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ε-COLORINGS OF STRIPS

F. BOCK

Abstract. A special case of the Hadwiger-Nelson problem is to color a strip instead
of the whole plane. The aim is to maximize the width of the strip such that it

still permits a coloring with c colors. We present a coloring that improves the

recently best known value for 4 colors. This is discovered by considering colorings
that satisfy slightly stronger distance conditions. Moreover, we can show under a

sensible assumption that this value is best possible for the stronger version of the
distance conditions.

1. Introduction

How many colors are needed to color the plane such that any two points of dis-
tance 1 are colored differently? That is the well-known Hadwiger-Nelson problem.
It is easy to state but quite hard to solve. Since its inception in 1950 it is known
that seven colors suffice, and since the breakthrough result of de Grey [5] in 2018
it is known that at least 5 colors are necessary. After this result the Polymath16
project [7] was launched in 2018 in order to narrow down the remaining gap. De-
spite all the activity, the problem still remains unsolved. Because of that, several
special cases were proposed to obtain partial results and make further progress.

One proposed special case, for instance, consists in fixing the number of colors
c and to try to color a strip of width w and infinite length [2, 1]. The new task
is to find the largest width ω(c) such that this is still possible. Determining the
smallest number of colors such that ω(c) =∞ is equivalent to the Hadwiger-Nelson
problem. For c ≤ 3 and c ≥ 7 the values of ω(c) are known. For c ∈ {4, 5, 6} lower
bounds for ω(c) have been obtained by providing valid colorings.

Figure 1. Coloring of a strip of width α with 4 colors.
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For c = 4, the smallest unknown number of colors, Bauslaugh [2] showed that

ω(4) ≥
√
8
3 ≈ 0.943 and during the Polymath16 project [7] this bound was im-

proved to ω(4) ≥
√

32
35 ≈ 0.956. In Figure 1 we present a coloring that implies

ω(4) ≥ α ≈ 0.959, where the exact value of α is the solution of a quadratic
program.

In view of the Hadwiger-Nelson problem, upper bounds on ω(c) would be more
interesting than lower bounds. Unfortunately, it seems that finding upper bounds
for ω(c) is as hard as the original problem.

A common approach to the general Hadwiger-Nelson problem is to require the
colorings to satisfy additional properties that are naturally found in colorings of
the plane. For instance, the colorings may be required to be periodic, or tile based.
Exoo [6] and Currie and Eggleton [3] considered ε-colorings. These are colorings
where the condition, that two point must receive different colors if their distance
is exactly 1, is strengthened to they must receiving different colors if their distance
is 1 up to a tolerance of ε. The introduction of ε-colorings seems to be plausible
since all of the known exact colorings can easily be modified to be ε-colorings.
Furthermore, it turns out that ε-colorings are much more easy to handle. An
interesting result is that an ε-coloring of the plane needs at least 6 colors [3]. As
a consequence, either every exact coloring of the plane needs at least 6 colors or
there is a coloring with 5 colors that exploits heavily that the distance condition
concerns distances exactly equal to 1.

Our approach is to color strips of the plane with ε-colorings. In analogy to ω(c)
for exact colorings, we define ωε(c) for ε-colorings and write ω′(c) = limε→0 ωε(c).
Since all of the known lower bounds for ω(c) are obtained by colorings that are
limits of ε-colorings, these bounds can be reused for ω′(c). We show upper bounds

for ω′(c), namly ω′(4) ≤ 1 and ω′(5) ≤
√

3. Under a plausible assumption we
can show that, ω′(4) ≤ α ≈ 0.959. Together with our coloring with 4 colors this
implies our main result.

Theorem 1. ω′(4) = α ≈ 0.959 if Assumption 10 holds.

2. Properties of ε-colorings

In order to make the colorings easier to handle, we introduce ε-colorings by making
the distance condition slightly more restrictive.

Definition 2. An ε-coloring of a strip (or the plane) is a coloring of the points
such that every two points x, y with 1 − ε ≤ dist(x, y) ≤ 1 + ε receive different
colors. Furthermore, we define
ωε(c) = sup{w|∃ ε-coloring with c colors of a strip of width w.} and ω′(c) =

limε→0 ωε(c).

From the definition it is immediately clear that for ε1 ≥ ε2, we get

ωε1(c) ≤ ωε2(c) ≤ ω′(c) ≤ ω(c).
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Compared to exact colorings, ε-colorings provide some useful features which
will be examined in the following lemmas. The first lemma will show that we can
restrict ε-colorings to consist of tiles which will allow us to talk of color regions.

Lemma 3. Restricting ε-colorings to consist of unicolored regular hexagons of
side length ε

4 does not change the value of ω′(c).

The next two lemmas will provide tools that will be useful in upcoming proofs.

Lemma 4. Let C be an ε-coloring and let s, t be two points with dist(s, t) ≥ 1.
If Γ is a continuous s − t curve using only two colors, then s and t have distinct
colors.

Lemma 5. Let C be an ε-coloring and let Γ1 be a continuous u− v curve and
Γ2 be a continuous x−y curve such that there are only two colors used for Γ1∪Γ2.
If dist(u, x) ≤ 1, dist(u, y) ≤ 1, dist(v, x) ≥ 1 and dist(v, y) ≥ 1 then x and y have
the same color.

