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CLASSIFICATIONS OF N(k)-CONTACT METRIC MANIFOLDS

SATISFYING CERTAIN CURVATURE CONDITIONS

P. MAJHI and U. C. DE

Abstract. The object of the present paper is to classify N(k)-contact metric mani-

folds satisfying certain curvature conditions on the projective curvature tensor. Pro-

jectively pseudosymmetric and pseudoprojectively flat N(k)-contact metric mani-
folds are considered. Beside these we also study N(k)-contact metric manifolds

satisfying Z̃ · P = 0, where Z̃ and P denote, respectively, the concircular and pro-

jective curvature tensor, respectively.

1. Introduction

The projective curvature tensor is an important tensor from the differential geo-
metric point of view. Let M be a (2n + 1)-dimensional Riemannian manifold. If
there exists a one-to-one correspondence between each coordinate neighborhood
of M and a domain in Euclidian space such that any geodesic of the Riemannian
manifold corresponds to a straight line in the Euclidean space, then M is said to
be locally projectively flat. For n ≥ 1, M is locally projectively flat if and only if
the well-known projective curvature tensor P vanishes. Here P is defined by [20]

P (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y, Z)X − S(X,Z)Y ](1)

for all X, Y , Z ∈ T (M), where R is the curvature tensor and S is the Ricci
tensor. In fact, M is projectively flat if and only if it is of constant curvature [24].
Thus the projective curvature tensor is the measure of the failure of a Riemannian
manifold to be of constant curvature. Let (M, g) be a Riemannian manifold and
let ∇ be the Levi-Civita connection of (M, g). A Riemannian manifold is called
locally symmetric [9] if ∇R = 0, where R is the Riemannian curvature tensor of
(M, g). A Riemannian manifold M is called semisymmetric if

R ·R = 0(2)

holds, where R denotes the curvature tensor of the manifold. It is well known
that the class of semisymmetric manifolds includes the set of locally symmetric
manifolds (∇R = 0) as a proper subset. Semisymmetric Riemannian manifolds
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were first studied by E. Cartan, A. Lichnerowich, R. S. Couty and N. S. Sin-
jukov. A fundamental study on Riemannian semisymmetric manifolds was made
by Z. I. Szabó [21], E. Boeckx et al [7] and O. Kowalski [15]. A Riemannian
manifold M is said to be Ricci-semisymmetric if on M we have

R · S = 0,(3)

where S is the Ricci tensor.
The class of Ricci-semisymmetric manifolds includes the set of Ricci-symmetric

manifolds (∇S = 0) as a proper subset. Ricci-semisymmetric manifolds were in-
vestigated by several authors. We define the subsets UR, US of a Riemannian
manifold M by UR = {x ∈ M : R − κ

(n−1)nG 6= 0 at x} and US = {x ∈ M :

S − κ
ng 6= 0 at x}, respectively, where G(X,Y )Z = g(Y,Z)X − g(X,Z)Y . Evi-

dently, we have US ⊂ UR. A Riemannian manifold is said to be pseudo-symmetric
[23] if at every point of M the tensor R · R and Q(g,R) are linearly dependent.
This is equivalent to

R ·R = fRQ(g,R)

on UR, where fR is a function on UR. Clearly, every semi-symmetric manifold is
pseudo-symmetric but the converse is not true [23].

A Riemannian manifold M is said to be Ricci pseudo-symmetric if R · S and
Q(g, S) on M are linearly dependent. This is equivalent to

R · S = fSQ(g, S)

that holds on US , where fS is a function defined on US .
In [6], Blair et al. studied N(k)-contact metric manifold satisfying the curvature

conditions Z̃ · Z̃ = 0, Z̃ ·R = 0 and R · Z̃ = 0, where Z̃ is the concircular curvature
tensor ([24], [25]) defined by

Z̃(X,Y )W = R(X,Y )W − r

2n(2n+ 1)
[g(Y,W )X − g(X,W )Y ],(4)

where X,Y,W ∈ TM and r is the scalar curvature. Recently, De et al. [10] stud-
ied N(k)-contact metric manifolds satisfying the curvature conditions P · R = 0,
P · S = 0 and P · P = 0. Motivated by the above studies, we characterize
N(k)-contact metric manifolds satisfying certain curvature conditions on the pro-
jective curvature tensor. The paper is organized as follows.

