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SOME INEQUALITIES FOR AN INTEGRAL OPERATOR
AND n-TIME DIFFERENTIABLE FUNCTIONS

S. S. DRAGOMIR aAND S. G. FROM

ABSTRACT. In this paper, we establish some trapezoid type inequalities for the
operator

Da+,b—f(x) = %|: !

r—a

1
-

/: f(e)de + ; /zbf(t)dt}, z € (a,b)

in the case of functions f: [a,b] — C whose n-derivatives ) are absolutely con-
tinuous on [a, b]. Several Hermite-Hadamard type inequalities are also provided.

1. INTRODUCTION

The following theorem is well known in the literature as Taylor’s formula or Tay-
lor’s theorem with the integral remainder.

Theorem 1.1. Let I C R be a closed interval, ¢ € I and let n be a positive
integer. If f: I — C is such that the n-derivative ™ is absolutely continuous on
I, then for each z € 1

(1) [(2) = Tu(f;¢,2) + Ru(f; ¢, 2),

where T, (f; ¢, z) is Taylor’s polynomial, i.e.,

" zZ—C k
©) L(fie2) =Y L0,

k=0

Note that f© := f and 0! := 1 and the remainder is given by
1 z

® Rolfics) = [ G=0n /oo,
n! J.

A simple proof of this theorem can be achieved by mathematical induction using
the integration by parts formula in the Lebesgue integral.
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Assume that the function f: (a,b) — C is Lebesgue integrable on (a,b). We
consider the following operator [8]

/ f(t dt+—/ } x € (a,b).

We observe that if, we take x = “—*b, then, we have

Davo s (“50) = 7 [0

b—a

@ Dora-flo)i= 5| =

Moreover, if f (a+) := lim, 4+ f(z) exists and is finite, then we have

. 1 1 b
L Dot p—f(z) = 3 {f (a+) + m/a f(t)dt}
and if f (b—) :=lim,_,,— f(x) exists and is finite, then we have

1 1 b

Jim Do fle) = 5| F0-)+ 52 [ riol.

2 b—a

So, if f: [a,b] — C is Lebesgue integrable on [a,b] and continuous at right in a
and at left in b, then we can extend the operator on the whole interval by putting

Day o fla) = [f(a) T / b f(t)dt}

and
1 b

Do 10)i= 5 10) + 2 [ ]

We say that the function f: [a,b] — C is of H-r-Hdlder type if

[f(t) = f(s)| < H |t —s|"

for any ¢, s € [a,b], where H > 0 and r € (0,1]. If »r = 1 and, we put H = L, then
we call the function of L-Lipschitz type.

In the recent paper [8], we obtained amongst other the following trapezoid type
inequalities:

Theorem 1.2. If f is of H-r-Hélder type on [a,b] with H > 0 and r € (0,1],
then for any x € (a,b), we have

I R s s B T LA CEOR O}

In particular, if f is of L-Lipschitz type, then

f(a)+ (b) ‘ S,

0 Do (0 - 10

for any x € (a,b).
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If we take in Theorem 1.2 x = ‘LT'H’, then we get the following trapezoid type
inequality

1

) /() r
— < H(b— .
7) o [ s A
In particular, if f is of L-Lipschitz type, then we get the result from [17]:
) f(b)
< L
® L L)

Motivated by the above results, by the use of Taylor’s formula with integral
remainder (1), in this paper, we establish a trapezoid type representation for
the operator Dyt p— f(2), € (a,b) in the case of functions f: [a,b] — C whose
n-derivatives (") are absolutely continuous on [a, b]. As applications, several trape-
zoid type inequalities are also provided. Moreover, several Hermite-Hadamard type
inequalities are also established.

