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A NOTE ON COVERING YOUNG DIAGRAMS WITH

APPLICATIONS TO LOCAL DIMENSION OF POSETS

S. FELSNER and T. UECKERDT

Abstract. We prove that in every cover of a Young diagram with
(2k
k

)
steps with

generalized rectangles there is a row or a column in the diagram that is used by at
least k+ 1 rectangles. We show that this is best-possible by partitioning any Young

diagram with
(2k
k

)
− 1 steps into actual rectangles, each row and each column used

by at most k rectangles. This answers two questions by Kim et al. [2].
Our results can be rephrased in terms of local covering numbers of difference

graphs with complete bipartite graphs, which has applications in the recent notion

of local dimension of partially ordered sets.

1. Introduction

A Young diagram with r rows and c columns is a subset Y ⊆ [r] × [c] such that
whenever (i, j) ∈ Y , then (i − 1, j) ∈ Y provided i ≥ 2, as well as (i, j − 1) ∈ Y
provided j ≥ 2. A Young diagram is visualized as a set of unit squares that are
arranged consecutively in rows and columns, each row starting in the first column,
and with every row (except the first) being at most as long as the row above. The
number of steps of a Young diagram Y is the number of different row lengths in Y ,
i.e., the cardinality of Z = {(s, t) ∈ Y | (s + 1, t) /∈ Y and (s, t + 1) /∈ Y }. The
elements of Z are called steps of Y . Young diagrams with n elements, r rows, c
columns, and z steps, visualize integer partitions of n into r parts of size ≤ c
using z different sizes. In the literature our Young diagrams are more frequently
called Ferrers diagrams. We stick to Young diagram to be consistent with [2].

A generalized rectangle in a Young diagram Y ⊆ [r]× [c] is a set R of the form
R = S × T with S ⊆ [r] and T ⊆ [c] and R ⊆ Y . Note that not every set of the
form R = S × T with S ⊆ [r] and T ⊆ [c] satisfies R ⊆ Y (unless Y = [r] × [c]).
A generalized rectangle R = S × T with S being a set of consecutive numbers
in [r] and T being a set of consecutive numbers in [c] is an actual rectangle. A
generalized rectangle R = S×T uses the rows in S and the columns in T . See the
left of Figure 1 for an illustrative example.
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Figure 1. Left: A Young diagram Y with r=8

rows, c = 7 columns, and z = 5 steps. High-

lighted are the set Z of steps (gray), the element
(i, j) = (6, 2) ∈ Y (bold boundary), the gen-

eralized rectangle {2, 4, 5}×{1, 3} (green), and

the actual rectangle {1, 2} × {4, 5, 6} (orange).
Right: The Young diagram Y9 with 9 steps and a

(2, 3)-local partition of Y with actual rectangles.

Motivated by applications for the local dimension of partially ordered sets, we
investigate covering a Young diagram Y with generalized rectangles such that
every row and every column of Y is used by as few generalized rectangles in the
cover as possible. We say that Y is covered by a set C of generalized rectangles if
Y =

⋃
R∈C R, i.e., Y is the union of all rectangles in C. In this case we also say

that C is a cover of Y . If additionally the rectangles in C are pairwise disjoint, we
call C a partition of Y . For example, the right of Figure 1 shows a Young diagram
with a partition into actual rectangles.

Theorem 1. For any k ∈ N, any Young diagram Y can be covered by a set C
of generalized rectangles such that each row and each column of Y is used by at
most k rectangles in C if and only if Y has strictly less than

(
2k
k

)
steps.

We prove Theorem 1 in Section 2, answer the questions raised by Kim et al. in
Section 3, and describe the application to local dimension of posets in Section 4.

2. Proof of Theorem 1

We use the term rectangle for generalized rectangles, and the term actual rectangle
for rectangles that are contiguous. For a Young diagram Y and i, j ∈ N, let us
define a cover C of Y to be (i, j)-local if each row of Y is used by at most i
rectangles in C and each column of Y is used by at most j rectangles in C. For
z ∈ N, let Yz = {(s, t) ∈ [z] × [z] | s + t ≤ z + 1} be the (unique) Young diagram
with z rows, z columns, and z steps. See the right of Figure 1.

We start with a lemma stating that instead of considering any Young diagram
with z steps, we may restrict our attention to just Yz.

Lemma 2. Let i, j, z ∈ N and Y be any Young diagram with z steps. Then Y
admits an (i, j)-local cover if and only if Yz admits an (i, j)-local cover with ex-
actly z rectangles.

We omit the proof and refer to Figure 2 for an illustration of the proof idea.
Let us now turn to our main result. In fact, we shall prove the following

strengthening of Theorem 1.

Theorem 3. For any i, j, z ∈ N and any Young diagram Y with z steps, the
following hold.

