also it is clear that ([1], [4], [16])

(7) h = 0⇔ h′ = 0, h′2 = (k + 1)φ2(⇔ h2 = (k + 1)φ2).

3. ξ belongs to the generalized (k, µ)′-nullity distribution

This section is devoted to study almost Kenmotsu manifolds with ξ belonging
to the generalized (k, µ)′-nullity distribution. Let M2n+1(φ, ξ, η, g) be an almost
Kenmotsu manifold with ξ belonging to the generalized (k, µ)′-nullity distribution,
then according to Pastore and Saltarelli [10], we have

(8) R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ],

where k, µ are smooth functions on M2n+1 and h′ = h ◦ φ. Let X ∈ D be the
eigen vector of h′ corresponding to the eigen value λ. Then from (7), it is clear
that λ2 = −(k + 1). Therefore, k ≤ −1 and λ = ±

√
−k − 1. By [λ]′ and [−λ]′ we

denote the corresponding eigenspaces related to the non-zero eigen value λ and −λ
of h′, respectively. Before presenting our main theorems, we recall some results:
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Lemma 3.1 ([10, Lemma 5.1]). Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu
manifold with ξ belonging to the generalized (k, µ)′-nullity distribution and h′ 6= 0.
Then, for any X,Y, Z ∈ D, one has

R(X,Y )h′Z − h′R(X,Y )Z = (k + 2)[g(Y,Z)h′X − g(X,Z)h′Y

+ g(h′X,Z)Y − g(h′Y, Z)X].

Lemma 3.2 ([10, Theorem 5.1]). Let (M2n+1, φ, ξ, η, g) be a generalized (k, µ)′-
almost Kenmotsu manifold such that h′ 6= 0. Then for any Xλ, Yλ, Zλ ∈ [λ]′ and
X−λ, Y−λ, Z−λ ∈ [−λ]′, the Riemannian curvature tensor satisfies

R(Xλ, Yλ)Z−λ = 0,

R(X−λ, Y−λ)Zλ = 0,

R(Xλ, Y−λ)Zλ = (k + 2)g(Xλ, Zλ)Y−λ,

R(Xλ, Y−λ)Z−λ = −(k + 2)g(Y−λ, Z−λ)Xλ,

R(Xλ, Yλ)Zλ = (k − 2λ)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = (k + 2λ)[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].

Lemma 3.3 ([10, Proposition 3.2]). Let (M2n+1, φ, ξ, η, g) be a generalized
(k, µ)′-almost Kenmotsu manifold such that h′ 6= 0. Then

ξ(λ) = −λ(µ+ 2), ξ(k) = −2(k + 1)(µ+ 2).

Moreover, in both cases, if 2n+ 1 ≥ 5, then for any X ∈ D
X(λ) = 0, X(k) = 0, X(µ) = 0.

If n > 1, then the Ricci operator Q of M2n+1 is given by [12],

(9) Q = −2nid+ 2n(k + 1)η ⊗ ξ + [µ− 2(n− 1)]h′.

Moreover, the scalar curvature of M2n+1 is 2n(k − 2n).
From (8), it follows that

(10) R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(h′X,Y )ξ − η(Y )h′X].

Contracting X in (9), we have

(11) S(Y, ξ) = 2nkη(Y ).

4. Weyl semisymmetric almost Kenmotsu manifolds with ξ belonging
to the generalized (k, µ)′-nullity distribution

In this section, we characterize Weyl semisymmetric almost Kenmotsu manifolds
with ξ belonging to the generalized (k, µ)′-nullity distribution.

Using (8), (10), and (11) in (1), we have

(12) C(X,Y )ξ = α[η(Y )h′X − η(X)h′Y ],

where

α = µ− µ− 2(n− 1)

(2n− 1)
.
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Using (10), (11), and (11) in (1), yields

(13) C(ξ,X)Y = α[g(h′X,Y )ξ − η(Y )h′X].

Now we prove the following

Theorem 4.1. Let M2n+1 be an Weyl semisymmetric almost Kenmotsu mani-
fold of dimension ≥ 5 with ξ belonging to the generalized (k, µ)′-nullity distribution
and h′ 6= 0. Then the manifold is locally isometric to the Riemannian product
Hn+1(−4)× Rn.

Proof. Suppose (R(X,Y ) · C)(U, V )W = 0 for all smooth vector fields X, Y ,
U , V , W .

This implies

(14)
R(X,Y )C(U, V )W − C(R(X,Y )U, V )W

−C(U,R(X,Y )V )W − C(U, V )R(X,Y )W = 0.

Putting X = U = ξ in (14), yields

(15)
R(ξ, Y )C(ξ, V )W − C(R(ξ, Y )ξ, V )W

−C(ξ,R(ξ, Y )V )W − C(ξ, V )R(ξ, Y )W = 0.