2. SOME TRAPEZOID TYPE IDENTITIES

We have the following representation:

Theorem 2.1. Let I C R be an interval, [a,b] C I and f: I — C is such that
the n-derivative f(™ is absolutely continuous on [a,b]. Then for any = € (a,b),
we have the representation

a+bf Zk+1

=0

1
- _ \n+1
+ 2n! (z—a)

1 1
9 X ut g () (gq — s —u)a + ux|) dsdu
(9) // O (sa+ (1= 8) [(1 — wa + ua]) dsd

_1 n+1 "
+! 2;! (b= )™

f®(@)(x — a)f + (=1)* B () (b - 2)"
2

X /01 /01 u" s FHD (1= 8) [uz + (1 — w)b] + sb) dsdu.

Proof. Using Taylor’s representation with the integral remainder (1), we can
write the following two identities

10 I =Y Y@@+ [ -

k=0

and
1)k _1\n+1 b

a5 =3 SO0 -0+ E0 [ e g
=0 ' ' Y

for any y, a, b e 1.
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For any integrable function i on an interval and any distinct numbers ¢, d in
that interval, we have, by the change of variable t = (1 — s)c + sd, s € [0, 1] that

d 1
/ h(t)dt = (d — c)/ h((1—s)c+ sd)ds.
c 0

Therefore,
y 1
/ FO () (y — t)"dt = (y — a) / FUD(A = s)a+sy) (y — (1= s)a — sy)" ds
a 0

== [ (= ek ) (- s

b 1
[ e -ra =0y / P (L = )y + sb) (1= s)y + sb— )" ds

1
= (b—y)"H! / FOHD (1= s)y + sb) s"ds.

The identities (10) and (11) can then be written as

b=y [ (e (- s

and

b y n+1
+ (= 1)’”r1 / FOHD (1 = s)y + sb) s"ds.

Now, for z € (a,b), if we integrate (12) on [a, z] over y, then we get

’ fly)dy = ’;mf(k)(a)(x—a)k""l
+% — n+1</ f(n+1) —s)a+sy) (1 —s)"ds)dy,
which gives
(14
I N PR S
x—a/f 72( +1)|fk(a)(33 a)” +n'x—a

=0
« / — )t (/ f(n+1) —s)a+sy)(1— s)"ds) dy.
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Also, if we integrate (13) on [z, b] over y, then we get

[ 1w </(€+)1> OB — o)+
+< i / -0 / PR (1= sy + sb) s ),

which gives

n _1\n+1
b—x/f Z f(k) B0 - )+ 173! bix

15 kO

« [ b(b gy ( / O (1 s)y 4 sh) s"ds) dy.

Now, if we make the change of variable y = (1 — u)a + uz, u € [0, 1], then
T 1
[t ([ - ek s - oras) ay
a 0
1 1
= (x — a)”+2/ u" </ FOH (1= s)a+s[(1 — w)a +ux]) (1 — s)"ds) du
0 0

and by (14), we get

— [

~ 1 1 il
:I;mf(k)(a)(x—a)k—k—'(x—a) "

1u"1 1 (n+1) —s)a+s[(1—uwa+ux —5)"ds | du

(16) x/O +</Of+((1 Ja+ s[(1—u)a+uzl]) (1 )d)d
S 1 1 n+1
:kzzomf(’”(a)(xfa)”a(%a) -

X /01 u™t (/1 FOH) (sa 4 (1 - ) [(1 — w)a + uz]) s"ds) du

0

for x € (a,b), where for the last equality, we replaced s by 1 — s.
Also, if we make the change of variable y = (1 — v) z + vb, v € [0, 1], then

/:(b —y)"t (/01 FOHD (1 = s)y + sb) Snds) dy

= (b= )2 /01 (1= vyt (/01 SO (1= 8) [(1 = v) 2 + vb] + sb) s"ds) d
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and by changing again the variable u =1 — v, v € [0, 1],, we have

/ oy ( / O (1 syt sb) d) ay

— (b—z)"? /01 u (/01 FOD (1= 8) [uz + (1 — u)b] + sb) s"ds> du.

