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ON THE ACHIEVABLE AVERAGE DEGREES

IN 2-CROSSING-CRITICAL GRAPHS

P. HLINĚNÝ and M. KORBELA

Abstract. c-Crossing-critical graphs are the minimal graphs requiring at least c

edge crossings in every drawing in the plane. The structure of these obstructions is
very rich for every c ≥ 2. Although, at least in the first nontrivial case of c = 2, their

structure is well understood. For example, we know that, aside of finitely many

small exceptions, the 2-crossing-critical graphs have vertex degrees from the set
{3, 4, 5, 6} and their average degree can achieve exactly all rational values from the

interval [3 1
2
, 4 2

3
]. Continuing in depth in this research direction, we determine which

average degrees of 2-crossing-critical graphs are possible if we restrict their vertex

degrees to proper subsets of {3, 4, 5, 6}. In particular, we identify the (surprising)

subcases in which, by number-theoretical reasons, the achievable average degrees
form discontinuous sets of rationals.

1. Introduction

The crossing number cr(G) of a graph G is the minimum number of (pairwise)
edge crossings in a drawing of G in the plane. To resolve ambiguity, we consider
drawings of graphs such that no edge passes through another vertex and no three
edges intersect in a common point which is not their end. A crossing is then an
intersection point of two edges that is not a vertex.

If a graph has many (e.g., more than linear amount of) edges, then its crossing
number must obviously be high. However, even graphs with few edges (e.g., cubic
ones) may have quite high crossing number if there is “a lot of nonplanarity”
in them. The latter is precisely captured through the critical obstructions: A
graph G is c-crossing-critical if cr(G) ≥ c, but every proper subgraph G′ of G has
cr(G′) < c. Since degree-2 vertices are irrelevant for the crossing number, it is
common to assume that crossing-critical graphs have minimum degree 3. Note,
though, that crossing-critical graphs may not be simple in general.

There exist only two 1-crossing-critical graphs, K5 and K3,3, but for every
c ≥ 2 there exist an infinite number of c-crossing-critical graphs [6]. From Euler’s
formula (and from the min-degree bound) it is clear that any infinite family of
c-crossing-critical graphs, for fixed c ≥ 2, must have average degree in the interval
[3, 6] (it can be shown that the boundary values of 3 and 6 are not achievable,
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but that is nontrivial [5]). For any rational r ∈ (3, 6) and for all sufficiently large
integers c there exist infinite families of c-crossing-critical graphs having average
degree precisely r [1]. On the other hand, the maximum degree in c-crossing-
critical graphs is not bounded; it can arbitrarily grow with c [2] and even grow for
fixed c ≥ 13 [3].

In fact, we nowadays know much more about degree-related properties of infinite
families of crossing-critical graphs. In the aforementioned recent paper [2] Bokal,
Bračič, Derňár, and Hliněný showed that, for sufficiently large c, all the three
parameters – crossing number c, rational average degree r, and a set D of degrees
that appear arbitrarily often in the graphs of the infinite family – can be prescribed
in any reasonable combination. They also analyzed the interplay of the degree
parameters specially for 2-crossing-critical graphs (which were recently completely
characterized by Bokal, Oporowski, Richter, and Salazar [4]).

Although this analysis of degree properties of 2-crossing-critical graphs in [2] is
fine and very detailed, it has one significant drawback – it has considered only the
“frequent” degrees (that occur arbitrarily often) in the families, but it neglected
possible other “sporadic” degrees (those with a bounded number of occurrences
in the graphs). Hence the interesting question which has remained open since
[2] is; whether allowing (or forbidding at all) sporadic degrees not from D in the
considered infinite critical families makes a negligible or significant difference to
the average degree of the family. We completely answer this last question here.
In particular, we identify the four surprising cases (of the set D and simplicity of
graphs) in which, by number-theoretical reasons, forbidding all degrees not from
D severely restricts achievable average degrees compared to the setting of [2].

2. Degree-universal critical families

We consider usual graph theory notation, and our graphs may have parallel edges.
Since the length of this conference paper is restricted, we can only give some of
the core definitions, and we refer the readers to [2] for additional concepts and the
full context of this research.

Let D 6= ∅ be a set of integers. A family G of graphs is called D-max-universal
if the following holds; (i) for every d ∈ D and every integer m there is G ∈ G such
that G contains ≥ m vertices of degree d, and (ii) for every d′ 6∈ D there is M
such that every G ∈ G contains less than M vertices of degree d′. The following
has been shown by Bokal, Bračič, Derňár, and Hliněný [2]:

Theorem 1 ([2]). A D-max-universal family of 2-crossing-critical graphs exists
if and only if D ⊆ {3, 4, 5, 6}, |D| ≥ 2, and D∩{3, 4} 6= ∅. For each such choice of
D, the set of achievable average degrees of D-max-universal families of 2-crossing-
critical graphs (simple or general) is a rational interval listed in Table 1 (the right
columns).

