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FLEXIBILITY OF PLANAR GRAPHS WITHOUT 4-CYCLES

T. MASAŘÍK

Abstract. Proper graph coloring assigns different colors to adjacent vertices of

the graph. Usually, the number of colors is fixed or as small as possible. Consider

applications (e.g. variants of scheduling) where colors represent limited resources
and graph represents conflicts, i.e., two adjacent vertices cannot obtain the same

resource. In such applications, it is common that some vertices have preferred

resource(s). However, unfortunately, it is not usually possible to satisfy all such
preferences. The notion called flexibility was recently defined in [Dvořák Z., Norin S.

and Postle L., List coloring with requests, J. Graph Theory (2019), 1–16]. There

instead of satisfying all the preferences the aim is to satisfy at least a constant
fraction of the request.

Recently, the structural properties of planar graphs in terms of flexibility were

investigated. We continue this line of research. Let G be a planar graph with a list
assignment L. Suppose a preferred color is given for some of the vertices. We prove

that if G is a planar graph without 4-cycles and all lists have size at least five, then
there exists an L-coloring respecting at least a constant fraction of the preferences.

1. Introduction

In a proper graph coloring, we want to assign to each vertex of a graph one of a
fixed number of colors in such a way that adjacent vertices receive distinct colors.
Dvořák, Norin, and Postle [3] (motivated by a similar notion considered by Dvořák
and Sereni [4]) introduced the following graph coloring question called Flexibility.
If some vertices of the graph have a preferred color, is it possible to properly color
the graph so that at least a constant fraction of the preferences are satisfied? As
it turns out, this question is trivial in the ordinary proper coloring setting with
a bounded number of colors (k-coloring). The answer is always positive since we
can permute the colors according to the request and therefore satisfy at least 1

k
fraction [3]. On the other hand, Flexibility brought about a number of interesting
problems in the list coloring setting.

A list assignment L for a graph G is a function that to each vertex v ∈ V (G)
assigns a set L(v) of colors, and an L-coloring is a proper coloring ϕ such that
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ϕ(v) ∈ L(v) for all v ∈ V (G). A graph G is k-choosable if G is L-colorable from
every assignment L of lists of size at least k. A weighted request is a function w that
to each pair (v, c) with v ∈ V (G) and c ∈ L(v) assigns a nonnegative real number.
Let w(G,L) =

∑
v∈V (G),c∈L(v) w(v, c). For ε > 0, we say that w is ε-satisfiable if

there exists an L-coloring ϕ of G such that∑
v∈V (G)

w(v, ϕ(v)) ≥ ε · w(G,L).

An important special case is when at most one color can be requested at each
vertex and all such colors have the same weight. A request for a graph G with a
list assignment L is a function r with dom(r) ⊆ V (G) such that r(v) ∈ L(v) for
all v ∈ dom(r). For ε > 0, a request r is ε-satisfiable if there exists an L-coloring
ϕ of G such that ϕ(v) = r(v) for at least ε|dom(r)| vertices v ∈ dom(r).

Note that in particular, a request r is 1-satisfiable if and only if the precoloring
given by r extends to an L-coloring of G. We say that a graph G with the list
assignment L is ε-flexible if every request is ε-satisfiable, and it is weighted ε-flexible
if every weighted request is ε-satisfiable.

Dvořák, Norin, and Postle [3] established the basic properties of the concept.
They prove several theorems in terms of degeneracy and maximum average degree.
For example: For every d ≥ 0, there exists ε > 0 such that d-degenerate graphs
with assignment of lists of size d + 2 are weighted ε-flexible. Those results imply
structural theorems for planar graphs:

• There exists ε > 0 such that every planar graph with an assignment of lists
of size 6 is ε-flexible.

• There exists ε > 0 such that every planar graph of girth at least five with
an assignment of lists of size 4 is ε-flexible.

• There exists ε > 0 such that every planar graph of girth at least 12 with
an assignment of lists of size 5 is weighted ε-flexible.

Those results prompted a number of interesting questions. The main meta-
question for planar graphs is whether such bounds can be improved to match
the choosability. Notice that choosability is a lower bound for the minimum size
of lists in the statement. Dvořák, Masař́ık, Muśılek, and Pangrác subsequently
answer two such questions. In [1] they show that triangle-free planar graphs with
an assignment of lists of size 4 are weighted ε-flexible. This is optimal since there
are triangle-free planar graphs that are not 3-choosable [5, 11]. In [2] they show
that planar graphs of girth at least six with an assignment of lists of size 3 are
weighted ε-flexible. There is still a small gap left open since even planar graphs
of girth at least 5 are 3-choosable [10]. The biggest question in this direction that
is still unanswered is stated as follows.