From (15), we get
(17)

b—x/ 1y - ki
/ ( FOD (1 = s) [uz + (1 — u)b]+sb) s”ds) du

(71)n+1
n!

f(k (b)(b— )" + (b— )"t

for z € (a,b).
Therefore, by (16) and (17), we get

Da+b f( )

3 [ dHi/ ]

[i O a>k+kz_0(§€ 00|
1 %(m - a)ﬂﬂ/ol ut (/1 FOH (sa+ (1= s) [(1 — w)a + uz)) s”ds) du
+ﬂ(b— )n+1/0 (/f"+1 (1= s) [uz + (1—u)b]+sb) ”ds)du

2n!
which proves the desired result (9). O
The case when x = aT*'b is of interest.

Corollary 2.2. With the assumption of Theorem 2.1, we have

b
bia / F(t)dt

B 1 Tf%(a) + (=1)* ™) (b) :
P ACE [ 2k oot
(18) + Qn%%(b_ a)n+1

B P PR FERET, P

+ (=1t ((1 —5) {u;b +(1- u)b} + sb) ]dsdu.

: __ a+b
The proof follows by Theorem 2.1 on taking x = “3~.
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Remark. For n =0, we get from (9) that

Dy pf(z) = M
1,1
(19) +%(La)/0 /0 uf' (sa+ (1 —s)[(1 — u)a + uz]) dsdu

1 1 1 ,
—§(b—x)/0 /O wf (1= 8) [uz + (1 — w)b] + sb) dsdu

for « € (a,b) and, in particular

[ g L0

(20) ibfa// { (sa+ 15){(1u)a+u“;bD
(0 [ ] ) s

For n = 1, we get from (9) that

f(a)+f(b)+f’(a)(17*a)*f'(b)(bfx)

Da—i—,b—f(x) = 2 4
(21) + % (z — a)2/ / u?sf" (sa+ (1 —s)[(1 - u)a+ uz]) dsdu
1

*b—fL‘ / / u?sf"” ((1 — ) [uz + (1 — u)b] + sb) dsdu
for z € (a, b) and, in particular

/fdt

i“ L ® - @) 6-a

2 8
+é(b—a)2/01/01u23[f// (sa+(1—8) [(1—u)a+ua-2|-b})
(0 e ] ) o

n [8] the first author obtained the following equality:

(22)

Lemma 2.3. Assume that the function f: (a,b) — C is Lebesque integrable on
(a,b) and f (a+), f (b—) emists and are finite. Then, we have

(23) /ab Doy b f(z)da = /ab In ((x_b;)?b_x)>f(x)dx.

Using this equality, we can state the following corollary as well:
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Corollary 2.4. With the assumption of Theorem 2.1, we have
(24)

b_la/ab In (@E;)Z)_ﬂ)f(x)dx

n

= ! F® (@) +(=1)*F® (b) o
_kz:;) (k+ Dk +1) [ 2 ](b_a)k+2n!4)—a/a(x—a) ldz

X </01 /01 ny ) (504 (1 — 8) [(1 — w)a + ux]) dsdu> da

s
(_1)n+1 1 ’ n+1
+ 2n! bfa/a(b_x)

X </01 /01 L™ FHD (1= 5) [uz 4 (1 — u)b] + sb) dsdu) da.

Remark. For n = 0, we obtain
(25)

=TAL ) (e = L

*;bia/ab(x“) (/Olu(/olf’(sa+(1s)[(lu)a+ua:])ds>du)dx
_;bla/ab(b—a:) (/Olu(/Olf’((l—s)[ux—i—(l—u)b]—i—sb)ds)du>dx

while for n = 1, we get

(26)
(b e J@EFO) O~ @),
b_a/a1 ( (x—a)(b—x))f( Jdo = 2 8 (b—a)
b 1 1
+%ﬁ (x —a)? (/0 /o u?sf" (sa+ (1 —s) [(1—u)a+ux])dsdu> dz

11

+2b_a/ab(b—:r)2 (/01/)1u28f”((1—5) [u:v—l—(l—u)b]—l—sb)dsdu) dz.

3. SOME TRAPEZOID TYPE INEQUALITIES

The following integral inequality

a b .
- f( ;b)gbla/[lf(t)dtgw,

which holds for any convex function f: [a,b] — R, is well known in the literature
as the Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result
which has many applications in the Theory of Special Means and in Information
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Theory for divergence measures, from which we would like to refer the reader
to the monograph [10], the recent survey paper [7], the research papers [1]-[3],
[13]-[25] and the references therein.

