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A STEP TOWARDS THE 3k − 4 CONJECTURE IN Z/pZ
AND AN APPLICATION TO m-SUM-FREE SETS

P. CANDELA, D. GONZÁLEZ-SÁNCHEZ and D. J. GRYNKIEWICZ

Abstract. The 3k− 4 conjecture in Z/pZ states that if A is a nonempty subset of

Z/pZ satisfying 2A 6= Z/pZ and |2A| = 2|A|+ r ≤ min{3|A| − 4, p− r− 3}, then A

is covered by an arithmetic progression of size at most |A|+ r+ 1. In this paper we
summarize progress made towards this conjecture in a recent joint paper of the same

authors. In that paper we prove first that if |2A| ≤ (2 + α)|A| − 3 for α ≈ 0.136861

and |2A| ≤ 3p/4, then A is efficiently covered by an arithmetic progression, as in
the conclusion of the conjecture. With a refined argument we prove that we can go

up to α = (
√

33 − 5)/4 + o|A|,p→∞(1) at the cost of restricting |A| ≤ (p − r)/3.

We then use this to investigate the maximum size of m-sum-free sets for m ≥ 3,
i.e., sets A ⊆ Z/pZ such that the equation x + y = mz has no solution in A. We

obtain that for m fixed, limp→∞ max{|A|/p : A ⊆ Z/pZ m-sum-free} ≤ 1/3.1955

(previously, the best known upper bound was 1/3.0001).

1. Introduction

This article is a short version of the paper [3].
Let G be a finite abelian group. For a subset A of G, we denote by 2A the

sumset A + A := {x + y : x, y ∈ A} and by A the complement of A, G r A.
A classical result due to Freiman is the 3k − 4 Theorem, which states that if a
finite set A ⊆ Z has doubling |2A|/|A| close to the minimum, then A is efficiently
covered by an arithmetic progression:

Theorem 1.1 (Freiman’s 3k − 4 Theorem). Let A be a finite subset of Z with
|2A| = 2|A| + r ≤ 3|A| − 4. Then there is an arithmetic progression P ⊆ Z such
that A ⊆ P and |P rA| ≤ r + 1.

A central topic in additive number theory is the study of variants of this theorem in
other groups. We focus on the case Z/pZ, where there is a well-known conjecture
on what this theorem could look like (see [12, Conjecture 19.2]):

Conjecture 1.2. Let p be a prime and let A be a nonempty subset of Z/pZ.
If 2A 6= Z/pZ and |2A| = 2|A| + r ≤ min{3|A| − 4, p − r − 3}, then there
exist arithmetic progressions PA, P2A in Z/pZ with the same difference such that
A ⊆ PA, |PA rA| ≤ r + 1, P2A ⊆ 2A and |P2A| ≥ 2|A| − 1.
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Progress towards this conjecture has been made by many authors: Rødseth [15];
Green and Ruzsa [11]; Serra and Zémor [18]; Candela, Serra and Spiegel [5]; etc.
In [12] there are other results towards Conjecture 1.2 as well as many techniques
that will be used in this article. Our main results regarding this conjecture are:

Theorem 1.3. Let p be prime, let A be a nonempty subset of Z/pZ, and let
α ≈ 0.136861 be the unique real root of the cubic 4x3 + 9x2 + 6x − 1. Define
r := |2A| − 2|A| and suppose

|2A| ≤ (2 + α)|A| − 3 and |2A| ≤ 3

4
p.

Then there exist arithmetic progressions PA, P2A in Z/pZ with the same difference
such that A ⊆ PA, |PA rA| ≤ r + 1, P2A ⊆ 2A, and |P2A| ≥ 2|A| − 1.

and

Theorem 1.4. Let p be prime, let η ∈ (0, 1), let A ⊆ Z/pZ be a set with

density |A|/p ≥ η > 0 and let α = − 5
4 + 1

4

√
9 + 8 η p sin(π/p)/ sin(πη/3). Define

r := |2A| − 2|A| and suppose

|2A| 6= Z/pZ, |2A| ≤ (2 + α)|A| − 3 and |A| ≤ p− r
3

.

Then there exist arithmetic progressions PA, P2A in Z/pZ with the same difference
such that A ⊆ PA, |PA rA| ≤ r + 1, P2A ⊆ 2A, and |P2A| ≥ 2|A| − 1.

In Theorem 1.3 the doubling constant 2.1386... is smaller than the 2.4 given by
Freiman [10] and Rødseth [15]. However, these versions require the size of A to be
bounded by p/35 and p/10.7 respectively whereas we only require |2A| ≤ (3/4)|A|.
Recall that these two quantities are related through r = |2A| − 2|A| so they are
not completely independent. Conjecture 1.2 says that r should be allowed to go
up to |A| − 4 and in this case the bound on |2A| is (3/4)p− 1/16 which is almost
equal to ours. The reason why the value of α is the root of a polynomial of
degree 4 comes from the proof. Roughly speaking, we end up with an identity like

(|A|/p)2 =
∑

1̂A1̂A1̂2A and we do a standard bound involving Cauchy-Schwarz,
Plancherel’s identity and an inequality of Freiman [13, Theorem 1] to relate |A|
and |2A| (in the next section we explain better the use of Freiman’s inequality).