Definition 6. Let C be an ε-coloring.
The color set of a point p is the set of colors such that for every δ > 0 there is

a point in the δ-neighborhood of p that has this color.
A point is a k-color point if its color set contains at least k colors.

Since we may restrict ε-colorings to consist of hexagons, we can avoid k-color
points for k ≥ 4. In contrast to this observation, we can force 3-color points.

Lemma 7. If a strip has width greater than

√
(c−1)2−1
c−1 , then in every ε-coloring

of the strip that uses c colors there is a 3-color point.

The existance of 3-color points can be exploited to prove upper bounds for ω′(c).

Theorem 8. ω′(4) ≤ 1 and ω′(5) ≤
√

3.

3. Computing ω′(4)

From now on we try to compute ω′(4). The overall approach is to prove the
existance of critical points. These critical points have to fulfill several distance
conditions to each other. Each of these conditions can be written as an quadratic
inequality in the coordinates of the points. To be able to talk of coordinates we
define the lower end of the strip to be the x-axis and choose an orthogonal y-axis.
Maximizing the width with respect to these side conditions will provide an upper
bound for ω′(4). On the other hand it will turn out that the solution of this
program can be used to construct an ε-coloring of the whole strip.

If the strip has width at least
√
8
3 , Lemma 7 yields that there is a 3-color point.

The next step is to show that there is a second 3-color point close to the first one.

Lemma 9. Let C be a ε-coloring with 4 colors of a strip of width w >
√
8
3 and

let p be a 3-color point. Then there is a 3-color point q such that dist(p, q) < 1
and the color sets of p and q are distinct.

For the next steps we need the following assumption.
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Assumption 10. Let C be an ε-coloring with 4 colors of a strip of width

w >
√
8
3 and let p be a 3-color point. Then there are no two 3-color points q1, q2

such that dist(p, q1) < 1, dist(p, q2) < 1 and the color set of p, q1 and q2 are
pairwise distinct.

This assumption seems to be sensible since if it would not be true then we get
three cycles in different colors. This almost forces the coloring to consist of vertical

bars. But this coloring can cover only a strip of width
√
8
3 . Every reasonable way

to avoid this vertical bar coloring seems to require an even thinner strip.

Lemma 11. Let p and q be as in Lemma 9 and say the color set of p does not
contain color 1 and the color set of q does not contain color 2. Then there is a
color region of color 1 and a color region of color 2 that have a common border
that starts at the upper end of the strip and ends at the lower end of the strip.
Furthermore, every part this common border has distance at most 1 to p.

By observing both sides of this common border, we notice that there are inter-
vals on the lower end and on the upper end of the strip that may only be colored
with color 3 and 4.

The common border between the region colored 1 and 2 was forced by two
3-color points. It can be shown that these two points are on the same side of the
common border and on the other side of the border there are again two 3-color
points with the same color sets. Moreover, on the other side of such a pair of
3-color points there is again a border between regions colored 1 and 2 that starts
at the upper end of the strip and ends at the lower end. Hence, this forces a
repeating pattern.

Now we can choose some critical points:

• the 3 color points.
• the points on the ends of the strip of the common border between the

regions colored 1 and 2.
• the endpoints of the interval of the union of the regions colored 3 and 4 on

the lower end and the upper end of the strip.

Their relations to each other provide several inequalities which are all of a
quadratic form:

• The distance between two consequtive points on the upper end of the strip
is at most 1.

• The distance between two consequtive points on the lower end of the strip
is at most 1.

• The distance between an endpoint of the border and the corresponding
endpoints of the intervals is at most 1.

• The distance between an endpoints of the border on the lower end and of
the upper end is at most 1.

• The cycle around a 3-color point must not end in the interval that is colored
with color 3 and 4 only. So, the distance between a 3-color point to the
endpoints of the corresponding intervals is either at most 1 or at least 1
depending on whether it is the start point of the interval or the endpoint.
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• The distance between a 3-color point without color 1 and a 3-color point
without color 2 on the other side of the border, that is right to the 3-color
point without color 1, is at least 2. This has to be ensured to prevent their
cycles from intersecting.

Maximizing the width with respect to these inequalities yields a value of α ≈
0.9588. If the critical points, for which this optimum is obtained, are simply
connected by straight lines then no valid coloring is obtained since the regions
colored with color 3 are to close to each other. The same problem appears for
the regions colored 4 as in the left picture of Figure 2. This issue can be easily
prevented by increasing the size of the regions of colors 1 and 2. This is done
by drawing the paralell line to the common border of regions colored 1 and two
through the 3-color points and chopping of the parts that would cause a diameter
greater than 1 as done in the right picture of Figure 2. The resulting coloring is a
valid coloring of a strip of width α and by construction of α there is no coloring
of a strip that is any wider.

(a) Straight lines (b) Adjusted regions

Figure 2. Result of the quadratic program. The first picture uses straight

lines and is therefore not a valid coloring. The second picture adjusts these

regions to obtain a valid coloring.
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