A family G of graphs is D-perfect-universal if G is D-max-universal and every
G ∈ G has all vertex degrees from D. Our new fine case analysis leads to the
following strengthening:
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Table 1. The sets of achievable average degrees in D-perfect-universal fam-

ilies of 2-crossing-critical graphs, compared (with highlighted difference) to
the D-max-universal setting of [2].

Simple graphs General graphs
D D-perfect-univ. D-max-univ. D-perfect-univ. D-max-univ.

{3, 4} ( [ 165 , 18
5 ] * [ 165 , 18

5 ] [ 165 , 15
4 ] [ 165 , 15

4 ]

{3, 5} ∅ { 175 } ( [ 175 , 11
3 ] * [ 175 , 11

3 ]

{3, 6} { 185 } { 185 } { 185 } { 185 }

{4, 5} ∅ ∅ { 92} { 92}

{4, 6} ∅ ∅ { 143 } { 143 }

{3, 4, 5} ( 16
5 , 4] ( 16

5 , 4] ( 16
5 , 9

2 ) ( 16
5 , 9

2 )

{3, 4, 6} ( 16
5 , 4) ( 16

5 , 4] ( 16
5 , 14

3 ) ( 16
5 , 14

3 )

{3, 5, 6} ( ( 17
5 , 18

5 ) * ( 17
5 , 18

5 ) ( 17
5 , 11

3 ) ( 17
5 , 11

3 )

{4, 5, 6} ∅ ∅ ( ( 9
2 ,

14
3 ) * ( 9

2 ,
14
3 )

{3, 4, 5, 6} ( 16
5 , 4] ( 16

5 , 4] ( 16
5 , 14

3 ) ( 16
5 , 14

3 )

Theorem 2. For each choice of D as in Theorem 1, the set of achievable
average degrees of D-perfect-universal families of 2-crossing-critical graphs (simple
or general) is as listed in Table 1 (the left columns). In all cases except the four
∗-marked ones, the achievable set is the whole listed rational interval. In the
four ∗-marked cases, the achievable sets are strict subsets of the listed intervals
consisting of the relatively prime integer fractions p

q such that, respectively,

• for D = {3, 4} and simple graphs, p = 2kx and q = y where k > 0 and x, y
are odd;

• for D = {3, 5, 6} and simple graphs, p = 2kx and q = y where k > 0 and
x, y are odd;

• for D = {3, 5} (non-simple), p = 2kx + y and q = y where k 6= 2 and x, y
are odd;

• for D = {4, 5, 6} (non-simple), p = x and q = 2ky, or p = 2x and q = y,
where k ≥ 0 and x, y are odd.

3. Characterization of 2-crossing-critical graphs

Before moving onto the proof of Theorem 2, we have to introduce our main tech-
nical tool – the deep characterization result by Bokal, Oporowski, Richter, and
Salazar [4]. We start with a generic construction of a “twisted band”, made of
specific elementary pieces called “tiles”.

Again, due to a space restriction, we briefly introduce only the core concepts
and refer the readers to [4] or [2] for more details. A tile is a plane graph with
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(a) tile Ta (b) tile Tb (c) tile Tc (d) tile Td

(e) tile Te (f) tile Tf (g) tile Tg (h) tile Tp

Figure 1. Examples of some tiles from the set S of Theorem 3 (the names

are same as in [2]). The vertices of the left and right walls are white (hollow).

Notice that each tile has one degree-1 vertex on the left wall and one such on
the right wall – this is the same in all tiles from S.

w

t w

t

w

t w

t

Figure 2. Examples of an alternating join of the following two sequences
of tiles: (top) the sequence Ta, Tb, Ta, Tb, Ta, and (bottom) the sequence

Te, Te, Tf , Tf , Tf . In the corresponding alternating cyclization of each se-

quence, the two ends marked w are identified together, and likewise the two
ends marked t (hence, twisted as in the Möbius band).

an ordered pair of vertices designated as the left wall and another pair as the
right wall, such that both walls lie on the outer face in the respective order. See
Figure 1 for an illustration. A join of tiles T1 and T2 (in this order) is obtained
via identification of the right wall of T1 with the left wall of T2. Specially, if this
identification creates a degree-2 vertex, then it is replaced by a single edge.

The notion of a join is naturally generalized to a sequence of tiles. Having a
sequence T1, T2, . . . , Tk of tiles, we call an alternating join the join of the sequence
T1, T 2, T3, T 4, T5, . . . , Tk, where T j denotes the inverted tile of Tj (flipped upside
down). Assume now that k is odd, and make the alternating join of T1, T2, . . . , Tk,
followed by identification of the inverted right wall of Tk with the left wall of
T1. The result of this construction is called an alternating (odd) cyclization of
T1, T2, . . . , Tk. This is illustrated in Figure 2.
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Theorem 3 ([4]). There exist only finitely many 2-crossing-critical graphs
which are not 3-connected, and only finitely many of those which are 3-connected
and do not contain a subdivision of the graph V10 (obtained from a 10-cycle by
adding all 5 main diagonals).

