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TARGET SET IN THRESHOLD MODELS

A. N. ZEHMAKAN

Abstract. Consider a graph G and an initial coloring, where each node is blue or

red. In each round, all nodes simultaneously update their color based on a predefined

rule. In a threshold model, a node becomes blue if a certain number or fraction of its
neighbors are blue and red otherwise. What is the minimum number of nodes which

must be blue initially so that the whole graph becomes blue eventually? We study

this question for graphs which have expansion properties, parameterized by spectral
gap, in particular the Erdős–Rényi random graph and random regular graphs.

1. Introduction

Assume that you are given a graph G = (V,E) and an initial coloring, where each
node is either blue or red. In discrete-time rounds, all nodes simultaneously update
their color. In the r-threshold model for some integer r ≥ 1, a node becomes blue
if it has at least r blue neighbors and red otherwise. In the α-threshold model for
some 0 < α < 1, a node becomes blue if at least α fraction of its neighbors are
blue and red otherwise. (We assume that r and α are fixed while we let n, the
number of nodes in the underlying graph, tend to infinity.)

In each of these two models, a set T ⊆ V is called a target set whenever the
following holds: if T is fully blue in some round, then the whole graph becomes
blue eventually.1 The minimum size of a target set has been studied extensively on
different classes of graphs like lattice, hypercube, random graphs, planar graphs,
regular graphs, and many more, cf. [2, 6, 9, 16, 18, 20]. We are interested in
the graphs with good expansion properties.

There exist different parameters to measure the expansion of a graph. We
consider an algebraic characterization of expansion. Assume that A(G) is the
adjacency matrix of graph G = (V,E). Consider the normalized adjacency matrix

M = D−
1
2AD−

1
2 , where D is the diagonal matrix such that the entries of the

diagonal are the degrees of the nodes. Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 be
the eigenvalues of M . We denote the second-largest absolute eigenvalue of the
normalized matrix by σ(G) := max2≤i≤n |λi|. Graph G has stronger expansion
properties when σ(G) is smaller. Here, we assume that σ(G) < 1.
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2010 Mathematics Subject Classification. Primary 05Cxx.
1It is worth to stress that the concept of a target set, known also as dynamic monopoly, can be
defined more generally to capture similar models like bootstrap percolation models, where a blue
node remains blue forever, cf. [15, 7].
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Consider the α-threshold model on a d-regular n-node graph G. Let Bt and
Rt denote the set of blue and red nodes in the t-th round and define bt := |Bt|,
rt := |Rt|. We prove that if b0 ≥ αn+

√
2/(1− α)σn, the graph becomes fully blue

and if b0 ≤ αn−
√

2/ασn, it becomes fully red in O(log1/σ2 n) rounds.2 Roughly

speaking, for small values of σ any set “slightly” larger (smaller) than αn is (not) a
target set. Assume that initially each node keeps a piece of information, in our case
one of the two colors, and we allow an adversary to corrupt almost half of the nodes.
Our result asserts that in regular graphs with strong expansion properties if the
nodes simply follow the α-threshold model for α = 1/2 (that is, each node selects
the majority color in its neighborhood, up to the tie-breaking rule), then they
all will retrieve the original information in logarithmically many rounds. This is
typically known as density classification property and has application in distributed
fault-local mending where redundant copies of data are kept and the “majority
rule” is applied to overcome the damage caused by failures, cf. [16, 17]. We
also study the minimum size of a target set in r-threshold model on d-regular
graphs with good expansion properties. Moreover, we state that our results can
be generalized to include irregular graphs.

From an algorithmic perspective, one might ask what is the minimum size of
a target set for a given graph. It is known that this problem is NP-hard in both
r-threshold and α-threshold model for certain ranges of α and r, cf. [3, 13, 14]. We
consider the same problem for the minimum size of a stable set. It is shown that
this problem is NP-hard in α-threshold and r-threshold model for any 0 < α < 1
and r ≥ 3. In a graph G, we say a node set S is a stable set when the following
holds: if S is fully blue in some round, it remains blue forever, regardless of the
color of all other nodes. A blue target set results in the full disappearance of red
color while a blue stable set only guarantees the survival of blue color.