In this paper, we study projective curvature tensor onN(k)-contact metric man-
ifolds. After Preliminaries in Section 3, we consider projectively pseudosymmetric
N(k)-contact manifolds. Section 4 deals with the study of pseudoprojectively flat
N(k)-contact metric manifolds. Section 4 is devoted to study N(k)-contact metric

manifolds satisfying Z̃ · P = 0.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M is said to admit an almost contact
structure if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form
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η satisfying ([2],[3])

(a) φ2 = −I + η ⊗ ξ, (b) η(ξ) = 1, (c) φξ = 0, (d) η ◦ φ = 0.(5)

An almost contact structure is said to be normal if the almost complex structure
J on the product manifold defined by

J
(
X, f

d

dt

)
=
(
φX − fξ, η(X)

d

dt

)
is integrable, where X is tangent to M , t is the coordinate of R and f is a smooth
function on M×R. Let g be a compatible Riemannian metric with almost contact
metric structure (φ, η, ξ), that is,

g(φX, φY ) = g(X,Y )− η(X)η(Y ).(6)

Then M becomes an almost contact metric structure (φ, ξ, η, g). From (5), it can
be easily seen that

(a) g(X,φY ) = −g(φX, Y ), (b) g(X, ξ) = η(X)(7)

for all vector fields X,Y . An almost contact metric structure becomes a contact
metric structure if

g(X,φY ) = dη(X,Y )(8)

for all vectors fields X,Y . The 1-form η is called a contact metric form and ξ is
its characteristic vector field. We define a (1, 1) tensor field h by h = 1

2£ξφ, where
£ denotes the Lie derivative. Then h is symmetric and satisfies the conditions
hφ = −φh, Tr · h = Tr · φh = 0 and hξ = 0. Also

∇Xξ = −φX − φhX,(9)

holds in a contact metric manifold. A normal contact metric manifold is a Sasakian
manifold. An almost contact metric manifold is a Sasakian manifold if and only if

(∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X,(10)

where X,Y ∈ TM and ∇ is the Levi-Civita connection of the Riemannian metric
g. A contact metric manifold M2n+1(φ, ξ, η, g) for which ξ is a Killing vector field
is said to be a K-contact metric manifold. A Sasakian manifold is K-contact but
not conversely. However, a 3-dimensional K-contact metric manifold is Sasakian
[14]. It is known that the tangent sphere bundle of a flat Riemannian manifold
admits a contact metric structure satisfying R(X,Y )ξ = 0 [4]. On the other hand,
on a Sasakian manifold, the following relation

R(X,Y )ξ = η(Y )X − η(X)Y(11)

holds.
As a generalization of both R(X,Y )ξ = 0 and the Sasakian case, D. E. Blair,

T. Koufogiorgos and B. J. Papantoniou [5] introduced the (k, µ)-nullity distribu-
tion on a contact metric manifold and gave several reasons for studying it. The
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(k, µ)-nullity distribution N(k, µ) ([5], [18]) of a contact metric manifold M is
defined by

N(k, µ) : p→ Np(k, µ)

= {W ∈ TpM : R(X,Y )W = (kI + µh)(g(Y,W )X − g(X,W )Y )}

for all X,Y ∈ TM, where (k, µ) ∈ R2. A contact metric manifold M with
ξ ∈ N(k, µ) is called a (k, µ)-contact metric manifold. The (k, µ)-contact met-

ric manifolds were studied by Papantonious [18], De and Sarkar [11], Özgür ([1],
[16]) and many others. If µ = 0, the (k, µ)-nullity distribution reduces to k-nullity
distribution [22]. The k-nullity distribution N(k) of a Riemannian manifold is
defined by [22]

N(k) : p→ Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]},

k being a constant. If the characteristic vector field ξ ∈ N(k), then we call
a contact metric manifold as an N(k)-contact metric manifold [6]. The N(k)-
contact metric manifolds were studied by Blair et al. [6], De et al. ([10], [12],

[13]), Sing et al. [19], Özgür et al. [17] and many others.
However, for an N(k)-contact metric manifold M of dimension (2n + 1), we

have [6]

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),(12)

where h = 1
2£ξφ,

h2 = (k − 1)φ2,(13)

R(X,Y )ξ = k[η(Y )X − η(X)Y ],(14)

S(X,Y ) = 2(n− 1)g(X,Y ) + 2(n− 1)g(hX, Y )

+ [2nk − 2(n− 1)]η(X)η(Y ), n ≥ 1.
(15)

S(Y, ξ) = 2nkη(X),(16)

(∇Xη)(Y ) = g(X + hX, φY ),(17)

(∇Xh)(Y ) = {(1− k)g(X,φY ) + g(X,hφY )}ξ + η(Y )[h(φX + φhX)](18)

for any vector fields X,Y, Z, where R is the Riemannian curvature tensor and S
is the Ricci tensor.

