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ON RELAXED ŠOLTÉS’S PROBLEM

J. BOK, N. JEDLIČKOVÁ and J. MAXOVÁ

Abstract. The Wiener index is a graph parameter originating from chemical graph

theory. It is defined as the sum of the lengths of the shortest paths between all pairs

of vertices in given graph. In 1991, Šoltés posed the following problem regarding
Wiener index. Find all graphs such that its Wiener index is preserved upon removal

of any vertex. The problem is far from being solved and to this day, only one such
graph is known – the cycle graph on 11 vertices.

In this paper we solve a relaxed version of the problem, proposed by Knor,

Majstorović and Škrekovski. The problem is to find for a given k (infinitely many)
graphs such that they have exactly k vertices such that if we remove any one of

them, the Wiener index stays the same. We call such vertices good vertices and we

show that there are infinitely many cactus graphs with exactly k cycles of length at
least 7 that contain exactly 2k good vertices and infinitely many cactus graphs with

exactly k cycles of length c ∈ {5, 6} that contain exactly k good vertices. On the

other hand, we prove that G has no good vertex if the length of the longest cycle
in G is at most 4.

1. Introduction

The Wiener index (also Wiener number) is a topological index of a connected
graph, defined as the sum of the lengths of the shortest paths between all unordered
pairs of vertices in the graph. In other words, for a connected graph G = (V,E),
the Wiener index W (G) is defined as

W (G) :=
∑

{u,v}⊆V

distG(u, v).

The index was originally introduced in 1947 by Wiener [9] for the purpose of de-
termining the approximation formula for the boiling point of paraffin. Since then,
Wiener index has become one of the most frequently used topological indices in
chemistry, since molecules are usually modeled by undirected graphs. The defini-
tion of Wiener index in terms of distances between vertices of a graph was first
given by Hosoya [3]. Since then, a lot of mathematicians have studied this quantity
very extensively. Apart from pure mathematics, Wiener index has many applica-
tions in chemistry, cryptography, theory of communication, topological networks
etc. The quantity is used in sociometry and the theory of social networks, since
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it provides a robust measure of the network topology [2]. We refer the interested
reader to the numerous surveys, e.g. [1, 4, 7].

In 1991, Šoltés posed the following problem in [8].

Problem 1 (Šoltés’s problem). Find all graphs G such that the equality
W (G) = W (G− v) holds for all their vertices v ∈ V (G).

Graphs which satisfy condition W (G) = W (G− v) for all v ∈ V (G) are called
Šoltés’s graphs. Šoltés found just one such graph – C11. To this day, this is the
only known graph and it is not known if there is any other. Thus the Šoltés’s
problem is still open. Knor, Majstorović and Škrekovski defined and studied a
relaxed version of Šoltés’s problem.

Problem 2. Find all graphs G for which the equality W (G) = W (G−v) holds
for at least one vertex v ∈ V (G).

We call v ∈ V (G) good vertex if W (G) = W (G−v) holds. In this terminology, a
graph is a Šoltés’s graph if all its vertices are good. It was shown in [6] that there
exist infinitely many unicyclic graphs with one and two good vertices of degree 2.
In [5], the same authors found for given k ≥ 3 infinitely many graphs which have
a good vertex of degree k and infinitely many graphs with a good vertex of degree
n − 2 and n − 1. Furthermore, they proved that dense graphs cannot be Šoltés’s
graphs. They also posed the following problem in [5].

Problem 3. For given k, find infinitely many graphs G for which the equality

W (G) = W (G− v1) = W (G− v2) = · · · = W (G− vk)

holds for distinct vertices v1, . . . , vk ∈ V (G).

In this paper we solve this problem by finding such infinite class of graphs within
the class of cacti. We recall that cactus is a graph where every edge belongs to at
most one cycle. Let us now summarize our main results.

• We found infinitely many cactus graphs with exactly k cycles of length at
least 7 that contain exactly 2k good vertices and infinitely many cactus
graphs with exactly k cycles of length c ∈ {5, 6} that contain exactly k
good vertices (Theorem 2).

• We prove that G has no good vertex if the length of the longest cycle in G
is at most 4 (Theorem 3).

