ON THE CONTINUOUS DUAL OF THE SEQUENCE SPACE bv

M. EL AZHARI

ABSTRACT. Imaninezhad and Miri introduced the sequence space d_{∞} in order to characterize the continuous dual of the sequence space bv. We show by a counterexample that this claimed characterization is false.

1. Preliminaries

Let ω denote the vector space of all complex sequences, where addition and scalar multiplication are defined pointwise. For each $k \geq 1$, let $e^{(k)} = (e_n^{(k)})_{n\geq 1}$ be the complex sequence defined by $e_k^{(k)} = 1$ and $e_n^{(k)} = 0$ for $n \neq k$. A sequence space is a vector subspace of ω including the set $\{e^{(k)} : k \geq 1\}$. By l_{∞} , c, and l_q $(1 \leq q < \infty)$, we denote the sequence spaces of all bounded, convergent and absolutely q-summable sequences, respectively. Also the inclusions $l_q \subset c \subset l_{\infty}$ are strict. c and l_{∞} are Banach spaces with the supremum norm $||x||_{\infty} = \sup\{|x_k| : k \geq 1\}$. l_q is a Banach space with the norm $||x||_q = (\sum_{k=1}^{\infty} |x_k|^q)^{\frac{1}{q}}$.

Let bv_p $(1 \le p < \infty)$ denote the sequence space of all sequences of bounded variation defined, in [2], by $bv_p = \{x = (x_k)_{k\ge 1} \in \omega : \sum_{k=1}^{\infty} |x_k - x_{k-1}|^p < \infty\}$ with $x_0 = 0$. bv_p is a Banach space with the norm $||x||_{bv_p} = (\sum_{k=1}^{\infty} |x_k - x_{k-1}|^p)^{\frac{1}{p}}$. We write bv instead of bv_1 . If we define the sequence $b^{(k)} = (b_n^{(k)})_{n\ge 1}$ of elements of the space bv_p for every $k \ge 1$ by $b_n^{(k)} = 0$ if n < k and $b_n^{(k)} = 1$ if $n \ge k$, then the sequence $(b^{(k)})_{k\ge 1}$ is a Schauder basis [2] for bv_p and every $x \in bv_p$ has a unique representation of the form $x = \sum_{k=1}^{\infty} (x_k - x_{k-1})b^{(k)}$ with $x_0 = 0$.

Let Δ_{ω} denote the difference operator on ω defined by $\Delta_{\omega} x = (x_k - x_{k-1})_{k \ge 1}$ with $x_0 = 0$ for every $x = (x_k)_{k \ge 1} \in \omega$. For each $1 \le p < \infty$, the map $\Delta : bv_p \to l_p$, $\Delta x = \Delta_{\omega} x$, is an isometric linear isomorphism [2]. If $(E, \|.\|)$ is a normed sequence space, then E^* denotes the continuous dual of E with the norm defined by $\|f\| = \sup\{|f(x)| : \|x\| = 1\}$ for all $f \in E^*$. It is well-known that $l_1^* \cong l_\infty$ and $l_p^* \cong l_q$ $(1 < p, q < \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$.

Received May 8, 2019; revised July 5, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 46B10, 46B45.

Key words and phrases. Continuous dual; sequence space.

M. EL AZHARI

2. The sequence space d_{∞}

Proposition 2.1. A linear functional f on bv is continuous if and only if there exists $a = (a_k)_{k\geq 1} \in l_{\infty}$ such that $f(x) = \sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv$. Furthermore, $f(b^{(i)}) = a_i$ and $f(e^{(i)}) = a_i - a_{i+1}$ for every $i \geq 1$.