Every 3-connected graph G containing a subdivision of V10 is 2-crossing-critical
if and only if G is constructed as an alternating cyclization of an odd-length (of
at least 3) sequence of tiles from a certain prescribed set S of 42 tiles.

4. Proof outline for Theorem 2

First, note that every D-max-universal (so also D-perfect-univ.) family must be
infinite from the definition. Hence the finite subcases of Theorem 3 are not rele-
vant for our problem, and we may assume that the considered D-perfect-universal
family consists only of alternating odd cyclizations of tiles from S. In this starting
phase our proof is actually quite similar to [2].

Consider a tile T with r non-wall vertices and the sum of all degrees s. Let
a = r + 1 and b = s− 2. Then (a, b) is called the density characteristics of T and
b
a the density of T . The reason for this notation is that r + 1 and s − 2 are the
numbers of vertices and edges (resp.) that the tile T contributes to an alternating
cyclization, as detailed next.

One can easily verify that if Ti, i = 0, 1, . . . , 2k, are tiles of density characteris-

tics (ai, bi), then their alternating cyclization has altogether n =
∑2k

i=0 ai vertices,

degree sum m =
∑2k

i=0 bi, and hence the average degree m
n . In particular, this

means that for studying the achievable average degree in D-perfect-universal fam-
ilies, it is crucial to identify those tiles (from S) with non-wall degrees from D
which have the smallest and the largest densities. (Then, of course, one should
also verify that the degrees of vertices created by the join operation are from D.)

In the D-max-universal context of [2], the proof of Theorem 1 for each case
of D essentially combined the available tiles from S with non-wall degrees in D.
However, in order to fine-tune the exact average degree and mainly to ensure that
the total number of tiles in the resulting cyclization is odd (cf. the condition of
Theorem 3 !), [2] used to add a special tile (made also of tiles of S) with degrees
possibly outside of D. Since the special tile was of bounded size, it did not affect
D-max-universality, but such a trick is now illegal in the D-perfect-universal con-
text.

With respect to previous, we hence structure the proof of Theorem 2 as follows.

I. In the cases in which the degree set D (and a possible restriction to simple
graphs) leaves only one possible density or no one at all among the tiles of
S, we can use the same proof as in [2] and get the same result. In Table 1,
those are the entries having ∅ or a single value, except the row D = {3, 5}.

II. In the cases in which the restriction to the degree set D allows at least three
different tile densities among S, we suitably combine copies of several of
the available tiles (usually of three, but up to five in a case) to achieve
at the same time the desired average degree and an odd total number of
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Figure 3. An example of the alternating join of an odd-length sequence

from tiles Ta, Tg and Tc producing only degrees 3, 4 and 5. These tiles

have (in order) the minimum density 16
5

, the maximum density 16
4

and an

“intermediate” density 18
5

.

Figure 4. An example of the alternating join of an odd-length sequence from

simple tiles Ta and Tg producing only degrees 3,4. This restriction on the
set of degrees does not allow any other tile density to occur, and hence some

average degrees are not achievable with odd-length sequences.

tiles. This leads to constructions of D-perfect-universal families with every
rational average degree between the minimal and the maximal available
densities, and the availability of a third “intermediate” density value is
crucial to overcome the associated number-theoretical obstacles.
Since this part is routine and conceptually similar to previous [2], we only
refer to the Bachelor’s thesis [7] of the second author for all details, and
present an example in Figure 3.

III. In addition to the previous, we specifically mention the simple-graph cases
of (a) D = {3, 5} and density 17

5 , and (b) D = {3, 4, 6} and density 4 (two
of the six highlighted differences in Table 1). In each exactly two tiles are
available – Ta, Tb in (a) and Tc, Td in (b) (see Fig. 1), and they have to alter-
nate in a sequence in order not to create a vertex of a forbidden degree, such
as the degree-4 vertex w in the top example of Figure 2. Consequently, we
get no odd-length sequence for an admissible cyclization and the densities
are not achievable.

IV. We are left with the four ∗-marked cases in Table 1. In each of them, [2]
have shown that there exist only two admissible tile densities (the lower and
upper extremes of the respective density interval J from the table) in S,
and they have constructed examples for each average degree from J. Now
we have, by Theorem 2, only a discontinuous subset I ( J of achievable
average degrees of D-perfect-universal families.
Similarly as in (II.), we can always suitably combine an odd number of
copies of the two available tiles to achieve the resulting average degree
from I, e.g., as in the example in Figure 4.
The more interesting part is to prove that average degrees in Jr I are not
achievable. We use the following claim:
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– Let T1, T2 be tiles of densities b1
a1

, b2
a2

, and let b1
a1

< r < b2
a2

. Then every
sequence of copies of T1, T2 achieving average degree r after cyclization
has length which is a multiple of the length of a minimal such sequence.

The way we apply this claim is to constructively show that, for each average
degree r ∈ Jr I, there exists such a minimal sequence of even length, and
so odd-length sequences are not possible. �
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