ON THE CONTINUOUS DUAL OF THE SEQUENCE SPACE $b v$

M. EL AZHARI

Abstract

Imaninezhad and Miri introduced the sequence space d_{∞} in order to characterize the continuous dual of the sequence space $b v$. We show by a counterexample that this claimed characterization is false.

1. Preliminaries

Let ω denote the vector space of all complex sequences, where addition and scalar multiplication are defined pointwise. For each $k \geq 1$, let $e^{(k)}=\left(e_{n}^{(k)}\right)_{n \geq 1}$ be the complex sequence defined by $e_{k}^{(k)}=1$ and $e_{n}^{(k)}=0$ for $n \neq k$. A sequence space is a vector subspace of ω including the set $\left\{e^{(k)}: k \geq 1\right\}$. By l_{∞}, c, and $l_{q}(1 \leq$ $q<\infty$), we denote the sequence spaces of all bounded, convergent and absolutely q -summable sequences, respectively. Also the inclusions $l_{q} \subset c \subset l_{\infty}$ are strict. c and l_{∞} are Banach spaces with the supremum norm $\|x\|_{\infty}=\sup \left\{\left|x_{k}\right|: k \geq 1\right\}$. l_{q} is a Banach space with the norm $\|x\|_{q}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}}$.

Let $b v_{p}(1 \leq p<\infty)$ denote the sequence space of all sequences of bounded variation defined, in [2], by $b v_{p}=\left\{x=\left(x_{k}\right)_{k \geq 1} \in \omega: \sum_{k=1}^{\infty}\left|x_{k}-x_{k-1}\right|^{p}<\infty\right\}$ with $x_{0}=0 . b v_{p}$ is a Banach space with the norm $\|x\|_{b v_{p}}=\left(\sum_{k=1}^{\infty}\left|x_{k}-x_{k-1}\right|^{p}\right)^{\frac{1}{p}}$. We write $b v$ instead of $b v_{1}$. If we define the sequence $b^{(k)}=\left(b_{n}^{(k)}\right)_{n \geq 1}$ of elements of the space $b v_{p}$ for every $k \geq 1$ by $b_{n}^{(k)}=0$ if $n<k$ and $b_{n}^{(k)}=1$ if $n \geq k$, then the sequence $\left(b^{(k)}\right)_{k \geq 1}$ is a Schauder basis [2] for $b v_{p}$ and every $x \in b v_{p}$ has a unique representation of the form $x=\sum_{k=1}^{\infty}\left(x_{k}-x_{k-1}\right) b^{(k)}$ with $x_{0}=0$.

Let Δ_{ω} denote the difference operator on ω defined by $\Delta_{\omega} x=\left(x_{k}-x_{k-1}\right)_{k \geq 1}$ with $x_{0}=0$ for every $x=\left(x_{k}\right)_{k \geq 1} \in \omega$. For each $1 \leq p<\infty$, the map $\Delta: b v_{p} \rightarrow$ $l_{p}, \Delta x=\Delta_{\omega} x$, is an isometric linear isomorphism [2]. If $(E,\|\cdot\|)$ is a normed sequence space, then E^{*} denotes the continuous dual of E with the norm defined by $\|f\|=\sup \{|f(x)|:\|x\|=1\}$ for all $f \in E^{*}$. It is well-known that $l_{1}^{*} \cong l_{\infty}$ and $l_{p}^{*} \cong l_{q}(1<p, q<\infty)$ with $\frac{1}{p}+\frac{1}{q}=1$.

2. The sequence space d_{∞}

Proposition 2.1. A linear functional f on bv is continuous if and only if there exists $a=\left(a_{k}\right)_{k \geq 1} \in l_{\infty}$ such that $f(x)=\sum_{k=1}^{\infty} a_{k}(\Delta x)_{k}$ for all $x \in b v$. Furthermore, $f\left(b^{(i)}\right)=a_{i}$ and $f\left(e^{(i)}\right)=a_{i}-a_{i+1}$ for every $i \geq 1$.

Proof. The map $\Delta: b v \rightarrow l_{1}, \Delta x=\left(x_{k}-x_{k-1}\right)_{k \geq 1}$ with $x_{0}=0$, is an isometric linear isomorphism [2]. Let f be a linear functional on $b v$. If f is continuous, then $f \circ \Delta^{-1}$ is a continuous linear functional on l_{1}, so there exists $a=\left(a_{k}\right)_{k \geq 1} \in l_{\infty}$ such that $f \circ \Delta^{-1}(y)=\sum_{k=1}^{\infty} a_{k} y_{k}$ for all $y \in l_{1}$. Hence $f(x)=\left(f \circ \Delta^{-1}\right)(\Delta x)=$ $\sum_{k=1}^{\infty} a_{k}(\Delta x)_{k}$ for all $x \in b v$.