In [4] Blair proved the following theorem.

Theorem 2.1 ([4]). A (2n+1) dimensional contact metric manifold satisfying
R(X,Y )ξ = 0 is locally isometric to En+1(0)×Sn(4) for n > 1 and flat for n = 1.

We also recall the notion of D-homothetic deformation. For a given contact
metric structure (φ, ξ, η, g), this is the structure defined by

η̄ = aη, ξ̄ =
1

a
ξ, φ̄ = φ, ḡ = ag + a(a− 1)η ⊗ η,
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where a is a positive constant. While such a change preserves the state of being
contact metric, K-contact, Sasakian or strongly pseudo-convex CR, it destroys a
condition as R(X,Y )ξ = 0 or R(X,Y )ξ = k{η(Y )X − η(X)Y }.
However, the form of the (k, µ)-nullity condition is preserved under aD-homothetic
deformation with

k̄ =
k + a2 − 1

a2
, µ̄ =

µ+ 2a− 2

a
,

Given a non-Sasakian (k, µ)-contact manifold M , Boeckx [8] introduced an invari-
ant

IM =
1− µ

2√
1− k

and showed that for two non-Sasakian (k, µ)-manifolds (Mi, φi, ξi, ηi, gi), i = 1, 2,
we have IM1

= IM2
if and only if up to a D-homothetic deformation, the two

manifolds are locally isometric as contact metric manifolds.
Thus we see that from all non-Sasakian (k, µ)-manifolds locally as soon as we have
for every odd dimension (2n + 1) and for every possible value of the invariant I,
one (k, µ) manifold M can be obtained with IM = I. For I > −1, such examples
may be found from the standard contact metric structure on the tangent sphere
bundle of a manifold of constant curvature c where we have I = 1+c

|1−c| . Boeckx

also gives a Lie algebra construction for any odd dimension and value of I ≤ −1.

Example 2.1. [6]

Using this invariant, Blair et al. [6] constructed an example of a (2n+1)-dimen-
sional N(1− 1

n )-contact metric manifold, n > 1. The example is given as follows:

Since the Boeckx invariant for a (1− 1
n , 0)-manifold is

√
n > −1, we consider the

tangent sphere bundle of an (n+ 1)-dimensional manifold of constant curvature c
such that the resulting D-homothetic deformation is a (1 − 1

n , 0)-manifold. That
is, for k = c(2− c) and µ = −2c, we solve

1− 1

n
=
k + a2 − 1

a2
, 0 =

µ+ 2a− 2

a

for a and c. The result is

c =

√
n± 1

n− 1
, a = 1 + c,

and taking c and a to be these values, we obtain an N(1 − 1
n )-contact metric

manifold.
The above example will be used in Theorem 5.1.

3. Projectively pseudosymmetric N(k)-contact metric manifolds

A Riemannian manifold is said to be projectively pseudosymmetric [23] if at every
point of the manifold the following relation

(R(X,Y ) ·R)(U, V )W = LR((X ∧ Y ) ·R)(U, V )W )(19)
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holds for any vector fields X, Y , U , V , W ∈ TM , where LR is an function of M .
The endomorphism X ∧ Y is defined by

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y.(20)

Now a Riemannian manifold is said to be projectively pseudosymmetric if it sat-
isfies the condition

(R(X,Y ) · P )(U, V )W = LP ((X ∧ Y ) · P )(U, V )W ),(21)

where LP (6= k) is a function on M .
Let us suppose that a N(K)-contact metric manifold satisfies the condition

(R(X,Y ) · P )(U, V )W = LP ((X ∧ Y ) · P )(U, V )W ).(22)

Putting Y = W = ξ (22), we have

(R(X, ξ) · P )(U, V )ξ = LP ((X ∧ ξ) · P )(U, V )ξ).(23)