We present our results regarding the α-threshold and r-threshold model on
regular expanders respectively in Sections 2.1 and 2.2. The extension of these
results to irregular graphs is given in Section 2.3. Finally, we provide our hardness
results concerning the minimum size of a stable set in Section 3.

2. Threshold models on expanders

For a node v and a node set S in a graph G = (V,E), define dS(v) := |{u ∈ S :
{v, u} ∈ E}| and let d(v) = dV (v) be the degree of v. We assume that δ(G)
and ∆(G) denote respectively the minimum and maximum degree in G and define
e(A,B) := |{(v, u) : v ∈ A, u ∈ B, {v, u} ∈ E}|. Now, let us provide Lemma 2.1,
which is our main tool in this section. Roughly speaking, it states that if σ is
small, then the number of edges among every two node sets is almost completely
determined by their size.

2This generalizes the results from [19].
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Lemma 2.1 (Expander mixing lemma, cf. [8]). For a d-regular graph G =
(V,E) and A,B ⊂ V

|e(A,B)− |A| |B|d
n

| ≤ σd
√
|A| |B|

(
1− |A|

n

)(
1− |B|

n

)
.

2.1. α-Threshold model

Theorem 2.2. In the α-threshold model on a d-regular graph G = (V,E),

(i) if b0 ≤ αn−
√

2
α σn, the graph becomes fully red in O(log α2

4σ2
n) rounds,

(ii) if b0 ≥ αn +
√

2
1−α σn, the graph becomes fully blue in O

(
log (1−α)2

4σ2

n
)

rounds.

Of course, the two aforementioned statements are sensible if respectively α2

4σ2 >1

and (1−α)2

4σ2 > 1.

Proof. To prove part (i), let us first show that if b0 ≤ αn −
√

2/ασn, then
b1 ≤ α

2 n. Since each node v ∈ B1 has at least α fraction of its neighbors in set B0,

we have that e(R0, B1) ≤ 1−α
α e(B0, B1). Applying Lemma 2.1 yields

r0b1d

n
− σd

√
r0b1 ≤

1− α
α

(b0b1d
n

+ σd
√
b0b1

)
.

Multiplying by n
d
√
b1

and rearranging the terms give us√
b1(r0 −

1− α
α

b0) ≤ σn
(√

r0 +
1− α
α

√
b0

)
.

Since (
√
r0 + 1−α

α

√
b0)2 ≤ ((1 + 1−α

α )
√
n)2 = n

α2 and r0 = n− b0, we get

b1

(
n−

(1− α
α

+ 1
)
b0

)2

≤ σ2n3

α2
=⇒ b1 ≤

σ2n3

α2
(
n− b0

α

)2 .
The assumption of b0 ≤ αn−

√
2
α σn implies that (n− b0

α )2 ≥ (n−n+
√

2
α3 σn)2 =

2
α3 σ

2n2. Therefore, we have b1 ≤ σ2n3

α2(2/α3)σ2n2 = α
2 n.

So far we proved that after one round there exist at most α
2 n blue nodes. Now,

we show that if bt ≤ α
2 n for t ≥ 0, then bt+1 ≤ 4σ2

α2 bt. Thus, the graph becomes
fully red in O(log α2

4σ2
n) rounds. Since each node in Bt+1 has at least α fraction

of its neighbors in set Bt, we have αd bt+1 ≤ e(Bt, Bt+1). Applying Lemma 2.1 to
the right side yields

αd bt+1 ≤
btbt+1d

n
+ σd

√
btbt+1 =⇒

√
bt+1(α− bt

n
) ≤ σ

√
bt.