Question 1. Does there exist ε > 0 such that every planar graph G and
assignment L of lists of size five is (weighted) ε-flexible?

This would be optimal in terms of choosability [10, 9]. However, (if it is true) it
might be difficult to obtain such a result since even the result of Thomassen [9] for
choosability is very involved. In particular, compare it to a rather easy proof [6]
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for choosability of triangle-free planar graphs and still the respective result for
flexibility [1] was quite technical.

In this paper, we propose a step towards answering Question 1 by proving the
following theorem.

Theorem 2. There exists ε > 0 such that each planar graph without 4-cycles
with an assignment of lists of size five is weighted ε-flexible.

Since planar graphs without 4-cycles are 4-choosable [7] there is a gap left open.

2. Preliminaries

We say that a face is edge-adjacent to another face if both share an edge. Since
graphs we are dealing with does not contain 4-cycles they cannot contain two
edge-adjacent triangles.

Let H be a graph. For a positive integer d, a set I ⊆ V (H) is d-independent
if the distance between any distinct vertices of I in H is greater than d. Let 1I
denote the characteristic function of I, i.e., 1I(v) = 1 if v ∈ I and 1I(v) = 0
otherwise. For functions that assign integers to vertices of H, we define addition
and subtraction in a natural way, adding/subtracting their values at each vertex
independently. For a function f : V (H) → Z and a vertex v ∈ V (H), let f ↓ v
denote the function such that (f ↓ v)(w) = f(w) for w 6= v and (f ↓ v)(v) = 1. A
list assignment L is an f -assignment if |L(v)| ≥ f(v) for all v ∈ V (H).

Suppose H is an induced subgraph of another graph G. For an integer k ≥ 3,
let δG,k : V (H)→ Z be defined by δG,k(v) = k − degG(v) for each v ∈ V (H). For
another integer d ≥ 0, we say that H is a (d, k)-reducible induced subgraph of G if

(FIX) for every v ∈ V (H), H is L-colorable for every ((degH +δG,k) ↓ v)-assign-
ment L, and

(FORB) for every d-independent set I in H of size at most k−2, H is L-colorable
for every (degH +δG,k − 1I)-assignment L.

Note that (FORB) in particular implies that degH(v) + δG,k(v) ≥ 2 for all v ∈
V (H). Intuitively, (FIX) requires that H is L′-colorable even if we prescribe the
color of any single vertex of H, and (FORB) requires that H is L′-colorable even
if we forbid to use one of the colors on the set I.

The general version of the following lemma is implicit in Dvořák et al. [3] and
appears explicitly in [1].

Lemma 3. For all integers b ≥ 1, there exists ε > 0 as follows. If for every
Z ⊆ V (G), the graph G[Z] contains an induced (0, 5)-reducible subgraph with at
most b vertices, then G with any assignment of lists of size 5 is weighted ε-flexible.

3. Reducible configurations

In view of Lemma 3, we aim to prove that every planar graph without 4-cycles
contains a (0, 5)-reducible induced subgraph with the bounded number of vertices.

Observation 4. In any graph G, a vertex of degree at most 3 forms a
(0, 5)-reducible subgraph.
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From now on suppose that the minimum degree of G is 4. We describe one more
easy reducible configuration that, in combination with discharging, turns out to
be sufficient to derive the promised theorem.

Lemma 5. If G is a planar graph without 4-cycles, then a vertex v together
with deg(v) − 1 neighbors of degree four forms a (0, 5)-reducible configuration on
deg(v) vertices.

v

Figure 1. A reducible configuration in Lemma 5.

Proof. Consult Figure 1 for a diagram of this reducible configuration.
(FIX): If vertex v has fixed color then we have enough remaining colors on its

neighbors to complete the coloring. If any other vertex v′ is fixed then it crosses
out one color from v and in case v′ has a neighbor in N(v) it also crosses out
one of its colors. In both cases, we can set a color of v and complete the coloring
greedily.