Now

LP ((X ∧ ξ).P )(U, V )ξ) = LP [(X ∧ ξ)P (U, V )ξ − P ((X ∧ ξ)U, V )ξ

− P (U, (X ∧ ξ)V )ξ − P (U, V )(X ∧ ξ)ξ].
(24)

In view of (1), the projective curvature tensor of a (2n + 1)-dimensional
N(k)-contact manifold is

P (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y, Z)X − S(X,Z)Y ].(25)

Now from the above equation with the help of (14), we have

P (U, V )ξ = 0(26)

for any vector fields U , V .
Using (14), (25) and (26) in (24), we get

(X ∧ ξ)P (U, V )ξ = 0,(27)

P ((X ∧ ξ)U, V )ξ = 0,(28)

P (U, (X ∧ ξ)V )ξ = 0,(29)

P (U, V )(X ∧ ξ)ξ = P (U, V )X.(30)

In view of (27), (28), (29) and (30), from (24), we obtain

LP ((X ∧ ξ) · P )(U, V )ξ) = −LPP (U, V )X.(31)

Therefore, from (23) and (31) we have

(R(X, ξ) · P )(U, V )ξ = −LPP (U, V )X.(32)

It follows that

R(X, ξ)P (U, V )ξ − P (R(X, ξ)U, V )ξ − P (U,R(X, ξ)V )ξ

− P (U, V )R(X, ξ)ξ = −LPP (U, V )X.
(33)

Again using (14), (26) in (33) we have

−kP (U, V )X = −LPP (U, V )X.(34)
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The above equation yields

(LP − k)P (U, V )X = 0.(35)

By assumption LP 6= k, hence we get

P (U, V )X = 0,(36)

for any vector fields U , V .
Conversely, if P = 0, then the equation (22) holds trivially. Thus in view of the

above result we can state the following theorem.

Theorem 3.1. A (2n + 1)-dimensional N(k)-contact metric manifold is pro-
jectively pseudosymmetric if and only if it is projectively flat.

Also projectively flatness implies projectively semisymmetric. Therefore, we
can state the following Theorem.

Theorem 3.2. A (2n+1)-dimensional projectively pseudosymetricN(k)-contact
metric manifold is projectively semisymmetric provided LP 6= k.

4. Pseudoprojectively flat N(k)-contact metric manifolds

An N(k)-contact metric manifold is said to be pseudoprojectively flat if

g(P (φX, Y )Z, φW ) = 0.(37)

From (5), we have

g(P (φX, Y )Z, φW ) = g(R(φX, Y )Z, φW )

− 1

2n
{S(Y, Z)g(φX, φW )− S(φX,Z)g(Y, φW )}

(38)

for all X, Y , Z and W . Let us take an orthonormal basis {e1, e2, . . . , e2n, ξ} in M .
Therefore from (38) we get

2n∑
i=1

g(P (φei, Y )Z, φei)=
2n∑
i=1

g(R(φei, Y )Z, φei)

− 1

2n

2n∑
i=1

{S(Y, Z)g(φei, φei)−S(φei, Z)g(Y, φei)}.

(39)

In a (2n+ 1)-dimensional almost contact metric manifold, if {e1, e2, . . . , e2n, ξ} is
a local orthonormal basis of a vector field in M , then {φe1, φe2, . . . , φe2n, ξ} is a
local orthonormal basis. It is easy to verify that

2n∑
i=1

g(ei, ei) =

2n∑
i=1

g(φei, φei) = 2n,(40)

2n∑
i=1

g(ei, Z)S(Y, ei) =

2n∑
i=1

g(φei, Z)S(Y, φei)

= S(Y,Z)− S(Y, ξ)η(Z)

(41)
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for all Y , Z ∈ TM .
In an N(k)-contact metric manifold, we also have

g(R(ξ, Y )Z, ξ) = kg(φY, φZ)(42)

for all Y , Z ∈ TM . Consequently,

2n∑
i=1

g(R(ei, Y )X, ei) =

2n∑
i=1

g(R(φei, Y )Z, φei)

= S(Y, Z)− kg(φY, φZ).