With the help of (10) and (13), we obtain

(16)
R(ξ, Y )C(ξ, V )W = kα[g(h′V,W )η(Y )ξ − g(h′V,W )Y − g(Y, h′V )η(W )ξ]

− µα[g(h′Y, h′V )η(W )ξ + g(h′V,W )h′Y ].

Similarly, using (10) and (13), it follows that

(17)
C(R(ξ, Y )ξ, V )W = kα[g(h′V,W )η(Y )ξ − η(W )η(Y )h′V ]

− kC(Y, V )W − µC(h′Y, V )W.

Further using (10) and (13), we have

(18)
C(ξ,R(ξ, Y )V )W = − kα[g(h′Y,W )η(V )ξ − η(W )η(V )h′Y ]

+ µα(k + 1)[g(Y,W )η(V )ξ − η(W )η(V )h′Y ].

Again using (10), (12), and (13), we get
(19)
C(ξ, V )R(ξ, Y )W = − α[kg(Y,W )h′V + µg(h′Y,W )h′V ] + µg(h′V, h′Y )η(W )ξ

− kα[g(h′V, Y )η(W )ξ − η(Y )η(W )h′V ].

Finally, substituting (16)-(19) in (15), yields

(20)

kC(Y, V )W + µC(h′Y, V )W + α[−kg(h′V,W )Y − µg(h′V,W )h′Y

+kg(h′Y,W )η(V )ξ − kη(V )η(W )h′Y − µ(k + 1)g(Y,W )η(V )ξ

+µ(k + 1)η(V )η(W )Y + kg(Y,W )h′V + µg(h′Y,W )h′V ] = 0.
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Replacing Y by h′Y and using the fact h′2 = (k + 1)φ2 in the above equation, we
obtain

(21)

kC(h′Y, V )W + µ(k + 1)C(Y, V )W + α[−kg(h′V,W )h′Y

+µ(k + 1)g(h′V,W )Y − k(k + 1)g(Y,W )η(V )ξ

+k(k + 1)η(V )η(W )Y − µ(k + 1)g(h′Y,W )η(V )ξ

+µ(k + 1)η(V )η(W )h′Y + kg(h′Y,W )h′V − µg(Y,W )h′V ] = 0.

Multiplying (20) by k and (21) by µ, then subtracting (21) from (20), implies

(22)
[C(Y, V )W + α{g(h′Y,W )η(V )ξ − η(V )η(W )h′Y

+g(Y,W )h′V − g(h′V,W )Y }] = 0.

Therefore, we infer either

k2 + µ2(k + 1) = 0

or

(23)
C(Y, V )W + α{g(h′Y,W )η(V )ξ − η(V )η(W )h′Y

+g(Y,W )h′V − g(h′V,W )Y }] = 0.

Case I:

(24)
C(Y, V )W + α{g(h′Y,W )η(V )ξ − η(V )η(W )h′Y

+g(Y,W )h′V − g(h′V,W )Y }] = 0.

Letting Y, V,W ∈ D(λ′) and then using Lemma 3.2 in (1), it follows from (24)
that

(25) 2n(k + 1)− 2λ(µ+ 1)− (2n− 1)λα = 0.

Now letting Y, V,W ∈ D(−λ′) and again using Lemma 3.2 in (1), it follows from
(24) that

(26) 2n(k + 1) + 2λ(µ+ 1) + (2n− 1)λα = 0.

Adding (25) and (26), we have

k = −1.

If k = −1, then from h′2 = (k + 1)φ2, we have h′ = 0, which is a contradiction.
Case II:

(27) k2 + µ2(k + 1) = 0.

Then using Lemma 3.3, we have µ = −2 since k 6= −1. Using µ = −2 in (27),
implies k = −2. In this context, according to [4, Corollary 4.2], we know that
M2n+1 is locally symmetric, that is, ∇R = 0. Moreover, taking into account
relation (8), we obtain R(X,Y )ξ = 0 for any X,Y ∈ D. Hence according to [5,
Theorem 6], it is proved that M2n+1 is locally isometric to the Riemannian product
Hn+1(−4)× Rn. �

Since conformally symmetric manifolds (∇C = 0) imply R · C = 0, therefore,
from the above theorem, we can state the following
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Corollary 4.2. A conformally symmetric almost Kenmotsu manifold of dimen-
sion ≥ 5 with ξ belonging to the generalized (k, µ)′-nullity distribution and h′ 6= 0,
is locally isometric to the Riemannian product Hn+1(−4)× Rn.