Utilizing bt ≤ α
2 n implies that bt+1 ≤ σ2

(α−α
2 )2 bt = 4σ2

α2 bt.

Notice that b0 ≥ αn +
√

2
1−α σn is equivalent to r0 ≤ (1 − α)n −

√
2

1−α σn.

Thus, the proof of part (ii) follows by replacing blue with red and α with 1−α in
the above proof. �
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Tightness. We show that the logarithmic upper bound in Theorem 2.2 is asymp-
totically tight; that is, in this setting it might take Ω(log n) rounds until the graph
is fully red/blue. Assume that α = 1/2 and let d be a large constant, say d ≥ 100.

Consider a d-regular graph G with σ ≤ 2/
√
d, which is known to exist, and even

can be constructed explicitly, cf. [12]. Assume that initially all nodes are red ex-
cept the nodes in distance at most ` = 1

2 logd n from an arbitrary node v. There

are at most dk nodes in distance k from v. Thus, the number of nodes which are

blue initially is at most
∑`
k=0 d

k ≤ d`+1 = O(
√
n). We have that

b0 = O(
√
n) ≤ n

10

d≥100

≤ n

2
− 2
( 2√

d

)
n
α=1/2, σ≤2/

√
d

≤ αn−
√

2

α
σn.

Thus, by Theorem 2.2 the graph becomes fully red, but it takes at least ` =
Ω(log n) rounds since node v will remain red for the first ` rounds.

The random d-regular graph Gn,d is the random graph with a uniform distri-
bution over all d-regular graphs on n nodes, say [n] = {1, . . . , n}. It is known [5]

that σ(Gn,d) ≤ 2/
√
d for d ≥ 3 asymptotically almost surely. (We say an event

occurs asymptotically almost surely, a.a.s., if it occurs with probability 1− o(1) as
n tends to infinity.) Putting this statement in parallel with Theorem 2.2 implies

that in the α-threshold model on Gn,d for d ≥ 3, if b0 ≤ αn −
√

8/αdn then the
graph becomes fully red a.a.s. (See [6] for similar results on the special case of
α = 1/2.)

2.2. r-Threshold model

We first provide Lemma 2.3 and Lemma 2.4 about the structure of a regular graph.
Building on these two Lemmata, we prove in Theorem 2.5 that in the r-threshold
model on a d-regular graph G there is a target set of size at most 2βn + 1/β for
β = r

(1−σ)d . (We could apply Theorem 2.2 for α = r/d to find an upper bound

of form (r/d)n +
√

2/(1− r/d)σn. However as one can observe, this is a weaker
bound for most choices of r, d and σ.)

Lemma 2.3. In the r-threshold model on a d-regular graph G = (V,E), there
is a stable set of size s for βn ≤ s ≤ 2βn+ 1/β.

Proof. Let G = (V,E) be a d-regular graph. We prove that in the r-threshold
model on G, there is a stable set of size βn ≤ s ≤ 2βn+1/β, where β = r/(1−σ)d.
Assume that P is the set of all partitions of V into b1/βc sets such that all sets
are of size at least bβnc, except one set which can be of size bβnc − 1. Let P ∈ P
be a partition for which the number of edges between the sets is minimized. Let
Vmax be a set of maximum size in P . Clearly, Vmax is at least of size βn and at
most of size

n− (b 1

β
c − 2)bβnc − (bβnc − 1) = n− b 1

β
cbβnc+ bβnc+ 1

≤ n−
( 1

β
− 1
)

(βn− 1) + βn+ 1
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which is equal to 2βn+ 1/β. Therefore, βn ≤ |Vmax| ≤ 2βn+ 1/β. Furthermore,
we claim that for each node v ∈ Vmax, dVmax

(v) ≥ r, which implies that Vmax

is a stable set. Assume that there is a node u which violates this property, i.e.,
dVmax(u) ≤ r−1. Then, the average number of edges between u and the b1/βc−1
other sets is at least

d− (r − 1)

b1/βc − 1
≥ d− (r − 1)

(1−σ)d
r − 1

>
d− (r − 1)

d
r−1 − 1

= r − 1.