Theorem 1.4 was motivated by the study of m-sum-free sets. For m ≥ 3 an
integer and p a prime greater than m, a set A ⊆ Z/pZ is said to be m-sum-free
if the equation x+ y = mz has no solution with (x, y, z) ∈ A3. Let dm(Z/pZ) :=

max
{ |A|

p : A ⊆ Z/pZ m-sum-free
}

. If A is m-sum-free then 2A is disjoint from

m · A = {ma : a ∈ A} thus |2A| + |m · A| ≤ p. If we define r := |2A| − 2|A|,
then it is clear that the previous inequality gives |A| ≤ (p − r)/3. Using the
Cauchy-Davenport inequality we can deduce that r ≥ −1 and thus, if we define

dm := lim
p→∞

dm(Z/pZ)

(the limit exists by [6]), then dm ≤ 1/3. The first non-trivial bound for dm was
given by Candela and De Roton in [4, Theorem 3.1], where they used a result



ON THE 3k − 4 CONJECTURE AND m-SUM-FREE SETS IN Z/pZ 523

of Serra and Zémor [18] to obtain dm ≤ 1/3.0001. Using similar techniques and
Theorem 1.4, we are able to push this bound to dm ≤ 1/3.1955. To conclude this
section let us mention that there exists a construction by Tomasz Shoen showing
that dm ≥ 1

2mb
m
4 c for all m ≥ 3 (personal communication). More precisely:

Lemma 1.5 (T. Schoen). For each integer m ≥ 3, we have dm(Z/pZ) ≥
bm/4c

m
p−1
2p for every prime p = 2mn+ 1. Hence, lim p→∞

p prime
dm(Z/pZ) ≥ 1

2mb
m
4 c.

The proof of the above lemma can be found in [3] but let us briefly mention that
it consists on constructing a set with the above properties which at the end is
roughly the sum of two arithmetic progressions.

2. Overview of the proofs

In this section we present the ideas underlying the proofs of the results mentioned
above. For the complete proofs, see [3].

Let p be a prime, let g ∈ Z/pZ be a non-zero element (which is then a generator
of the multiplicative group (Z/pZ)∗) and for integers m ≤ n let

[m,n]g = {mg, (m+ 1)g, . . . , ng}

denote the corresponding interval in Z/pZ. If m > n, then [m,n]g = ∅. For
X ⊆ Z/pZ, we let `g(X) denote the length of the shortest arithmetic progression
with difference g which contains X. We say that a sumset A+B ⊆ Z/pZ rectifies
if `g(A)+ `g(B) ≤ p+1 for some nonzero g ∈ Z/pZ. In such case, A ⊆ a0 +[0,m]g
and B ⊆ b0+[0, n]g, with m+n = `g(A)+`g(B)−2 ≤ p−1 for some a0, b0 ∈ Z/pZ.
Therefore, the maps a0 + sg 7→ s and b0 + tg 7→ t, for s, t ∈ Z, when restricted
to A and B, respectively, show that the sumset A+B is Freiman isomorphic (see
[12, Section 2.8]) to an integer sumset. This allows us to canonically apply results
from Z to the sumset A+B.

Sketch of proof of Theorem 1.3. We will use the asymmetric version of the 3k−
4 theorem as it appears in [12, Theorem 7.1] and two observations. The first one
is that if P ⊆ A ⊆ Z/pZ, with P an arithmetic progression, then A ⊆ P , where
P is another arithmetic progression with the same difference. The second one is
that if A,B ⊆ Z/pZ, then −A + A+B ⊆ B. Let us now look at pairs of sets
A′, B′ ⊆ A such that A′+B′ rectifies. The ideal case would be if for A′ = B′ = A,
the sum-set A′+B′ rectified, because then we could go via a Freiman isomorphism
to Z, apply there the known 3k − 4 theorem, and then go back to Z/pZ. This is
why it is natural to split the problem into two parts:
Case 1 will be when among the pairs A′ +B′ that rectify there are some that are
large (precisely |A′|+ |B′|+ min{|A′|, |B′|} − 4 ≥ |2A|).
Case 2 will be when for all pairs that rectify, the opposite inequality holds.

If we are in Case 1 we prove that indeed the largest pair of rectifiable sum-sets
A′ + B′ occurs when A′ = B′ = A. By contradiction, assume without loss of
generality that |A′| ≥ |B′| is the rectifiable pair with the largest sum |A′| + |B′|
and B′ 6= A. Then we go through a Freiman isomorphism ψ to Z and apply the
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3k − 4 theorem to ψ(A′ + B′), which will provide us progressions ψ(A′) ⊆ PA,
ψ(B′) ⊆ PB and PA+B ⊆ ψ(A′ + B′). These progressions will give us that the
pair (−A′) + (A+A′) is also rectifiable (using observations like for instance that