(43)

Using the equations (40), (41), (42) and (43) in (39), we have

2n∑
i=1

g(P (φei, Y )Z, φei) =
1

2n
S(Y,Z)− kg(Y, Z).(44)

If the manifold M satisfies (37), we have

1

2n
S(Y, Z)− kg(Y,Z) = 0.(45)

This implies

S(Y,Z) = 2nkg(Y, Z).(46)

Therefore, a pseudoprojectively flat N(k)-contact metric manifold be an Einstein
manifold.

Conversely, let the manifold is an Einstein manifold. Then we have

S(X,Y ) = 2nkg(X,Y ).(47)

Now

g(P (φX, Y )Z,φW )

= g(R(φX, Y )Z, φW )− 1

2n
{S(Y, Z)g(φX, φW )

− S(φX,Z)g(Y, φW )}

= g(k[g(Y,Z)φX − g(φX,Z)Y, φW )− 1

2n
{2nkg(Y, Z)g(φX, φW )

− 2nkg(φX,Z)g(Y, φW )} using (5.11)

= k[g(Y, Z)g(φX, φW )− g(φX,Z)g(Y, φW )− g(Y, Z)g(φX, φW )

+ (φX,Z)g(Y, φW )] = 0.

(48)

It follows that the manifold is pseudoprojectively flat. Thus in view of the above
result, we can state the following theorem.

Theorem 4.1. A (2n+ 1)-dimensional N(k)-contact metric manifold is pseu-
doprojectively flat if and only if it is an Einstein manifold.

S. Tanno [22] proved the next theorem.
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Theorem 4.2 ([22]). If M is a (2n+ 1)-dimensional (n ≥ 2) Einstein contact
metric manifold with ξ belonging to the k-nullity distribution, then k = 1 and M
is Sasakian.

Therefore we can state the following:

Theorem 4.3. A (2n + 1)-dimensional (n ≥ 2) pseudoprojectively flat
N(k)-contact metric manifold is a Sasakian manifold.

5. N(k)-contact metric manifolds satisfying Z̃ · P = 0

In this section, we consider an N(k) contact metric manifold satisfying Z̃ · P = 0.
Therefore, we have

(Z̃(X,Y ) · P )(U, V )W = 0.(49)

This implies

Z̃(X,Y )P (U, V )W − P (Z̃(X,Y )U, V )W − P (U, Z̃(X,Y )V )W

− P (U, V )Z̃(X,Y )W = 0.
(50)

Putting X = ξ in (50), we have

Z̃(ξ, Y )P (U, V )W − P (Z̃(ξ, Y )U, V )W − P (U, Z̃(ξ, Y )V )W

− P (U, V )Z̃(ξ, Y )W = 0.
(51)

Now,

Z̃(ξ, Y )P (U, V )W = R(ξ, Y )P (U, V )W − r

2n(2n+ 1)
[g(Y, P (U, V )W )ξ

− g(ξ, P (U, V )W )Y ],

= k[g(Y, P (U, V )W )ξ − η(P (U, V )W )]

− r

2n(2n+ 1)
[g(Y, P (U, V )W )ξ − η((U, V )W )Y ]

= (k − r

2n(2n+ 1)
)[g(Y, P (U, V )W )ξ

− η((U, V )W )Y ].

(52)

Similarly,

P (Z̃(ξ, Y )U, V )W

= (k − r

2n(2n+ 1)
)[g(Y,U)P (ξ, V )W − η(U)P (Y, V )W ],

(53)

P (U, Z̃(ξ, Y )V )W

= (k − r

2n(2n+ 1)
)[g(Y, V )P (U, ξ)W − η(V )P (U, Y )W ]

(54)
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and

P (U, V )Z̃(ξ, Y )W

= (k − r

2n(2n+ 1)
)[g(Y,W )P (U, V )ξ − η(W )P (U, V )Y ].

(55)

Using (52), (53), (54) and (55) in (51), we obtain(
k − r

2n(2n+ 1)

)
[g(Y, P (U, V )W )ξ − η((U, V )W )Y

− g(Y, U)P (ξ, V )W + η(U)P (Y, V )W

− g(Y, V )P (U, ξ)W + η(V )P (U, Y )W

− g(Y,W )P (U, V )ξ + η(W )P (U, V )Y ] = 0.

(56)

Therefore, either k = r
2n(2n+1) , or

g(Y, P (U, V )W )ξ − η((U, V )W )Y − g(Y,U)P (ξ, V )W

+ η(U)P (Y, V )W − g(Y, V )P (U, ξ)W + η(V )P (U, Y )W

− g(Y,W )P (U, V )ξ + η(W )P (U, V )Y = 0.