Again, since R ·R = 0 implies R · C = 0, we obtain the following

Corollary 4.3. A semisymmetric almost Kenmotsu manifold of dimension ≥ 5
with ξ belonging to the generalized (k, µ)′-nullity distribution and h′ 6= 0, is locally
isometric to the Riemannian product Hn+1(−4)× Rn.

Remark. The above corollaries were proved by Wang et al. in [16].

5. Weyl Ricci semisymmetric almost Kenmotsu manifolds with ξ
belonging to the generalized (k, µ)′-nullity distribution

Definition 5.1. An almost Kenmotsu manifold with ξ belonging to the general-
ized (k, µ)′-nullity distribution is said to be Weyl Ricci semisymmetric if C ·S = 0.

In this section, we characterize Weyl Ricci semisymmetric almost Kenmotsu
manifolds with ξ belonging to the generalized (k, µ)′-nullity distribution.

Now we prove the following

Theorem 5.2. Let M2n+1 be an almost Kenmotsu manifold of dimension ≥ 5
with ξ belonging to the generalized (k, µ)′-nullity distribution and h′ 6= 0 satisfying
the curvature condition C · S = 0. Then the manifold is an η-Einstein manifold.

Proof. Suppose (C(X,Y ) · S)(U, V ) = 0 for all smooth vector fields X,Y, U, V .
That implies

(28) S(C(X,Y )U, V ) + S(U,C(X,Y )V ) = 0.

Putting X = U = ξ in (28), yields

(29) S(C(ξ, Y )ξ, V ) + S(ξ, C(ξ, Y )V ) = 0.

Using (12) and (13) in (29), we obtain

(30) α[S(h′Y, V ) + 2nkg(h′Y, V )] = 0.

Putting Y = h′Y in (30), and using the fact h′2 = (k + 1)φ2 yield

(31) (k + 1)[S(φ2Y, V ) + 2nkαg(φ2Y, V )] = 0

since α 6= 0.
Using (3) in (30), we have

(32) (k + 1)[S(Y, V ) + 2nkg(Y, V )− 4nkη(Y )η(V )] = 0.

Therefore, either k + 1 = 0 or S(Y, V ) + 2nkg(Y, V ) − 4nkη(Y )η(V ) = 0. If
(k + 1) = 0, then from h′2 = (k + 1)φ2, we have h′ = 0, which is a contradiction.
Hence S(Y, V ) = −2nkg(Y, V ) + 4nkη(Y )η(V ), which implies that the manifold is
an η-Einstein manifold. �
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6. h′-semisymmetric almost Kenmotsu manifolds with ξ belonging
to the generalized (k, µ)′-nullity distribution

This section is devoted to study h′-semisymmetric almost Kenmotsu manifolds
with ξ belonging to the generalized (k, µ)′-nullity distribution.

We prove the following

Theorem 6.1. Let M2n+1 be an h′-semisymmetric almost Kenmotsu manifold
of dimension ≥ 5 with ξ belonging to the generalized (k, µ)′-nullity distribution
and h′ 6= 0. Then the manifold is locally isometric to the Riemannian product
Hn+1(−4)× Rn.

Proof. Suppose M2n+1 is h′-semisymmetric. Then (R(X,Y ) · h′)Z = 0 implies

(33) R(X,Y )h′Z − h′R(X,Y )Z = 0

for all smooth vector fields X,Y, Z. Then from Lemma 3.1, we have

(34) (k + 2)[g(Y, Z)h′X − g(X,Z)h′Y + g(h′X,Z)Y − g(h′Y,Z)X] = 0.

Putting Y = Z = ξ in (34), implies

(35) (k + 2)h′X = 0.

Replacing X by h′X in (35) and using the fact h′2 = (k + 1)φ2 we have

(36) (k + 1)(k + 2)[−X + η(X)ξ] = 0.

Taking inner product with W in (36), then putting X = W = ei, and taking sum-
mation over i, 1 ≤ i ≤ (2n+1), where {e1, e2, e3, . . . , e2n+1} is a local orthonormal
basis of the tangent space at a point of the manifold M , we obtain

(k + 1)(k + 2) = 0.

Therefore, either (k+1) = 0 or (k+2) = 0. If (k+1) = 0, then from h′2 = (k+1)φ2,
we have h′ = 0, which is a contradiction. Hence k = −2. Making use of this from
Lemma 3.3 we have µ = −2. In this context, according to [4, Corollary 4.2], we
know that M2n+1 is locally symmetric, that is, ∇R = 0. Moreover, taking into
account relation (3.1), we obtain R(X,Y )ξ = 0 for any X,Y ∈ D. Hence according
to [[5], Theorem 6], it is proved that M2n+1 is locally isometric to the Riemannian
product Hn+1(−4)× Rn. �
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