
Acta Math. Univ. Comenianae
Vol. LXXXVIII, 3 (2019), pp. 495–499

495

MAXIMUM NUMBER OF TRIANGLE-FREE EDGE

COLOURINGS WITH FIVE AND SIX COLOURS

F. BOTLER, J. CORSTEN, A. DANKOVICS, N. FRANKL, H. HÀN, A. JIMÉNEZ

and J. SKOKAN

Abstract. Let k ≥ 3 and r ≥ 2 be natural numbers. For a graph G, let F (G, k, r)

denote the number of colourings of the edges of G with colours 1, . . . , r such that,

for every colour c ∈ {1, ..., r}, the edges of colour c contain no complete graph on
k vertices Kk. Let F (n, k, r) denote the maximum of F (G, k, r) over all graphs G

on n vertices. The problem of determining F (n, k, r) was first proposed by Erdős

and Rothschild in 1974, and has so far been solved only for r = 2, 3, and a small
number of other cases.

In this paper we consider the question for the cases k = 3 and r = 5 or r = 6.

We almost exactly determine the value F (n, 3, 6) and approximately determine the
value F (n, 3, 5) for large values of n. We also characterise all extremal graphs for

r = 6 and prove a stability result for r = 5.

1. Introduction

A fundamental theorem of graph theory by Turán [14] asserts that among the
graphs on n vertices that do not contain a complete graph on k vertices Kk, the
complete balanced k − 1-partite graph, also known as the Turán graph Tk−1(n),
has the largest number of edges tk−1(n). Clearly, no matter how we colour the
edges of the Turán graph, the edges of the same colour form a graph with no
Kk in it. We call such a colouring Kk-free. Hence Tk−1(n) has rtk−1(n) Kk-free
colourings with r colours. A natural question is whether we can find a graph with
more Kk-free colourings, and if yes, which such graph has the most edges.

Let k ≥ 3 and r ≥ 2 be natural numbers. By a colouring of a graph G = (V,E)
with r colours we mean a function f : E → {1, . . . , r}. In this context we refer to
the numbers 1, . . . , r as colours. For a graph G, let F (G, k, r) denote the number
of Kk-free colourings of G with r colours. Let F (n, k, r) denote the maximum of
F (G, k, r) over all graphs G on n vertices. Then the above lower bound obtained
from the Turán graph can be restated as

(1) F (n, k, r) ≥ rtk−1(n).
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The problem of determining F (n, k, r) was first proposed by Erdős and Roth-
schild in 1974 [6, 7]. They conjectured that in the case k = 3 and r = 2 the lower
bound (1) is sharp for large enough n, and furthermore that T2(n) is the unique
extremal graph. Their conjecture was proved by Yuster [15] who also proved an
approximate version of the statement for general k and r = 2.

Improving on Yuster’s results, Alon, Balogh, Keevash and Sudakov fully re-
solved the r = 2 and r = 3 cases for large values of n.

Theorem 1.1 (Alon, Balogh, Keevash, Sudakov [1]). For k ≥ 3 and n ≥ n0(k)
the following holds, F (n, k, 2) = 2tk−1(n) and F (n, k, 3) = 3tk−1(n). Moreover, the
corresponding unique extremal graph is Tk−1(n).

In their paper [1] the authors also noted that the case r > 3 is more chal-
lenging as the behavior of F (n, k, r) changes. Indeed, they proved that if r > 3
then F (n, k, r) is exponentially larger than rtk−1(n). They also determined the ap-
proximate values of F (n, 3, 4) and F (n, 4, 4). Subsequently, Pikhurko and Yilma
improved on their result showing that F (n, 3, 4) = F (T4(n), 3, 4) and F (n, 4, 4) =
F (T9(n), 4, 4) and the corresponding extremal graphs are unique [11]. More re-
cently, Pikhurko, Staden and Yilma [12] proved that for every n, k, r there is a
complete multipartite graph G such that F (n, k, r) = F (G, k, r). This graph is
not necessarily unique and not necessarily balanced.

In the current paper we consider the case k = 3 and r = 5 or r = 6. Let
ϕr(G) = F (G, 3, r) and ϕr(n) = F (n, 3, r). In the case r = 6 we determine the
value of ϕ6(n) almost exactly. Furthermore, for large values of n, we determine
all graphs G for which ϕ6(G) = ϕ6(n).

Theorem 1.2. For every n we have ϕ6(n) = (cn + o(1)) · 3n2/343n
2/16, where

cn is a constant depending only on n modulo 8. Moreover, if ϕ6(G) = ϕ6(n), then
G is a complete balanced 8-partite graph.

To state our result for the case r = 5 we need the following notations. Suppose
we are given a graph G and subgraphs H1, . . . ,Hr ⊆ G with E(G) = E(H1) ∪
. . . ∪ E(Hr). We denote by Φ(H1, . . . ,Hr) the family of all colourings χ in which
χ−1(i) ⊆ E(Hi) for all i ∈ [r]. If each Hi is triangle-free, then every such colouring
is triangle-free, hence we have ϕr(G) ≥ |Φ(H1, . . . ,Hr)|. Furthermore, the number
of such colourings is easy to count. For i ∈ [r], let Mi = Mi(H1, . . . ,Hr) ⊆ G
denote the graph on V (G) whose edges are those of G contained in exactly i of the
subgraphs H1, . . . ,Hr. We denote by mi = mi(H1, . . . ,Hr) the number of edges
in Mi.