Proof. The map $\Delta: bv \to l_1, \Delta x = (x_k - x_{k-1})_{k \ge 1}$ with $x_0 = 0$, is an isometric linear isomorphism [2]. Let f be a linear functional on bv. If f is continuous, then $f \circ \Delta^{-1}$ is a continuous linear functional on l_1 , so there exists $a = (a_k)_{k \ge 1} \in l_{\infty}$ such that $f \circ \Delta^{-1}(y) = \sum_{k=1}^{\infty} a_k y_k$ for all $y \in l_1$. Hence $f(x) = (f \circ \Delta^{-1})(\Delta x) = \sum_{k=1}^{\infty} a_k (\Delta x)_k$ for all $x \in bv$.

Conversely, if $f(x) = \sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv$ and some $(a_k)_{k\geq 1} \in l_{\infty}$, then $|f(x)| \leq \sum_{k=1}^{\infty} |a_k|| (\Delta x)_k| \leq ||a||_{\infty} \sum_{k=1}^{\infty} |(\Delta x)_k| = ||a||_{\infty} ||x||_{bv}$. Therefore f is a continuous linear functional on bv. Let $i \geq 1$, $f(b^{(i)}) = \sum_{k=1}^{\infty} a_k(\Delta b^{(i)})_k = a_i$ and $f(e^{(i)}) = \sum_{k=1}^{\infty} a_k(\Delta e^{(i)})_k = a_i - a_{i+1}$.

Proposition 2.2. bv^* is isometrically isomorphic to l_{∞} .

Proof. Define $\varphi : bv^* \to l_{\infty}, \varphi(f) = (f(b^{(k)}))_{k\geq 1}, \varphi$ is a surjective linear map by Proposition 2.1, and φ is injective since $(b^{(k)})_{k\geq 1}$ is a Schauder basis for bv. Let $f \in bv^*$ and $x \in bv, |f(x)| = |f(\sum_{k=1}^{\infty} (\Delta x)_k b^{(k)})| = |\sum_{k=1}^{\infty} (\Delta x)_k f(b^{(k)})| \leq \sum_{k=1}^{\infty} |(\Delta x)_k| |f(b^{(k)})| \leq \sup_{k\geq 1} |f(b^{(k)})| \sum_{k=1}^{\infty} |(\Delta x)_k| = ||\varphi(f)||_{\infty} ||x||_{bv}$, then $||f|| \leq ||\varphi(f)||_{\infty}$.

On the other hand, $|f(b^{(k)})| \leq ||f|| ||b^{(k)}||_{bv} = ||f||$ since $||b^{(k)}||_{bv} = 1$ for all $k \geq 1$, then $||\varphi(f)||_{\infty} = \sup_{k>1} |f(b^{(k)})| \leq ||f||$.

Imaninezhad and Miri [3] introduced the sequence space $d_{\infty} = \{x = (x_k)_{k \ge 1} \in \omega : \sup_{k \ge 1} |\sum_{i=k}^{\infty} x_i| < \infty\}$, and claimed that $T : bv^* \to d_{\infty}$, $T(f) = (f(e^{(k)})_{k \ge 1})$, is an isometric linear isomorphism [3, Theorem 3.3] (see also [4, Theorem 4.1]). Here we show that the set $T(bv^*)$ is not included in d_{∞} .

Counterexample. Let $a = (a_k)_{k \ge 1} \in l_{\infty} \setminus c$, and consider the map $f(x) = \sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv$. By Proposition 2.1, $f \in bv^*$ and $f(e^{(i)}) = a_i - a_{i+1}$ for every $i \ge 1$. Let $k \ge 1$ and $n \ge k$, $\sum_{i=k}^n f(e^{(i)}) = \sum_{i=k}^n (a_i - a_{i+1}) = a_k - a_{n+1}$. If $(f(e^{(k)}))_{k\ge 1} \in d_{\infty}$, then $\lim_{n\to\infty} \sum_{i=k}^n f(e^{(i)}) = \sum_{i=k}^{\infty} f(e^{(i)}) \in \mathbb{C}$ and consequently $\lim_{n\to\infty} a_{n+1} = a_k - \sum_{i=k}^{\infty} f(e^{(i)})$, which contradicts the fact that the sequence $(a_k)_{k\ge 1}$ is not convergent.