The following result provides an inequality related to the second Hermite-
Hadamard inequality in (27).

Theorem 3.1. Let I C R be an interval, [a,b] C I and f: I — C is such that
the 2m + 2-derivative f"+2) s nonnegative on [a, b], where m > 0, then for any
x € (a,b), we have the trapezoid type inequality

L M) (@ — )+ (DR ®)(b - a)
@) D@2 Y gy | ; |

In particular, we have

L L [+ DR @) "
o) [ iz > | .~ [ o=
Proof. By the representation (9), we have
1 [P () (@ —a)f + (=P )b — 2)F
Da-‘r,b—f(x) = kzzo (/C-Fl)' |: ) :l
o Emr @)™

11
X / / uPmT22mHl p(2mE2) (50 4 (1 — 5) [(1 — u)a + uz]) dsdu
o Jo
1

T 5emr )
1 1
u2mt2 g2ml £(2m42) — 3) [ux —u sb) dsdu
x/o/o FEE (1= ) [uz + (1 — u)b] + sb) dsd
1 (9@ (@ — ) + ()R B )b — )
= kZ:O (k+ 1)l [ 2

since the last two integrals are nonnegative due to the fact that f(*”*2) is non-
negative on [a, b]. O

Remark. For m = 0, we obtain from Theorem 3.1 that

W Dus sz OO 6000
for any x € (a,b) and, see also [6] for a slightly more general version,

b
By oo - )z LY [ raazo,

where f is differentiable and convex on [a, b].
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Corollary 3.2. With the assumptions of Theorem 3.1, we have

- i . /ab In ((m_b;)?b_x))f(x)dx

(32) 2m—+1
1 ¥ (a) + (=) F®(b) K
= kZ:O k+ Dk +1) [ 2 ](b_a) '

Remark. If the function f is differentiable and convex on [a, b] , then for m =0
in (32), we get

(33)
1 / / f(a)+f(b) 1 ’ b—a
S0-0 (0 - ez LY Ly (Mw>f(x)dw>0~

We use the co-norm of an essentially bounded function f on the interval [c, d]
defined by

1l = eSSUDeeg [ (O] < 00, f € Luolesd].

Theorem 3.3. Let I C R be an interval, [a,b] C I and f: I — C is such that
the n-derivative f) is absolutely continuous on [a,b] and f"+V) € Lo.[a,b]. Then
for any = € (a,b), we have the inequality

1 [fBa) (@ - a)f + (DR B)(b— 2)F
’Da+,bf(m)_z(k+1)![ (a)(z — @)} + (1) P (b)( )”

2
k=0
B4 L, H (n+1) b_ )t H (n+1)
-2 (’I’L + 2)' (:E a) f la,z],00 + ( ‘T) f [z,b],00
1
< _ \n+1 bh— n+1 H (n+1)
-2 (n + 2)' [(l’ (l) + ( -T) } f la,b],00

In particular,

I ~ 1 ¥ (a) + (1) F® () k
b_a/af(t)dt— [ ](b—a)

P (k + 1)! 2k+1
(35) < S H (n+1) H (n+1) b_ g1
S g mr ol I aesyoe TIT lese o) © 7@
1
<——||ft+D) b—a)"t.
— 9n+l (n+2)' Hf [a,b],oo( a)
Proof. By taking the modulus in the equality (9), we get
(36)
~ 1 [fM(a)(—a)* + (=D P O)(b—x)
Do _
a+,b f(JC) kZ:O (k+ 1)| |: 2

1 1 1
< 7(‘% o a)n+1/ / unJrlsn
Qn! 0 0
1 - 1,1 »
+ ﬂ(b—x) /0 /0 u" s

FOF (sa+ (1 — ) [(1 —u)a+ ux])' dsdu

FOHD (1—5) [ux+(1—u)b]+$b)’ dsdu =: B (z,n).
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Observe that (1—u)a+ux € [a,z] for any u € [0, 1] and sa+(1—s) [(1 — u)a + uz] €
[a, z] for any u, s € [0, 1]. Therefore,

sup
(s,u)€[0,1]2

1 1
/ / un+15n
0 0

1 1
1
un+13nd3du = Hf(""'_l)
[a,xl,oo/o /0 CESNCED)