Theorem 1.3 (Stability for r = 5). For every ε > 0 there is an n0 such that for
all graphs G on n > n0 vertices the following holds. Suppose H1, . . . ,H5 ⊆ G and

|Φ(H1, . . . ,H5)| ≥ 6n
2/4−εn2/4. Then there are balanced bipartitions V 0

i ∪ V 1
i =

V (Hi) for each i ∈ [5], an integer t ∈ {4, 6, 8} and v(1), . . . , v(t) ∈ {0, 1}5 such that∣∣∣ ⋃
i∈[t]

⋂
j∈[5]

V
v
(i)
j

j )
∣∣∣ ≥ (1− 10000

√
ε
)
n.
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Further, there is an s ∈ [5] and a partition of {v(1), . . . , v(t)} into

E0 =
{
v(i) : i ∈ [t], v(i)s = 0

}
and E1 =

{
v(i) : i ∈ [t], v(i)s = 1

}
such that

1. each pair (v, v′) ∈ E0 × E1 has distance three and each pair (v, v′) ∈
(E0
2

)
∪(E1

2

)
has distance two or four.

2. Moreover, pairs of distance four form a perfect matching in E0×E1 and for
each of these matched pairs v, v′ we have |V (v)| = |V (v′)| ± 4

√
εn.

This theorem means that every graph G for which ϕ5(G) is close to ϕ5(n),
is close to a complete eight-partite graph with one of the following part-sizes:
(n/4, n/4, a, a, b, b, n/4 − a − b, n/4 − a − b) for some 0 ≤ a, b and a + b ≤ n/4 or
(a, a, n/4− a, n/4− a, b, b, n/4− b, n/4− b) for some 0 ≤ a, b ≤ n/4. Calculating
the number of K3-free colourings for these graphs gives the following corollary.

Corollary 1.4. For every n we have ϕ5(n) ≤ 6n
2/4+o(n2).

The fact that the aforementioned graphs all have asymptotically equal number
of K3-free colourings makes the case r = 5 particularly difficult and interesting.
The authors are currently working on finding the exact solution for this case.

2. methods

In this section we describe (without proof) the main ingredients of our proof of
Theorem 1.2. We also include a brief outline of the proof without technical details.
We focus on the case r = 6 as the case r = 5 uses the same ideas but it is technically
more difficult to state.

Our aim is to prove that T8(n) is the unique extremal graph. Our proof consists
of the following three steps.

First, using the container method, we approximate the number of K3-free
colourings of T8(n) and show that it is approximately optimal.

Second, we prove a structural stability result, that is, any graph that has nearly
optimal number of K3-free colourings must be very similar to T8(n). For that,
we use theorems of Bollobás [4] and Füredi [8] to investigate the structure of the
containers, proving that they must be close to complete balanced bipartite graphs.

Last, we prove the exact result. Starting from the stability result, we prove a
series of local improvement claims. By proving a series of technical local improve-
ment claims on our stability result, we strengthen the sense in which the extremal
graph is close to T8(n). After a series of such technical claims we conclude that
T8(n) is indeed the unique extremal graph.

2.1. Approximate upper bounds

The main tool in this part is the container theorem below proved by Mousset,
Nenadov and Steger [10] using the hypergraph container method of Balogh, Morris
and Samotij [2] and Saxton and Thomason [13]. We use an equivalent formulation
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of their result as stated by Balogh et al. in [3]. This approach was introduced by
Hàn and Jiménez [9] using ideas of Clemens, Das and Tran [5].

Theorem 2.1 ([3, Theorem 3.2]). There exists constant n0 such that for every
graph G on n > n0 vertices there exists a collection C = C(G) of subgraphs of G
such that the following holds:

(a) every triangle-free subgraph G′ ⊆ G is a subgraph of some C ∈ C,
(b) K3(C) ≤ n25/9 for every C ∈ C,
(c) |C| ≤ exp

(
n16/9

)
.

Although the container theorem leads to an initial upper bound, we need the
following stronger result, which is obtained by investigating (as described in the
next subsection) the structure of the containers.

Theorem 2.2. For every graph G on n vertices, the number of 6-colourings of
E(G) without monochromatic triangles is at most

3n
2/443n

2/16+o(n2).

2.2. Stability

By investigating the structure of the containers, we find that each container either
has a low number of edges, which makes it irrelevant for the total number of
colourings, or it is very close to complete balanced bipartite. For that, we use the
following theorems.

Theorem 2.3 (Bollobás [4]). Every graph with n vertices and m edges has at
least n

9 (4m− n2) triangles.

Theorem 2.4 (Füredi [8]). Every triangle-free graph with at least n2

4 − t edges
has a bipartite subgraph with at least n2

4 − 2t edges.

The reason for showing that each relevant container is close to bipartite is that
then for every six relevant containers C1, . . . , C6, the graph M3(C1, . . . , C6) (recall
that this means the edges that appear in exactly 3 of the containers) does not
contain many triangles. This gives us the desired improvement to the approximate
upper bound as well as the approximate structure of any graph close to extremal.

Theorem 2.5 (Stability for r = 6). For every ε > 0 there is an n0 such that
for all graphs G on n > n0 vertices the following holds. Suppose H1, . . . ,H6 ⊆
G and |Φ(H1, . . . ,H6)| ≥ 3n

2/443n
2/16−εn2

. Then there are balanced bipartitions
V 0
i ∪ V 1

i = V (Hi) for each i ∈ [6], and v(1), . . . , v(8) ∈ {0, 1}6 such that∣∣∣ ⋃
i∈[8]

⋂
j∈[6]

V
v
(i)
j

j )
∣∣∣ ≥ (1− 10000

√
ε
)
n.

Further, there is a partition of {v(1), . . . , v(8)} into E0 and E1 with |E0| = |E1| such
that each pair (v, v′) ∈ E0×E1 has distance three and each pair (v, v′) ∈

(E0
2

)
∪
(E1
2

)
has distance four.
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