Remark. The above counterexample is also a counterexample to the equality $\sum_{i=k}^{\infty} f(e^{(i)}) = f(b^{(k)})$ for all $k \ge 1$ and $f \in bv^*$, which is used in the proofs of [1, Theorem 2.3] and [3, Theorem 3.3].

3. The sequence space $d_q (1 < q < \infty)$

Proposition 3.1. Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. A linear functional f on bv_p is continuous if and only if there exists $a = (a_k)_{k \ge 1} \in l_q$ such that f(x) =

 $\sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv_p$. Furthermore, $f(b^{(i)}) = a_i$ and $f(e^{(i)}) = a_i - a_{i+1}$ for every $i \ge 1$.

Proof. The map $\Delta: bv_p \to l_p, \Delta x = (x_k - x_{k-1})_{k \ge 1}$ with $x_0 = 0$, is an isometric linear isomorphism [2]. Let f be a linear functional on bv_p . If f is continuous, then $f \circ \Delta^{-1}$ is a continuous linear functional on l_p , so there exists $a = (a_k)_{k \ge 1} \in l_q$ such that $f \circ \Delta^{-1}(y) = \sum_{k=1}^{\infty} a_k y_k$ for all $y \in l_p$. Hence $f(x) = (f \circ \Delta^{-1})(\Delta x) = \sum_{k=1}^{\infty} a_k (\Delta x)_k$ for all $x \in bv_p$. Conversely, if $f(x) = \sum_{k=1}^{\infty} a_k (\Delta x)_k$ for all $x \in bv_p$ and some $a = (a_k)_{k \ge 1} \in l_q$,

Conversely, if $f(x) = \sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv_p$ and some $a = (a_k)_{k\geq 1} \in l_q$, then $|f(x)| \leq \sum_{k=1}^{\infty} |a_k| |(\Delta x)_k| \leq (\sum_{k=1}^{\infty} |a_k|^q)^{\frac{1}{q}} (\sum_{k=1}^{\infty} |(\Delta x)_k|^p)^{\frac{1}{p}} = ||a||_q ||x||_{bv_p}$ by Hölder inequality. Therefore f is a continuous linear functional on bv_p .

Proposition 3.2. Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then bv_p^* is isometrically isomorphic to l_q .

Proof. Define $\psi: bv_p^* \to l_q$, $\psi(f) = (f(b^{(k)}))_{k\geq 1}$, ψ is a surjective linear map by Proposition 3.1, and ψ is injective since $(b^{(k)})_{k\geq 1}$ is a Schauder basis for bv_p . Let $f \in bv_p^*$ and $x \in bv_p$, $|f(x)| = |f(\sum_{k=1}^{\infty} (\Delta x)_k b^{(k)})| = |\sum_{k=1}^{\infty} (\Delta x)_k f(b^{(k)})| \leq \sum_{k=1}^{\infty} |(\Delta x)_k| |f(b^{(k)})| \leq (\sum_{k=1}^{\infty} |(\Delta x)_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty} |f(b^{(k)})|^q)^{\frac{1}{q}} = \|\psi(f)\|_q \|x\|_{bv_p}$ by Hölder inequality, then $\|f\| \leq \|\psi(f)\|_q$.

On the other hand, let $f \in bv_p^*$ and define the sequence $(x^{(n)})_{n\geq 1}$ of the space bv_p by $(\Delta x^{(n)})_k = |f(b^{(k)})|^q f(b^{(k)})^{-1}$ if $1 \leq k \leq n$ and $f(b^{(k)}) \neq 0$, $(\Delta x^{(n)})_k = 0$ otherwise. Let $n \geq 1$, $f(x^{(n)}) = f(\sum_{k=1}^{\infty} (\Delta x^{(n)})_k b^{(k)}) = \sum_{k=1}^{\infty} (\Delta x^{(n)})_k f(b^{(k)}) = \sum_{k=1}^{n} |f(b^{(k)})|^q$.