2. Preliminaries

All graphs in this paper are simple and undirected. As our results refine and
extend those of [6] and [5], most of the time we follow the notation introduced
there.

Let G be a connected graph and let v be a vertex in V (G). By dG(v) we denote
the degree of v in G. A pendant vertex is a vertex of degree one and a pendant
edge is the only edge incident to a pendant vertex. Note that Wiener index can
also be written as W (G) = 1

2

∑
v∈V (G) tG(v), where tG(v), the transmission of v

in G, is the sum of distances between v and all the other vertices of G.
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The complete graph Kn has the smallest Wiener index among all graphs on n
vertices since the distance between any two distinct vertices is at least one in any
graph. It is well known that for any connected graph on n vertices, the maximum
Wiener index is obtained for the path Pn. Thus, for every graph G on n vertices
we have (

n

2

)
= W (Kn) ≤W (G) ≤W (Pn) =

(
n+ 1

3

)
.

It is easy to see that for the Wiener index of the cycle of length n holds

W (Cn) =

{
n3

8 if n is even,

n3−n
8 if n is odd.

The proof of the following proposition is also straightforward.

Proposition 1. Let G be a connected graph. Take a new vertex z and connect
it by a pendant edge to a vertex u ∈ V (G). Denote the resulting graph by G+.
Then W (G+) = W (G) + tG(u) + n(G).

Recall that v is a good vertex in G if W (G) = W (G − v). Let v1 be a fixed
vertex in G. For a vertex x ∈ V (G), x 6= v1 we denote (similarly as in [6])

δG(x) = tG(x)− tG−v1(x) and ∆(G) = W (G)−W (G− v1).

Observe that ∆(G) = 0 means that v1 is a good vertex in G and δG(x) gives us
the contribution of the vertex x to ∆(G).

3. Main results

3.1. Infinite families

We first need to state a few simple lemmata. We need them for the proof of
Theorem 1.

Lemma 1. Let G be a connected graph with a fixed vertex v1. Take a new
vertex z and connect it by a pendant edge to a vertex u ∈ V (G), u 6= v1. Denote
the resulting graph by G+. Then δG+(z) = δG+(u) + 1 = δG(u) + 1.

Lemma 2. Let G be a connected graph with a fixed vertex w. Take a cycle Cc

of length c ≥ 7 and connect it to G by identifying one vertex on the cycle with
w and denote the resulting graph G∗. Let v1 be a neighbor of w on the cycle Cc.
Then δG∗(w) = tG∗(w)− tG∗−v1(w) ≤ −2.

Lemma 3. Let G be a connected graph with a fixed vertex w. Take a cycle Cc

of length c ∈ {5, 6} and connect it to G by identifying one vertex on the cycle with
w. Let v2 be a vertex in distance 2 from w on the cycle Cc and let v1 be the only
common neighbor of w and v2 on the cycle Cc. Add a path of length 2 to Cc by
identifying one of its endpoints with v2 and denote the resulting graph G∗. Then
δG∗(w) ≤ −2.

The following theorem is the main step towards proving the main result of this
paper and so we include a full proof of it.



478 J. BOK, N. JEDLIČKOVÁ and J. MAXOVÁ

Theorem 1. Let c, k be natural numbers, c ∈ {5, 6}. There exist infinitely
many cactus graphs with exactly k cycles of length c that contain at least k good
vertices. If c ≥ 7 then there exist infinitely many cactus graphs with exactly k
cycles of length c that contain at least 2k good vertices.

Proof. Our construction uses similar techniques as in [6]. We proceed in four
steps by constructing graphs G1, G2, G3 and G4. The choice of G1 is different for
c ∈ {5, 6} and for c ≥ 7. Therefore, we distinguish two cases.

Case 1 (c ∈ {5, 6}). Let H be a cycle Cc with a path of length 2 attached to
it by identifying one of its endpoints with a vertex on the cycle. Take k copies of
H and denote them H1, . . . ,Hk. Fix a vertex vi0 ∈ V (Hi) in distance two from the
only vertex of degree 3 in Hi. Join H1, . . . ,Hk together by identifying all vi0 and
denote this new vertex by w. Denote the resulting graph G1 and denote by v1 the
only common neighbor of w and the vertex of degree 3 on Cc.