A+A′ ⊆ B′ +A′ ⊆ ψ−1(PA+B)). With some more work we will conclude that
| − A′ + A+A′| ≤ |A′| + |A+A′| + min{|A′|, |A+A′|} − 4, which allows us to
use the asymmetric version of the 3k − 4 Theorem as in [12, Theorem 7.1] to
obtain the progressions ψ(−A′) ⊆ P−A′ , ψ(A+A′) ⊆ PA+A′ and P−A′+A+A′ ⊆
ψ(−A′+A+A′). By the second observation we will be able to recover information
about A using that ψ−1(P−A′+A+A′) ⊆ −A′+A+A′ ⊆ A and this is how we will
obtain that A is efficiently covered by an arithmetic progression. We end up
showing that A+A′ must rectify or otherwise the assumption |2A| ≤ 3/4p would
be violated. Thus we have a contradiction with the assumption that |A′| + |B′|
was chosen to be maximal.

To deal with Case 2, define the exponential sum SA(d) =
∑

x∈A e
2πi
p dx for a

non-zero d ∈ Z/pZ. It is intuitive that if the points e
2πi
p dx are randomly distributed

among the the circle, then |SA(d)| should be small, whereas if a lot of them are
concentrated near (say) 1, then the sum should be large. But Case 2 is precisely
when we rule out this possibility because if we let Cu := {eix : x ∈ (u, u + π)},
d−1 be the multiplicative inverse of d ∈ Z/pZ and A′ := {x ∈ A : e

2πi
p dx ∈ Cu},

then `d−1(A′) ≤ p+1
2 and A′ + A′ rectifies. To conclude we use an estimate of

Freiman [13, Theorem 1] that gives a bound for |SA(d)| in this situation. What
remains is just a long but standard calculation involving the identity |A|2p =∑

x∈Z/pZ SA(x)SA(x)S2A(x), giving a contradiction with the fact that |2A| ≤ (2 +

α)|A| − 3. �

The second result, Theorem 1.4, is a refinement whose proof uses the same ideas
but in Case 2 needs a sharper bound on |SA(d)| given by [13, Theorem 2], and
some minor changes to adapt the argument to the new bound |A| ≤ p−r

3 .
Finally, let us mention how this result can be used to estimate the quantity dm.

The ideas are simple. First, as we said before if A ⊆ Z/pZ is m-sum-free we can
assume that |A| ≤ (p−r)/3. Thus, we have one of the conditions of Theorem 1.4 for
free. Now there are two cases: either |2A| > (2+α)|A|−3 or |2A| ≤ (2+α)|A|−3.
In the former we deduce immediately that (2+α)|A|−3+ |A| ≤ |2A|+ |m ·A| ≤ p.
Then we must have |A| ≤ (p + 3)/(3 + α). In the second case, we can apply
Theorem 1.4 to conclude that we can approximate A by an arithmetic progression
PA, and 2A contains a large arithmetic progression P2A. This allows us to work
with intervals instead of arbitrary sets because the property 2A∩m ·A = ∅ implies
that |P2A∩(m·PA)| is small. But nowm·PA is approximately uniformly distributed
among Z/pZ (under some technical conditions), and as |P2A| is large, it is easy to
deduce that |PA| cannot be large.

Acknowledgment. We are very grateful to Tomasz Schoen for providing the
construction in Lemma 1.5 and for some useful remarks.
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8. Chung F. R. K. and Goldwasser J. L., Maximum subsets of (0, 1] with no solutions to

x+ y = kz, Electron. J. Combin. 3 (1996), #1.
9. Plagne A. and de Roton A., Maximal sets with no solution to x + y = 3z, Combinatorica

36 (2016), 229–248.
10. Freiman G., Inverse problems in additive number theory. Addition of sets of residues modulo

a prime, Dokl. Akad. Nauk 141 (1961), 571–573.

11. Green B. and Ruzsa I. Z., Sets with small sumset and rectification, Bull. Lond. Math. Soc.
38 (2006), 43–52.

12. Grynkiewicz D. J., Structural Additive Theory, Development in Mathematics 30, Springer-

Verlag, 2013.
13. Lev V. F., Distribution of points on arcs, Integers 5 (2005), #11.

14. Matolcsi M. and Ruzsa I. Z., Sets with no solutions to x+ y = 3z, European J. Combin. 34

(2013), 1411–1414.
15. Rødseth Ø. J., On Freiman’s 2.4-theorem, Skr. K. Nor. Vidensk. Selsk 4 (2006), 11–18.

16. Roth K. F., On certain sets of integers J. Lond. Math. Soc. 28 (1953), 104–109.

17. Sanders T., On Roth’s theorem on progressions, Ann. of Math. 174 (2011), 619–636.
18. Serra O. and Zémor G., Large sets with small doubling modulo p are well covered by an

arithmetic progression, Ann. Inst. Fourier (Grenoble) 59 (2009), 2043–2060.
19. Vosper G., The critical pairs of subsets of a group of prime order, J. Lond. Math. Soc. 31

(1956), 200–205.

P. Candela, Universidad Autónoma de Madrid, and ICMAT Ciudad Universitaria de Cantoblanco

Madrid, Spain,
e-mail : pablo.candela@uam.es
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