Thus, there must exist a set V ′ among the other b1/βc−1 sets such that dV ′(u) ≥ r.
This is a contradiction because by removing u from Vmax and adding it into V ′,
the number of edges between the sets decreases at least by one and it is easy to
see that the new partition is also in P. �

Lemma 2.4. In a d-regular graph G = (V,E), for each set S ⊂ V of size
s ≥ βn, there exists a node v ∈ V r S so that dS(v) ≥ r.

Proof. By Lemma 2.1, we have

s(n− s)d
n

− σd
√
s(n− s)

(n− s
n

)( s
n

)
≤ e(S, V r S)

which yields

s(n− s)(1− σ)d

n
≤ e(S, V r S).

Applying s ≥ βn > (r−1)n
(1−σ)d implies that (r − 1)(n− s) < e(S, V r S). Thus, there

exits a node v ∈ V r S such that dS(v) ≥ r by the pigeonhole principle. �

Theorem 2.5. In the r-threshold model on a d-regular graph G, there exists a
target set of size at most 2βn+ 1/β.

Proof. Let S be a stable set of size s such that βn ≤ s ≤ 2βn + 1/β, which
must exist by Lemma 2.3. We claim that if initially all nodes in set S are blue,
the whole graph becomes blue eventually. Since S is a stable set, all nodes in S
stay blue forever. Furthermore by Lemma 2.4, in each round at least one more
node becomes blue until the whole graph is blue. (Note that by a simple inductive
argument, in each round the nodes in set S and the newly added nodes create a
stable set and, thus, remain blue forever.) �

2.3. Irregular graphs

To avoid unnecessary technicalities in the proofs, we limited ourselves to regular
graphs so far. Now, we argue that our results from Sections 2.1 and 2.2 can be
generalized to capture irregular graphs, by applying basically the same proof ideas.
All we need to do is to apply a more general variant of Lemma 2.1, cf. [8], and
replace d by δ or ∆, according to the case, in the proofs. Then, Theorem 2.2 can
be expressed more generally as following. In the α-threshold model on a graph G
if b0 ≤ b, then G becomes fully red in O(log α2γ2

4σ2

n) rounds and if b0 ≥ b, then it
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becomes fully blue in O(log (1−α)2γ2

4σ2

n) rounds, where γ = δ
∆

b =
γ3

αγ3 + (1− α)
αn−

√
2/α

αγ3 + (1− α)
σn

and

b =
1

(1− α)γ3 + α
αn+

√
2/(1− α)

(1− α)γ3 + α
σn.

Furthermore, in the r-threshold model on a graph G, there is a target set of size
at most 2β′n + 1/β′, where β′ = r

(1−σ
γ )δ . Note that in the special case of γ = 1,

this is equivalent to Theorem 2.5 since β′ = β.
In the Erdős-Rényi random graph Gn,p each edge is added independently with

probability p on a node set of size n, say [n]. By the results of Le, Levina, and
Vershynin [10], we know that σ(Gn,p) = O(1/

√
np) a.a.s. for p = ω(log n/n) (recall

that log n/n is the connectivity threshold). Furthermore, by applying the Chernoff
bound [4], (1−ε)np ≤ d(v) ≤ (1+ε)np, for an arbitrarily small constant ε > 0, with
probability 1 − exp(−ω(log n)) for an arbitrary node v in Gn,p if p = ω(log n/n).
The union bound implies that a.a.s. 1− ε′ ≤ γ for an arbitrarily small constant ε′.
By the results from above, in the α-threshold model on Gn,p with p = ω(log n/n),
the minimum size of a target set is in (1 ± ε′′)αn a.a.s. for an arbitrarily small
constant ε′′ > 0.

3. Complexity results

Let MSα(G) and MSr(G) respectively denote the minimum size of a stable set in
α-threshold and r-threshold on a graph G.