Conversely, if $f(x)=\sum_{k=1}^{\infty} a_{k}(\Delta x)_{k}$ for all $x \in b v$ and some $\left(a_{k}\right)_{k \geq 1} \in l_{\infty}$, then $|f(x)| \leq \sum_{k=1}^{\infty}\left|a_{k}\right|\left|(\Delta x)_{k}\right| \leq\|a\|_{\infty} \sum_{k=1}^{\infty}\left|(\Delta x)_{k}\right|=\|a\|_{\infty}\|x\|_{b v}$. Therefore f is a continuous linear functional on $b v$. Let $i \geq 1, f\left(b^{(i)}\right)=\sum_{k=1}^{\infty} a_{k}\left(\Delta b^{(i)}\right)_{k}=a_{i}$ and $f\left(e^{(i)}\right)=\sum_{k=1}^{\infty} a_{k}\left(\Delta e^{(i)}\right)_{k}=a_{i}-a_{i+1}$.

Proposition 2.2. $b v^{*}$ is isometrically isomorphic to l_{∞}.
Proof. Define $\varphi: b v^{*} \rightarrow l_{\infty}, \varphi(f)=\left(f\left(b^{(k)}\right)\right)_{k \geq 1}, \varphi$ is a surjective linear map by Proposition 2.1, and φ is injective since $\left(b^{(k)}\right)_{k \geq 1}$ is a Schauder basis for $b v$. Let $f \in b v^{*}$ and $x \in b v,|f(x)|=\left|f\left(\sum_{k=1}^{\infty}(\Delta x)_{k} b^{(\bar{k})}\right)\right|=\left|\sum_{k=1}^{\infty}(\Delta x)_{k} f\left(b^{(k)}\right)\right| \leq$ $\sum_{k=1}^{\infty}\left|(\Delta x)_{k}\right|\left|f\left(b^{(k)}\right)\right| \leq \sup _{k \geq 1}\left|f\left(b^{(k)}\right)\right| \sum_{k=1}^{\infty}\left|(\Delta x)_{k}\right|=\|\varphi(f)\|_{\infty}\|x\|_{b v}$, then $\|f\| \leq\|\varphi(f)\|_{\infty}$.

On the other hand, $\left|f\left(b^{(k)}\right)\right| \leq\|f\|\left\|b^{(k)}\right\|_{b v}=\|f\|$ since $\left\|b^{(k)}\right\|_{b v}=1$ for all $k \geq 1$, then $\|\varphi(f)\|_{\infty}=\sup _{k \geq 1}\left|f\left(b^{(k)}\right)\right| \leq\|f\|$.

Imaninezhad and Miri [3] introduced the sequence space $d_{\infty}=\left\{x=\left(x_{k}\right)_{k \geq 1} \in\right.$ $\left.\omega: \sup _{k \geq 1}\left|\sum_{i=k}^{\infty} x_{i}\right|<\infty\right\}$, and claimed that $T: b v^{*} \rightarrow d_{\infty}, T(f)=\left(f\left(e^{(k)}\right)_{k \geq 1}\right.$, is an isometric linear isomorphism [3, Theorem 3.3] (see also [4, Theorem 4.1]). Here we show that the set $T\left(b v^{*}\right)$ is not included in d_{∞}.

Counterexample. Let $a=\left(a_{k}\right)_{k \geq 1} \in l_{\infty} \backslash c$, and consider the map $f(x)=$ $\sum_{k=1}^{\infty} a_{k}(\Delta x)_{k}$ for all $x \in b v$. By Proposition 2.1, $f \in b v^{*}$ and $f\left(e^{(i)}\right)=a_{i}-a_{i+1}$ for every $i \geq 1$. Let $k \geq 1$ and $n \geq k, \sum_{i=k}^{n} f\left(e^{(i)}\right)=\sum_{i=k}^{n}\left(a_{i}-a_{i+1}\right)=a_{k}-$ a_{n+1}. If $\left(f\left(e^{(k)}\right)\right)_{k \geq 1} \in d_{\infty}$, then $\lim _{n \rightarrow \infty} \sum_{i=k}^{n} f\left(e^{(i)}\right)=\sum_{i=k}^{\infty} f\left(e^{(i)}\right) \in \mathbb{C}$ and consequently $\lim _{n \rightarrow \infty} a_{n+1}=a_{k}-\sum_{i=k}^{\infty} f\left(e^{(i)}\right)$, which contradicts the fact that the sequence $\left(a_{k}\right)_{k \geq 1}$ is not convergent.