Case 2 (c ≥ 7). Take k copies of a cycle Cc, fix a vertex in each copy and
identify all fixed vertices to one vertex w. Denote the resulting graph G1 and
denote by v1 any neighbor of w in G1.

Note that in both cases δG1
(w) ≤ −2, by Lemma 2 and Lemma 3.

Set d := −δG1
(w) and let P d := ud, ud−1, . . . , u1, u0 be a path of length d.

Note that d ≥ 2. Attach P d to w by identifying ud with w and denote the
resulting graph G2. The crucial observation follows immediately by iterative use
of Lemma 1, namely δG2

(ui) = −i. In other words, the value of δG2
(ui) increases

along the path P d from δG2
(w) = −d to δG2

(u0) = 0.

• If ∆(G2) = 0 we set G3 := G2.
• If ∆(G2) < 0 we connect exactly −∆(G2) new pendant vertices to u0 in
G2 and denote the resulting graph G3. As δG2

(u0) = 0, by Lemma 1 the
contribution δG3

(x) of any pendant vertex x ∈ V (G3)r V (G2) to ∆(G3) is
δG3

(x) = 1 and thus ∆(G3) = 0.
• If ∆(G2) > 0 we connect exactly ∆(G2) new pendant vertices to u2 in G2

and denote the resulting graph G3. As δG2(u2) = −2, by Lemma 1 the
contribution δG3(x) of any pendant vertex x ∈ V (G3)r V (G2) to ∆(G3) is
δG3

(x) = −1 and thus again ∆(G3) = 0.

Finally, for arbitrary p ≥ 0 we add to G3 exactly p new pendant vertices,
connect them all to u1 and denote the resulting graph G4. As δG3(u1) = −1, by
Lemma 1 we get that for every x ∈ V (G4) r V (G3) the contribution δG4(x) = 0
and thus ∆(G4) = ∆(G3) = 0. In other words, v1 is a good vertex in G4 for any
choice of p.

It remains to show that v1 is not the only good vertex in G. This follows
immediately from the symmetry of the starting graph G1. It is obvious that for
c ∈ {5, 6}, there are other k − 1 good vertices other than v1 (one in each copy of
Cc) since we can find one vertex in each cycle such that its removal yields a graph
isomorphic to G4 − v1. If c ≥ 7 we can argue similarly that in G4 there are 2k
good vertices (two in each copy of Cc). �
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Figure 1. An illustration of construction from Theorem 1. Graphs G4 for c ∈ {5, 6} are on the

left and for c ≥ 7 on the right.

So far, we proved that for every natural k there are infinitely many graphs
with at least k (or 2k) good vertices. Now we can state the main result of the
paper which says that the graphs constructed in Theorem 1 contain no other good
vertices.

Theorem 2. Let k be a natural number. Then the following holds.

1. For every c ∈ {5, 6} there are infinitely many cactus graphs with exactly k
cycles of length c that contain exactly k good vertices.

2. For every c ≥ 7 there are infinitely many cactus graphs with exactly k cycles
of length c that contain exactly 2k good vertices.

Let us remark that if we define G1 for c ≥ 7 as it is done for c ∈ {5, 6} (that is
we add a path of length 2 to the vertex v2), we would obtain graphs with exactly
k good vertices also for c ≥ 7 and for arbitrary k.

Furthermore, for k = 1 we obtain precisely the graphs constructed in [6]. It
follows from our results that their unicyclic graphs have exactly one good vertex if
the length c of the unique cycle is 5 or 6 and exactly two good vertices in the case
when c ≥ 7. We note that this fact was not proved in [6] and only the existence
of at least one good vertex was shown there.

3.2. Negative results

The following theorem explains why we cannot hope for a similar result when the
cycle length c equals 3 or 4.

Theorem 3. Let G be a connected graph which is not a tree. If the length of
the longest cycle in G is at most 4, then G has no good vertex.

Proof. Suppose for contradiction that G has a vertex v such that W (G) =
W (G − v). It is obvious that v has to lie on a cycle, otherwise G − v would be
a disconnected graph. Note that by deleting v from G the distance between each
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pair of vertices in G − v remains the same as in G. It follows that W (G − v) =
W (G)− tG(v) and hence W (G− v) < W (G), a contradiction. �
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