 $\sum_{k=1}^{n} |f(b^{(k)})|^{1} = f(x^{(n)}) = |f(x^{(n)})| \le ||f|| ||x^{(n)}||_{bv_p} = ||f|| (\sum_{k=1}^{n} |f(b^{(k)})|^{(q-1)p})^{\frac{1}{p}} = ||f|| (\sum_{k=1}^{n} |f(b^{(k)})|^{q})^{\frac{1}{p}} \text{ since } (q-1)p = q. \text{ Therefore} \\ (\sum_{k=1}^{n} |f(b^{(k)})|^{q})^{\frac{1}{q}} = (\sum_{k=1}^{n} |f(b^{(k)})|^{q})^{1-\frac{1}{p}} \le ||f|| \text{ for all } n \ge 1. \text{ Letting } n \to \infty, \text{ we} \\ \text{get } ||\psi(f)||_q = (\sum_{k=1}^{\infty} |f(b^{(k)})|^{q})^{\frac{1}{q}} \le ||f||. \square$

Akhmedov and Başar [1] introduced the sequence space $d_q = \{x = (x_k)_{k \ge 1} \in \omega : \sum_{k=1}^{\infty} |\sum_{i=k}^{\infty} x_i|^q < \infty\}$ (1 < q < ∞), with the norm $||x||_{d_q} = (\sum_{k=1}^{\infty} |\sum_{i=k}^{\infty} x_i|^q)^{\frac{1}{q}}$, and proved that the sequence space d_q is isometri-

 $||x||_{d_q} = (\sum_{k=1}^{\infty} |\sum_{i=k}^{\infty} x_i|^q)^{\frac{1}{q}}$, and proved that the sequence space d_q is isometrically isomorphic to bv_p^* $(1 with <math>\frac{1}{p} + \frac{1}{q} = 1$ (see [1, Theorem 2.3] or [3, Theorem 3.6]). Here we deduce this result as a consequence of Proposition 3.2.

Corollary 3.3. Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then bv_p^* is isometrically isomorphic to d_q .

Proof. By Proposition 3.2 and the fact that the map $D: d_q \to l_q, D((x_k)_{k\geq 1}) = (\sum_{i=k}^{\infty} x_i)_{k\geq 1}$, is an isometric linear isomorphism.

Remark. By using the same above argument, we cannot show that bv^* is isometrically isomorphic to d_{∞} since the linear map $\delta: d_{\infty} \to l_{\infty}, \delta((x_k)_{k\geq 1}) = (\sum_{i=k}^{\infty} x_i)_{k\geq 1}$, which is injective and norm-preserving, is not surjective (we easily show that the element $(1, 1, 1, ...) \in l_{\infty}$ does not belong to the image of δ).

M. EL AZHARI

References

- Akhmedov A. M. and Başar F., The fine spectra of the difference operator Δ over the sequence space bv_p (1 ≤ p < ∞), Acta Math. Sin. Eng. Ser. 23(10) (2007), 1757–1768.
- Başar F. and Altay B., On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55(1) (2003), 136–147.
- **3.** Imaninezhad M. and Miri M., The dual space of the sequence space bv_p $(1 \le p < \infty)$, Acta Math. Univ. Comenianae **79**(1) (2010), 143–149.
- 4. Imaninezhad M. and Miri M., The continuous dual of the sequence space $l_p(\Delta^n)$, Acta Math. Univ. Comenianae **79**(2) (2010), 273–280.

M. El Azhari, Ecole Normale Supérieure, Avenue Oued Akreuch, Takaddoum, BP 5118, Rabat, Morocco,

e-mail: mohammed.elazhari@yahoo.fr