Similarly, we have

[f

FOHD (sa+ (1 5) [(1 - uw)a + ux])‘ < Hf<n+1>

la,z],00

and

f(n+1) (sa+(1—3)[(1 —u)a+ ux})‘ dsdu

S Hf(n+1)

la,z],00

FOHD (1 = 8) [uz + (1 — w)b] + sb)’ dsdu

I
‘(n+1)(n+2 [z.b],00
Therefore,
B (z,n)
1
< (o n+1— H (n+1)
- n'(x a) (n—|—1 n+2 f la,z],00
1 1
— (b— n+1__ - ’ (n+1)
* 2n! (b-2) (n+1)(n+2) [2,b],00
1
== |(rx =) H (n+1) 4 (b— ) T! ” (n+1) ]
2 (n + 2)' |:( ) f [a,z],00 ( ) f [z,b],00
1
_\n+l1 _oan+l (n+1) )
— + (b H }
= T2 [(:c a) (b—2x) ] max{ f . .
1
_ _ \n+l1 b— n+1 H (n+1)
2 (’I’L + 2)' [(iﬂ a) + ( 1') ] f la,b],00
and the inequality (34) is thus proved. O

Remark. If we take in (34) n = 0, then we get

Bars- sy~ 100

(37)

—_

< 1 [@ =D 1 e + O =) 1 Ni] < 50— D) 1l
(a,

for any x € (a,b), and in particular

s /f SR (GESIU)

< 2 (1 st e+ 17 N o] 0= @) <

(38)
0= a) ' lla,b),00

i
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If we take in (34) n =1, then we get

fla)+fb) 1

Duvst@)~ LTI 0y ) — )0~ )
(39) < li |:(.’E - a)2 ”fHH la,z],00 (b - $)2 Hf//||[rc,b],oo:|
géli<b—a>2+(m SONITZ

for any x € (a,b), and in particular

b
[ rwac- w L)~ B0 a)

S (I [ T T
1 "
ﬂ( —a)’|f llfa,b),00

Corollary 3.4. With the assumptions of Theorem 3.3, we have

[Er /ab <m)f (w)dz

Z - k+ . [ﬂk)(a) + <2—1>kf<k><b>} -
+bi/b(b—x)”+1‘
G

Forn da

la,z],00

dx}
[z,b],00

b—a)"tt.
la,b],00 ( )

f(n+1)

f(n—i—l)

If we take n =0 in (41), then we get

o [ (Gt o £

b b
(42) 1 1 / 1 !
<1|5=a ) @M ameedr+ 5= [ (0= 2) 1l 00 42

1 /
S Z ||f H[a,b],oo (b - a)
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while for n = 1, we get

‘bialﬂn(@i:&;_m>fumx

fla)+f0) 1., /
- BB - e 6 -a)

(43)

B L S L BN PR Sy LMYy T P
<3lial, el T+ 5= | o0

Loen
1 e (0= @)

4. SOME OTHER INEQUALITIES

To prove some more inequalities involving the operator Dgy ;—, we need the fol-
lowing lemmas:

Lemma 4.1 ([14, p. 21]). Suppose g is a real-valued function on [a,b] that
satisfies g"'(x) > 0 on [a,b]. If ¢ is continuous on [a,b] then

o /abg(x)df <9 (a§b> +o5(0-a) [g%b) . (“;bﬂ

and

W) [ g (“30) + oo |7 (“5°) - s0].

b—a/,
If ¢"'(x) < 0 on [a,b] instead, then (44) and (45) hold with the inequality signs

reversed.