Remark. The above counterexample is also a counterexample to the equality $\sum_{i=k}^{\infty} f\left(e^{(i)}\right)=f\left(b^{(k)}\right)$ for all $k \geq 1$ and $f \in b v^{*}$, which is used in the proofs of [$\mathbf{1}$, Theorem 2.3] and [3, Theorem 3.3].

3. The sequence space $d_{q}(1<q<\infty)$

Proposition 3.1. Let $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. A linear functional f on $b v_{p}$ is continuous if and only if there exists $a=\left(a_{k}\right)_{k \geq 1} \in l_{q}$ such that $f(x)=$
$\sum_{k=1}^{\infty} a_{k}(\Delta x)_{k}$ for all $x \in b v_{p}$. Furthermore, $f\left(b^{(i)}\right)=a_{i}$ and $f\left(e^{(i)}\right)=a_{i}-a_{i+1}$ for every $i \geq 1$.

Proof. The map $\Delta: b v_{p} \rightarrow l_{p}, \Delta x=\left(x_{k}-x_{k-1}\right)_{k \geq 1}$ with $x_{0}=0$, is an isometric linear isomorphism [2]. Let f be a linear functional on $b v_{p}$. If f is continuous, then $f \circ \Delta^{-1}$ is a continuous linear functional on l_{p}, so there exists $a=\left(a_{k}\right)_{k \geq 1} \in l_{q}$ such that $f \circ \Delta^{-1}(y)=\sum_{k=1}^{\infty} a_{k} y_{k}$ for all $y \in l_{p}$. Hence $f(x)=\left(f \circ \Delta^{-1}\right)(\Delta x)=$ $\sum_{k=1}^{\infty} a_{k}(\Delta x)_{k}$ for all $x \in b v_{p}$.

Conversely, if $f(x)=\sum_{k=1}^{\infty} a_{k}(\Delta x)_{k}$ for all $x \in b v_{p}$ and some $a=\left(a_{k}\right)_{k \geq 1} \in l_{q}$, then $|f(x)| \leq \sum_{k=1}^{\infty}\left|a_{k}\right|\left|(\Delta x)_{k}\right| \leq\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{q}\right)^{\frac{1}{q}}\left(\sum_{k=1}^{\infty}\left|(\Delta x)_{k}\right|^{p}\right)^{\frac{1}{p}}=\|a\|_{q}\|x\|_{b v_{p}}$ by Hölder inequality. Therefore f is a continuous linear functional on $b v_{p}$.

Proposition 3.2. Let $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. Then $b v_{p}^{*}$ is isometrically isomorphic to l_{q}.

Proof. Define $\psi: b v_{p}^{*} \rightarrow l_{q}, \psi(f)=\left(f\left(b^{(k)}\right)\right)_{k \geq 1}, \psi$ is a surjective linear map by Proposition 3.1, and ψ is injective since $\left(b^{(k)}\right)_{k \geq 1}$ is a Schauder basis for $b v_{p}$. Let $f \in b v_{p}^{*}$ and $x \in b v_{p},|f(x)|=\left|f\left(\sum_{k=1}^{\infty}(\Delta x)_{k} b^{(k)}\right)\right|=\left|\sum_{k=1}^{\infty}(\Delta x)_{k} f\left(b^{(k)}\right)\right| \leq$ $\sum_{k=1}^{\infty}\left|(\Delta x)_{k}\left\|f\left(b^{(k)}\right) \left\lvert\, \leq\left(\sum_{k=1}^{\infty}\left|(\Delta x)_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{\infty}\left|f\left(b^{(k)}\right)\right|^{q}\right)^{\frac{1}{q}}=\right.\right\| \psi(f)\left\|_{q}\right\| x \|_{b v_{p}}\right.$ by Hölder inequality, then $\|f\| \leq\|\psi(f)\|_{q}$.