(i) If z <
(
i+j
i

)
, then there exists an (i, j)-local partition of Y with actual

rectangles.
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−→ −→

Figure 2. Trans-

forming a cover

of any Young di-
agram Y with 5

steps into a cover

of Y5 (left) and
vice versa (right).

(ii) If z ≥
(
i+j
i

)
, then there exists no (i, j)-local cover of Y with generalized

rectangles.

Proof. We define f(i, j) :=
(
i+j
i

)
−1. It is crucial that the numbers {f(i, j)}i,j≥1

satisfy the recursion f(i, j) = f(i − 1, j) + f(i, j − 1) + 1 for i, j ≥ 2 with initial
conditions f(1, j) = j = f(j, 1). Due to Lemma 2 it suffices to show that for any

i, j ∈ N and z = f(i, j) =
(
i+j
i

)
− 1, there is an (i, j)-local partition of Yz with

actual rectangles.
We omit the proof of (i) and refer to Figure 3 for an illustration of the contruc-

tion of a (i, j)-local partition of Yz with z ≤ f(i, j).

R

Y Y ′

Y ′′

Figure 3. Left: The Young diagram

Yz with z = f(1, 7) =
(1+7

1

)
− 1 = 7

steps and a (1, 7)-local partition of Yz

into actual rectangles. Right: The

Young diagram Yz with z = f(3, 2) =(3+2
3

)
− 1 = 9 steps, the rectangle

R = [a] × [z + 1 − a] = [6] × [4] with

a = f(2, 2) + 1 = 6, and the Young

diagrams Y ′ and Y ′′ with f(2, 2) = 5
and f(3, 1) = 3 steps, respectively.

We provide the details for the proof of (ii). Due to Lemma 2 it is sufficient to

show that for i, j ∈ N the Young diagram Yz′ with z′ ≥
(
i+j
i

)
admits no (i, j)-local

cover. If Yz′ with z′ > z =
(
i+j
i

)
has an (i, j)-local cover, then by restricting the

rectangles of the cover to the rows from z′ − z to z′ we obtain an (i, j)-local cover
of a down-shifted copy of Yz. Therefore, we only have to consider Yz.

Let C be a cover of Yz. We shall prove that C is not (i, j)-local. Again, we
proceed by induction on i and j, where illustrations are given in Figure 4.

If i = 1, then each row is only used by a single rectangle in C. Hence, each row
of Yz is a rectangle in C. Thus column 1 of Yz is used by z = j + 1 rectangles,
proving that C is not (i, j)-local. The case j = 1 is alike.

Now let i ≥ 2 and j ≥ 2. We have z =
(
i+j
i

)
=
(
(i−1)+j
i−1

)
+
(
i+(j−1)

i

)
. Consider

the rectangle M = [a] × [z − a] for a =
(
(i−1)+j
i−1

)
. Then Yz − M splits into a

right-shifted Y ′ copy of Ya and a down-shifted copy Y ′′ of Yz−a.
Let C ′, respectively C ′′, be the subset of rectangles in C using at least one of

the rows 1, . . . , a in Yz, respectively at least one of the columns 1, . . . , z − a in Yz.
Note that C ′ ∩C ′′ = ∅ as each rectangle of C is contained in Yz. Prune rectangles
in C ′ and C ′′ to obtain covers of Y ′ and Y ′′.
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Figure 4. The Young diagram Yz

with z =
(3+2

3

)
= 10 steps, the rec-

tangle M = [a]× [z − a] = [6]× [4]

with a =
(2+2

2

)
= 6, and the Young

diagrams Y ′ and Y ′′ with
(2+2

2

)
=

6 and
(3+1

3

)
= 4 steps, respectively.

The Young diagram Y ′ is a copy of Ya and a =
(
(i−1)+j
i−1

)
. Hence, by induction

the pruned cover C ′ is not (i − 1, j)-local. If some column t of Y ′ is used by at
least j + 1 rectangles in C ′, this column of Yz is used by at least j + 1 rectangles
in C, proving that C is not (i, j)-local, as desired. So we may assume that some
row s of Y ′ is used by at least i rectangles in C ′.

Symmetrically, Y ′′ is a copy of Yz−a and z−a =
(
i+(j−1)

i

)
. Hence, the pruned C ′′

is a cover of Y ′′, which by induction is not (i, j − 1)-local, and we may assume
that some column t of Y ′′ is used by at least j rectangles in C ′′. Hence row s
in Yz is used by at least i rectangles in C ′ and column t in Yz is used by at least j
rectangles in C ′′. As C ′∩C ′′ = ∅ and element (s, t) is contained in some rectangle
of C, either row s of Yz is used by at least i + 1 rectangles or column t of Yz is
used by at least j + 1 rectangles (or both), proving that C is not (i, j)-local. �

3. Local covering numbers

A difference graph is a bipartite graph in which the vertices of one partite set
can be ordered a1, . . . , ar in such a way that N(ai) ⊆ N(ai−1) for i = 2, . . . , r,
i.e., the neighborhoods of these vertices along this ordering are weakly nesting.
Equivalently, a bipartite graph H is a difference graph iff H admits a bipartite
adjacency matrix whose support is a Young diagram Y . Complete bipartite sub-
graphs H correspond to generalized rectangles in Y . In [2], Kim et al. investigate
the relations between local difference cover numbers and local complete bipartite
cover numbers as described below1.