(FORB): Observe that if we forbid a color of a vertex v′ that is not adjacent
to any vertex in N(v) then its color is determined and therefore it crosses out one
color of v. The same effect has a forbidden color of v. If we forbid a color of
a vertex v1 such that it forms a triangle v, v1, v2 then it does not force anything
unless vertex v2 has also a forbidden color. In the latter case two colors are crossed
out from the list of v. Keep in mind that this cannot happen twice since there
are no two edge-adjacent triangles. Since only three colors are removed from the
list of v, we can color v and then the rest of the graph greedily to conclude the
proof. �

4. Discharging

Let us assign charge ch0(v) = deg(v) − 4 to each vertex v ∈ V (G) r V (C) and
charge ch0(f) = |f | − 4 to each face f of G, where |f | denotes the length of the
facial walk of f . By Euler’s formula, we have

∑
v∈V (G) ch0(v)+

∑
f∈F (G) ch0(f) =

(2|E(G)| − 4|V (G)|) + (2|E(G)| − 4|F (G)|) = 4(|E(G)| − |V (G)| − |F (G)|) = −8.
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Note that only triangle-faces have a negative charge before any redistribution
of the charge. We redistribute the initial charge according to the following rules.

(R1) For each face f of G if |f | ≥ 5 then f sends 1
5 to any edge-adjacent triangle-

face.
(R2) For each vertex v of G if deg(v) ≥ 5 then v sends 2

5 to each adjacent
triangle-face.

(R3) For each vertex v of G and each its incident face f if deg(v) ≥ 5 and |f | ≥ 5
then v sends 1

15 to f .

Observe that the charge of any face |f | ≥ 5 does not drop below zero by
Rule (R1). Any vertex v of degree at least 5 with t incident triangle-faces sends

at most 2t
5 by Rule (R2) and (deg(v)−t)

15 by Rule (R3). View that the number of

incident triangle-faces for a single vertex is at most bdeg(v)2 c because there are not

any edge-adjacent triangle-faces. Therefore t ≤ bdeg(v)2 c. It follows that ch(v) ≥ 0.
It remains to argue that all triangle-faces obtain enough of the charge. Each of

them receives the charge at least 3
5 by Rule (R1). If one of its vertices has degree

at least five we are done by Rule (R2). Therefore all of them have degree exactly
four. We call such triangle-face poor.

We do one more redistribution of charge.

(R4) For each poor triangle-face f of G and for each edge-adjacent face f ′ if
|f ′| ≥ 5 then f ′ sends 2

15 to f .

A Combination of Rules (1) and (4) yields that poor triangle-faces have a pos-
itive charge. They obtain 3

5 by Rule (1) and three times 2
15 by Rule (4). Finally,

we show that the charge of larger faces remains non-negative after the application
of Rule (R4).

Consider face f = v1, . . . , vk of length at least five edge-adjacent to some
triangle-face ft = v1, v2, v

′. Recall that deg(v1) = deg(v2) = deg(v′) = 4. By
Lemma 5 applied on vertex v1 we claim that deg(vk) ≥ 5. By the same argument
repeated on vertex v2 we derive deg(v3) ≥ 5. Therefore, by Rule (R3) f receive
charge at least 2

15 from each v3 and vk. This, combined with an observation that
f has at most |f | − 4 edge-adjacent poor triangle-faces, yields the promised claim

for |f | = 5. Larger faces sent only |f |5 by Rule (R1) altogether and therefore they

can pay an additional 2(|f |−5)
15 .

|f |
5

+
2(|f | − 5)

15
=
|f | − 2

3
≤ |f | − 4.

This is a contradiction with the original negative assignment of charge and
therefore we derive Theorem 2.

5. Conclusions

We proved that planar graphs without 4-cycles are weighted ε-flexible for lists of
size at least five. This is a middle step to answer Question 1 that might be chal-
lenging as mentioned in the introduction. Based on the proof possible difficulties
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we suggest, as a next step to prove the conjecture, to inspect first planar graphs
without diamonds (K4 − e).

Conjecture 6. There exists ε > 0 such that every planar graph G without
diamonds and assignment L of lists of size five is (weighted) ε-flexible.

Another possible direction is closing the gap between flexibility and choosability
for planar graphs without 4-cycles.

Question 7. Does there exists ε > 0 such that every planar graph G without
4-cycles and assignment L of lists of size four is (weighted) ε-flexible?

Acknowledgment. I would like to thank Zdeněk Dvořák for helpful com-
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