Lemma 4.2 ([12, Theorem 1.4]). Let ¢ be continuous on [a,b], twice differ-
entiable on (a,b). Suppose w and p are continuous on [a,b] and p(x) > 0 with

f; p(z)dx > 0.
(a) If m =infe(qp) " (x) exists, then
_ i p(@)e (w(z) de . ( f;p@)w(x)dx)
fab p(z)dx fab p(z)dz

(46) G: > —mV,

1
2

where

Vo f:p(x)wz(;v)dac B f:p(x)w(m)dx ?
o f:p(x)dx f; p(x)dz
is the variance of w(x).
(b) If M = SUDg e (a,b) ¢ () exists, then

1
(47) G < ZMV.
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The inequalities (46) and (47) are particular cases of the Jensen’s type inequal-
ities for positive linear functionals obtained in 2002, [4].
We have the following result:

Theorem 4.3. Suppose f" exists on [a,b] and m = infyc(qp) f"(2), M =
SUP e (a,b) f"(x) exist, then

1 9 1 b a+b 1 2
(48) 1—8m(b—a) Sm/a Da+,b—f(33)d33—f< 5 >§18M(b_a)'

Proof. A change of variable gives

We also have

/f m( x—a)(b—x))dm

:(b—a)/o ;( Inu—1In(l —w)) f (ua + (1 — u)b) du.

It is easy verified that p(u) := % (—Inu—In(1—u)), u € [0,1] is a probability
density function with mean

and variance

1 1
V= - == —.
/up du 1-9

The inequality (48) follows immediately by Lemma 4.2 upon letting p (u) =
1 (=Inu—In(1—w)), w(u) =uand ¢ (u) = f (ua+ (1 —u)b). O

Next, we show how improved bounds for the integrals in Theorem 4.3 can often
be found if we have functions f satisfying f"/(z) > 0 on [a, b].

Theorem 4.4. Suppose that " is continuous on [a,b]. Let
M = sup f"(t), My = sup f'(t), My = sup f"(t)

t€la,b] te[252 b] t€[a, 25]

and
m = inf f"(¢), mi = inf  f"(¢), mg = inf  f'(t),

SO = PO, me= e S0

then
(my +ms) (b—a)? + —m (b— a)’
192 TR 72
1 a—+3b 3a+b

49 —
(49) *b—/D‘”bf()x 2[f( 1 >+f( 1 )}

(My + Ms) (b—a)® + 2M(b a)’.

- 192 7
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Proof. We shall prove only the second inequality in (49). The proof of the first
inequality is similar and is omitted.

Let Mi(x) = supse(qq) [ (1), Ma(z) = sup,ep,y f(t) for z € [a,b]. By Lem-
ma 4.2, we have

L g (U0 + i O T

(50) r—a 2 1 12
sf(a;x>+24M(x—a>2
and
1t z4+b\ 1 (b—x)?
(51) b—x/w f(t)dKf( 2 >+2M2(x) 12
= 2 24 '

So, addition of (50) and (51) gives

Doy p—f(x) < % [f <a+x) +f <x+b> + iM [(z — a)? +(b—x)2]}

2 2 24

for x € (a,b).
Integration gives

/abDﬁ,b_f(w)dx < ;/b {f(“j’”) +f(:”;b)} da

(52)

By Lemma 4.2, we also have

(53) /abf(a;x)dmé(b—a) [f(3“jb)+916M1 <b—a>2]

and

(54) /abf(x;rb>d:c§(ba) {f(az?)b)nngMg(ba)Q}

Thus, (52)-(54) give the upper bound in (49). O

The next theorem provides more bounds for the integral ﬁ ff Dyt p— f(x)dx
in the case that f is 3-convex:
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Theorem 4.5. Suppose that f" is continuous and nonnegative on [a,b]. Then
(55)

Sl @0+ o0 () < () 1 () - )

2 4

< bla/abDa+,bf(93)dx_ % [f(ang) +f(3a:b)}

< Ltb-a {f'(“;b)_f/(mjb) +f’(b)—f’(a23b)]+712f”(b)(b—a)2-

Proof. We shall prove only the inequality for the upper bound. The other
inequality is very similar and is omitted.
In the proof of Theorem 4.4 it was shown that

(56) Dy f(x) < ;{f(“ )+ (5 )+ 2*14M [(z — a)? + (b — 2)?] }

for « € (a,b).
Now, apply Lemma 4.1 to both

/abf(“;x)da; and /abf(x;rb)dx

[ = 0 s gy o [ (55) - ()]

and

o /abf(x;b)df” <0-af(“52) + 50— [f’(b) - f’(“ng)} .