(57)

Putting V = ξ in (57), we have

g(Y, P (U, ξ)W )ξ − η((U, ξ)W )Y − g(Y,U)P (ξ, ξ)W

+ η(U)P (Y, ξ)W − g(Y, ξ)P (U, ξ)W + η(ξ)P (U, Y )W

− g(Y,W )P (U, ξ)ξ + η(W )P (U, ξ)Y = 0.

(58)

Using (1) in (58), we have

−
{ 1

2n
S(U,W )− kg(U,W )

}
Y

+
{ 1

2n
S(Y,W )− kg(Y,W )

}
η(U)ξ

+ P (U, Y )W +
{ 1

2n
S(U, Y )− kg(U, Y )

}
η(W )ξ = 0.

(59)

Taking inner product of (59) with ξ and using (1), we have

η(W )[S(U, Y )− 2nkg(U, Y )] = 0(60)

for all vector fields Y , U , W .

Since η(W ) 6= 0, the equation (60) yields S(U, Y ) = 2nkg(U, Y ). Thus Z̃ ·P = 0
implies k = r

2n(2n+1) , that is, r = 2n(2n + 1)k or Einstein manifold. Again, we

know that the scalar curvature of an N(k)-contact metric manifold is r = 2n ·
(2n − 2 + k). Comparing the values of r, we obtain k = 1 − 1

n , and hence M is
locally isometric to the manifold of Example 2.1 for n > 1 and flat for n = 1.

Thus in view of the above result, we can state the following.

Theorem 5.1. If a (2n + 1)-dimensional non-Sasakian N(k)-contact metric

manifold satisfies Z̃ · P = 0, then either it is an Einstein manifold or locally
isometric to the manifold of Example 2.1 for n > 1 and flat for n = 1.
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1. Arslan K., Murathan C. and Özgur C., On φ-conformally flat contact metric manifolds,
Balkan Journal of Geom. Appl. 5(2) (2000), 1–7.

2. Blair D. E., Contact manifolds in Riemannian geometry, Lecture note in Math. 509,

Springer-Verlag, Berlin-New York 1976.
3. , Riemannian geometry of contact and symplectic manifolds, Progress in Math. 203,

Birkhauser Boston, Inc., Boston 2002.

4. , Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319–324.
5. Blair D. E., Koufogiorgos T. and Papantoniou B. J., Contact metric manifolds satisfying a

nullity condition, Israel J. Math. 91 (1995), 189–214.

6. Blair D. E., Kim J. S. and Tripathi M. M., On the concircular curvature tensor of a contact
metric manifold, J. Korean Math. Soc. 42(5) (2005), 883–992.

7. Boeckx E., Kowalski O. and Vanhecke L., Riemannian manifolds of conullity two, Singapore

World Sci. Publishing 1996.
8. Boeckx E., A full classification of contact metric (k, µ)-spaces, Illinois J. Math. 44 (2010),

212–219.
9. Cartan E., Sur une classe remarqable d’ espaces de Riemannian, Bull. Soc. Math. France.

54 (1962), 214–264.

10. De U. C., Murathan C. and Arsalan K., On the Weyl projective curvature tensor of an
N(k)-contact metric manifold, Mathematica Panonica, 21(1) (2010), 129–142.

11. De U. C. and Sarkar A., On the quasi-conformal curvature tensor of a (k, µ)-contact metric

manifold, Math. Reports, 14(64) (2012), 115–129.
12. De U. C., Yildiz A. and Ghosh S., On a class of N(k)-contact metric manifolds, Math.

Reports., 16(66)(2014).

13. Avik De and Jun J. B., On N(k)-contact metric manifolds satisfying certain curvature
conditions, Kyungpook Math. J. 51(4) (2011), 457–468.

14. Jun J. B. and Kim U. K., On 3-dimensional almost contact metric manifolds, Kyungpook
Math. J. 34(2) (1994), 293–301.

15. Kowalski O., An explicit classification of 3-dimensional Riemannian spaces satisfying

R(X,Y ) ·R = 0, Czechoslovak Math. J. 46(121) (1996), 427–474.
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20. Sooś G., Über die geodätischen Abbildungen von Riemannaschen Räumen auf projektiv sym-
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