Following the notation in [3], local covering numbers are defined as follows. For
a graph class F and a graph H, an injective F-covering of H is a set of graphs
G1, . . . , Gt ∈ F with H = G1 ∪ · · · ∪Gt. An injective F-covering of H is k-local if
every vertex of H is contained in at most k of the graphs G1, . . . , Gt, and the local
F-covering number of H, denoted by cF` (H), is the smallest k for which a k-local
injective F-cover of H exists.

Let D denote the class of all difference graphs, and CB ⊂ D the class of all
complete bipartite graphs. Clearly, we have cD` (H) ≤ cCB` (H) for all graphs H.
Kim et al. [2] prove that cCB` (H) ≤ cD` (H) ·dlog2(n/2 + 1)e for all H on n vertices,
by showing that cCB` (H) ≤ dlog2(r + 1)e whenever H ∈ D is a difference graph
with one partite set of size r. However, no lower bound on cCB` (H) for H ∈ D is
established in [2]. Specifically, Kim et al. ask for the exact value of cCB` (Hi) for

1Deviating from [2], we follow here the terminology and notation of local covering numbers

introduced in [3].



COVERING YOUNG DIAGRAMS 677

the difference graph Hi corresponding to the Young diagram Yi. For the case that
i + 1 is a power of 2 they prove the upper bound cCB` (Hi) ≤ log2(i + 1)− 1.

Using Theorem 1 and
(
2k
k

)
= (1 + o(1)) 1√

kπ
22k, we obtain:

1) For every difference graph H the exact value of cCB` (H) is the smallest k ∈ N
such that for the number z of steps of the Young diagram YH of H it holds z <

(
2k
k

)
.

2) The difference graphs Hi of Kim et al. satisfy cCB` (Hi) = (1 + o(1)) 1
2 log2 i.

3) For all graphs H on n vertices, cCB` (H) ≤ cD` (H) · (1 + o(1)) 1
2 log2(n/2).

4. Local dimension of posets

The motivation for Kim et al. [2] to study local difference cover numbers comes
from the local dimension of posets, a notion recently introduced by Ueckerdt [4].

Define a partial linear extension of poset P to be a linear extension L of an
induced subposet of P. A local realizer of P is a non-empty set L of partial linear
extensions such that (1) if x < y in P, then x < y in some L ∈ L, and (2) if x
and y are incomparable (denoted x||y), then x < y in some L ∈ L and y < x in
some L′ ∈ L. The local dimension of P, denoted ldim(P), is the smallest k for
which there exists a local realizer L of P with each x ∈ P appearing in at most k
partial linear extensions L ∈ L.

For an arbitrary height-two poset P = (P,≤), Kim et al. consider the bipartite
graph GP = (P,E) with partite sets A = min(P) and B = P −min(P) ⊆ max(P)
whose edges correspond to the incomparable A,B pairs (a.k.a. critical pairs. They
prove that cD` (GP)−2 ≤ ldim(P) ≤ cCB` (GP)+2, which also gives good bounds for
ldim(P) when P has larger height, since if Q is the split of P, then ldim(Q)− 2 ≤
ldim(P) ≤ 2 ldim(Q) − 1 (see [1], Lemma 5.5). Using these results and the ones
from the previous section, we can conclude the following for the local dimension
of any poset: cD` (GQ)− 4 ≤ ldim(P) ≤ cD` (GQ) · (1 + o(1)) log2 n.
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helpful comments and discussions.

After publishing our note on arXiv we were contacted by two other groups
which have independently proved Theorem 3, these are Balázs Keszegh, Dániel T.
Nagy, Gábor Damásdi (Budapest) and António Girão, David Lewis (Memphis).
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2. Kim J., Martin R. R., Masař́ık T., Shull W., Smith H. C., Uzzell A. and Wang Z., On

difference graphs and the local dimension of posets, arXiv:1803.08641.
3. Knauer K. and Ueckerdt T., Three ways to cover a graph, Discrete Math. 339 (2016),

745–758.
4. Ueckerdt T., Order & Geometry Workshop, 2016.



678 S. FELSNER and T. UECKERDT

S. Felsner, Technische Universität Berlin, Berlin, Germany,

e-mail : felsner@math.tu-berlin.de

T. Ueckerdt, Karlsruhe Institute of Technology, Karlsruhe, Germany,

e-mail : torsten.ueckerdt@kit.edu