Theorem 3.1. For any constant 0 < α < 1, the problem of determining
MSα(G) for a given graph G is NP-hard.

Proof. We provide a reduction from α-Clique, which is the problem of deciding
whether a given graph G has a clique of size at least αn or not. It is known that
α-Clique, cf. [11], is NP-hard for any constant 0 < α < 1 by a simple reduction
from Clique, which is one of Karp’s 21 NP-complete problems.

Let G = (V = {v1, . . . , vn}, E) be an instance of α-Clique. We construct a

graph G′ = (V ′, E′), where V ′ :=
⋃4
j=1 V

(j) ∪ {w1, w2, w3, w4} for V (j) := {v(j)
i :

1 ≤ i ≤ n}. For the edge set, assume that the induced subgraph G′[V (j)] is an
empty graph for j = 2, 3 and the induced subgraph G′[V (j)] is a copy of G for
j = 1, 4. We also connect node wj to all nodes in V (j) for 1 ≤ j ≤ 4. Moreover,

we connect nodes v
(1)
i , v

(2)
i′ , and similarly nodes v

(3)
i , v

(4)
i′ , for 1 ≤ i 6= i′ ≤ n if

{vi, vi′} /∈ E. Finally, we add an edge between v
(2)
i , v

(3)
i′ for 1 ≤ i 6= i′ ≤ n if

{vi, vi′} ∈ E.
We claim that G has a clique of size at least αn if and only if MSα(G′) =

dαne + 1. Before proving this claim, let us make the following simple, however
very useful, observation. A node set S is stable in the α-threshold model if and
only if each node v in S has at least dαd(v)e neighbors in S.
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The first direction of the claim is quite straightforward. Assume that G has
a clique of size at least αn. This implies that it includes a clique of size dαne.
There is a clique of the same size in the copy of G on V (1). Let S be the node set
obtained by adding w1 to the node set of this clique. Set S is stable since G′ is
n-regular by construction and each node v ∈ S has at least dαne neighbors in S.
Note that by the above observation an n-regular graph cannot have a stable set
of size dαne or smaller. Thus, MSα(G′) = dαne+ 1.

Assume that MSα(G′) = dαne + 1. This implies that G′ includes a stable set
S of size dαne + 1. The induced subgraph by S must be a clique since for S to
be stable each node in S has to be connected to dαne nodes in S. Now, we prove
that G includes a clique of size at least αn. Set S includes at most one node from
V (2) (similarly V (3)) because G′[V (2)] (respectively G′[V (3)]) is an empty graph.
Furthermore, it is not possible that S has exactly one node v ∈ V (2) and one node
v′ ∈ V (3) because S must include a node, say v′′, from V (1) or V (4), which cannot
be connected to both v and v′. It is also easy to see that w2 and w3 cannot be in S.
Therefore by symmetry, we are left with the two following cases: (i) S includes one
node from V (2) and the rest of nodes from V (1) or (ii) all nodes from V (1) ∪{w1}.
Both cases imply that a subset of nodes in V (1) induces a clique of size at least
αn; thus, G has also a clique of the same size since G′[V (1)] is a copy of G. �

We observe that in the r-threshold model on a graph G = (V,E), a set S is
stable if and only the induced subgraph G[S] has minimum degree at least r. Thus,
MS1(G) = 2 if E 6= ∅. Furthermore, MS2(G) is equal to the length of the shortest
cycle in G, i.e., the girth of G. Therefore, the problem of determining MSr(G) for
a given graph G is in P if r = 1, 2. However for r ≥ 3, the problem is NP-hard.

Theorem 3.2 (Amini, Peleg, Prennes, Sau, and Saurabh [1]). The problem of
determining the minimum size of a set whose induced subgraph has minimum de-
gree at least r in a given graph G does not admit any constant-factor approximation
for r ≥ 3, unless P = NP.
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