On the other hand, let $f \in b v_{p}^{*}$ and define the sequence $\left(x^{(n)}\right)_{n \geq 1}$ of the space $b v_{p}$ by $\left(\Delta x^{(n)}\right)_{k}=\left|f\left(b^{(k)}\right)\right|^{q} f\left(b^{(k)}\right)^{-1}$ if $1 \leq k \leq n$ and $f\left(b^{(k)}\right) \neq 0,\left(\Delta x^{(n)}\right)_{k}=0$ otherwise. Let $n \geq 1, f\left(x^{(n)}\right)=f\left(\sum_{k=1}^{\infty}\left(\Delta x^{(n)}\right)_{k} b^{(k)}\right)=\sum_{k=1}^{\infty}\left(\Delta x^{(n)}\right)_{k} f\left(b^{(k)}\right)=$ $\sum_{k=1}^{n}\left|f\left(b^{(k)}\right)\right|^{q}$.

Then $\sum_{k=1}^{n}\left|f\left(b^{(k)}\right)\right|^{q}=f\left(x^{(n)}\right)=\left|f\left(x^{(n)}\right)\right| \leq\|f\|\left\|x^{(n)}\right\|_{b v_{p}}=$
$\|f\|\left(\sum_{k=1}^{n}\left|f\left(b^{(k)}\right)\right|^{(q-1) p}\right)^{\frac{1}{p}}=\|f\|\left(\sum_{k=1}^{n}\left|f\left(b^{(k)}\right)\right|^{q}\right)^{\frac{1}{p}}$ since $(q-1) p=q$. Therefore $\left(\sum_{k=1}^{n}\left|f\left(b^{(k)}\right)\right|^{q}\right)^{\frac{1}{q}}=\left(\sum_{k=1}^{n}\left|f\left(b^{(k)}\right)\right|^{q}\right)^{1-\frac{1}{p}} \leq\|f\|$ for all $n \geq 1$. Letting $n \rightarrow \infty$, we get $\|\psi(f)\|_{q}=\left(\sum_{k=1}^{\infty}\left|f\left(b^{(k)}\right)\right|^{q}\right)^{\frac{1}{q}} \leq\|f\|$.

Akhmedov and Başar [1] introduced the sequence space $d_{q}=\left\{x=\left(x_{k}\right)_{k \geq 1} \in\right.$ $\left.\omega: \sum_{k=1}^{\infty}\left|\sum_{i=k}^{\infty} x_{i}\right|^{q}<\infty\right\}(1<q<\infty)$, with the norm $\|x\|_{d_{q}}=\left(\sum_{k=1}^{\infty}\left|\sum_{i=k}^{\infty} x_{i}\right|^{q}\right)^{\frac{1}{q}}$, and proved that the sequence space d_{q} is isometrically isomorphic to $b v_{p}^{*}(1<p<\infty)$ with $\frac{1}{p}+\frac{1}{q}=1$ (see [1, Theorem 2.3] or [3, Theorem 3.6]). Here we deduce this result as a consequence of Proposition 3.2.

Corollary 3.3. Let $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. Then bv v_{p}^{*} is isometrically isomorphic to d_{q}.

Proof. By Proposition 3.2 and the fact that the map $D: d_{q} \rightarrow l_{q}, D\left(\left(x_{k}\right)_{k \geq 1}\right)=$ $\left(\sum_{i=k}^{\infty} x_{i}\right)_{k \geq 1}$, is an isometric linear isomorphism.

Remark. By using the same above argument, we cannot show that $b v^{*}$ is isometrically isomorphic to d_{∞} since the linear map $\delta: d_{\infty} \rightarrow l_{\infty}, \delta\left(\left(x_{k}\right)_{k \geq 1}\right)=$ $\left(\sum_{i=k}^{\infty} x_{i}\right)_{k \geq 1}$, which is injective and norm-preserving, is not surjective (we easily show that the element $(1,1,1, \ldots) \in l_{\infty}$ does not belong to the image of $\left.\delta\right)$.

References

1. Akhmedov A. M. and Başar F., The fine spectra of the difference operator Δ over the sequence space $b v_{p}(1 \leq p<\infty)$, Acta Math. Sin. Eng. Ser. 23(10) (2007), 1757-1768.
2. Başar F. and Altay B., On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55(1) (2003), 136-147.
3. Imaninezhad M. and Miri M., The dual space of the sequence space bvp $(1 \leq p<\infty)$, Acta Math. Univ. Comenianae 79(1) (2010), 143-149.
4. Imaninezhad M. and Miri M., The continuous dual of the sequence space $l_{p}\left(\Delta^{n}\right)$, Acta Math Univ. Comenianae 79(2) (2010), 273-280.
M. El Azhari, Ecole Normale Supérieure, Avenue Oued Akreuch, Takaddoum, BP 5118, Rabat, Morocco,
e-mail: mohammed.elazhari@yahoo.fr