Integrating both sides of (56) and using (57)—(58), we obtain the desired result. [

Remark. It is easily seen that Theorems 4.3, 4.4 and 4.5 provide bounds which
are exact (zero error) in the case that f is a polynomial of degree 2 or less. Nu-
merical experiments show that the boundsof Theorem 4.4 and 4.5 are better than
the bounds of Theorem 4.3 in the cases where all three theorems are applicable.
Of course, the bounds of Theorem 4.3 are more easily computed.

5. SOME EXAMPLES
The above results can provide several analytic inequalities of interest by choosing

the function f: [a,b] — R such as f(z) = expz, € [a,0] C R, f(z) = 1 or
flx)=Inz, z € [a,b] C (0,00).
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‘We have
1

/a Tt 4 —— [ exp(t)dt}

1
Da+7b— exp(x) = b—x

=3
(59) ) )
expr —expa expb—expx
— - b
2[ Loopa epboe ] 7 € (a,),
1 b—
Do expla) = | expla) + ST
and
1 b—
Davca exp(9) = 3 | exp(t) + 227 =20,
Also,

D a+b expb—expa

_e = .
ac+ib— OXP 2 b—a
From the inequality (28), we get

2m+1 1 (xia)k expa -+ (fl)k(bfx)k expb
(60)  Dgy p—exp(x) > kgo (k +1)! { 2 ] ,

for all z € [a,b] and m > 0.
In particular, we have

2m—+1 k
expb —expa 1 exp(a) + (—=1)" exp(d) &
i e e h—
(61) b—a kg} (k+1)! [ 9k+T (b-a)
for m > 0.

From Theorem 3.3, we obtain

" 1 (x —a)’expa+ (—1)F(b—x)kexpb
Da-‘r,b— eXp(Z‘) - kZ::O (k+ 1)| |: 2 :|

(62) < m [(x —a)"expr + (b—2)" M exp b]

< m [(z — @)™ + (b — )] expb

for all = € [a,b] and n > 0.
In particular,

expb—expa zn: 1 [GXP(G) + (=" exp(b)} (b—a)*
(

_ ! kt1
b—a = k+1)! 2
63 1 a+b _\n+l
(63) < 72 (n 1 2! {exp (2> —I—epr} (b—a)
1

< - _ n+1 b.
S iy AT e
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Further, observe that for f(z) = expz, we have expa = inf ¢ (q,) exp(), expb =
SUP,e(q,0) €XP(2) and by (48), we obtain

1 ) 1 a+b
— — < —
13 (b—a)’expa < g /a Dyt p— exp(x)dz — exp ( 5 )

< —(b- a)?expb.

L
18
From (49), we also derive

1 a+b 5 1 9
192(expa—i—exp(Q))(b a) +5(b a)“expa

1 b 1 a+3b 3a+0b
64 < 1
(64) S a/a D - exp(z)dz — {exp( 1 ) +eXp< 1 )}

1 a+b 9 1 9
< a2 - —(b— .
< {03 (epr-ﬁ-exp( 5 )) (b—a)”+ 72(b a)’expb

The interested reader can obtain similar inequalities by employing the functions
f(z)=12or f(z) =Inz, z € [a,b] C (0,00). The details are omitted.

6. CONCLUSION

In this paper, by the use of Taylor’s expansion formula with integral remainder, we
provided some trapezoid type inequalities for the integral operator D,y ,— f(z),
€ (a,b). Some Hermite-Hadamard type inequalities for the integral mean

1 b
4 / Dyyp— f(z)dx

in terms of the second and third derivatives are also provided. The general results
are exemplified for the exponential function.
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