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LENGTH OF CYCLES IN GENERALIZED PETERSEN GRAPHS

Z.-B. ZHANG AND Z. CHEN

ABSTRACT. There have been extensive researchs on cycles in regular graphs, partic-
ularly 3-connected cubic graphs. Generalized Petersen graphs, denoted by GP(n, k),
are highly symmetric 3-connected cubic graphs, which have attracted great atten-
tion. The Hamiltonicity of GP(n, k) has been studied for a long time and thoroughly
settled. Inspired by Bondy’s meta-conjecture that almost every nontrivial condition
for Hamiltonicity also implies pancyclicity, we seek for more cycle structures in this
class of graphs, by figuring out the possible lengths of cycles in them.

It turns out that generalized Petersen graphs, though not generally pancyclic,
miss only very few possible length of cycles. For k € {2,3}, we completely determine
all possible cycle lengths in GP(n, k). We also obtain some results for GP(n, k)
where k is odd. In particular, when k is odd, and n is even and sufficiently large,
GP(n, k) is bipartite and weakly even pancyclic.

1. INTRODUCTION

Theory on cycles in graphs forms an important branch of graph theory. Hamil-
tonian cycles, i.e. cycles that go through every vertex of a graph exactly once,
have caught particularly attention. It can be observed that in many occasions
the existence of Hamiltonian cycles also accompany with cycles of many or even
all possible lengths. In 1970’s, Bondy introduced the concept of pancyclic graphs,
which are graphs that contain cycles of every length k for 3 < k < |G|, and posed
the meta-conjecture that almost every nontrivial condition for hamiltonicity also
implies pancyclicity. As an illustration of this idea, he showed that Ore’s classical
condition which states that d(u) + d(v) > |G| for any nonadjacent vertex pair
{u,v} € V(G), implies not only hamiltonicity but also pancyclicity, while exclud-
ing complete balanced bipartite graphs. From then on, numerous research works
came forth to generalize various Hamiltonian conditions to pancyclicity.

It is usually easier to find rich cycle structures in dense graphs. For example,
Ore’s condition implies that the graph G contains at least (|G|? + 1)/4 edges,
and thus is quite dense. On the other hand, it is relatively challenging to find
Hamiltonian cycles or cycles of specified lengths in sparse graphs. One typical
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kind of sparse graphs that are of broad interest is k-regular graphs with a fixed
degree k. Jackson ([6]) proved that a 2-connected k-regular graph with at most
3k vertices is Hamiltonian. Zhu et al. ([12]) improved the result to include graphs
with 3k + 1 vertices. It is well-known that Tait had conjectured ([10]) every
3-connected cubic planar graph contains a Hamilton cycle, but this conjecture was
disproved by a counterexample found by Tutte ([11]).

In general k-regular graphs with larger order with respect to k, it is less likely
that a Hamiltonian cycle exists. However, there are continuous works to find
out the length of the longest cycle, i.e., the circumference of such graphs. The
circumference of a graph G is denoted by ¢(G). Improving several former results,
Liu et al. ([7]) recently proved a lower bound of (n%8) for the circumference of
3-connected cubic graphs. The best upper bound so far was proved by Bondy and
Simonovits ([5]) who constructed an infinite family of 3-connected cubic graphs
with circumference ©(n'°% 8) ~ ©(n0-946).

In this paper, we consider cycles in a highly symmetric subclass of 3-connected
cubic graphs, namely the generalized Petersen graphs. A generalized Petersen
graph, denoted by GP(n, k), consists of the vertex set U = {u; : 0 <i<n-—1}U
V ={v; : 0 <i<n—1} and the edge set {u;u;11,v;0;45,uv; : 0 < i <m—1},
wheren > 5, k < n/2, and the subscripts of the vertices are modulo n. Generalized
Petersen graphs were introduced by Watkins when studying edge-coloring of cubic
graphs. The name comes from the Petersen graph, which is exactly GP(5,2).
After their introduction, generalized Petersen graphs have been studied from many
aspects such as transitivity, hamiltonicity and coloring.

The study of Hamiltonian cycles in generalized Petersen graphs can be traced
back to the doctoral thesis ([9]) of Robertson. Through continuous works of Bondy
([4]), Bannai ([3]) and Alspach ([1]), the problem was thoroughly solved, as sum-
marized in the theorem below.

Theorem 1.1. GP(n,k) is Hamiltonian, unless GP(n,k) = GP(6t + 5,2) for
a certain t > 0. Furthermore every GP(n, k) &2 GP(6t 4 5,2) contains a cycle of
length 2n — 1.

A graph is Hamiltonian-connected if every vertex pair {u,v} is joined by a
Hamiltonian path. In some recent works ([2, 8]), the Hamiltonian-connectedness
of GP(n, k) is studied.

Following the idea of the meta-conjecture of Bondy, we will focus on pancyclicity
and related problems of generalized Petersen graphs in this paper. Firstly we
introduce some variants of pancyclicity. The length of the shortest cycle in a
graph G, denoted by g(G), is called the girth of G. In the case that G contains
cycles of every length between g(G) and ¢(G), we say that G is weakly pancyclic.
When G is bipartite, G contains cycles of even lengths only. Correspondingly, we
define even pancyclicity and weak even pancyclicity. Note that even the Petersen
graph itself, which contains cycles of length 5,6,8 and 9, is not pancyclic. As it
turns out, in many cases, GP(n, k) is not pancyclic or weakly pancyclic, but only
misses very few length of cycles. Therefore, the main theme of our work is figuring
out the set of lengths of cycles that we can find in GP(n, k).
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To find the possible cycle lengths in GP(n, k), it is helpful to firstly make clear
their accurate bounds, i.e., the circumference and the girth of GP(n, k). The cir-
cumference of GP(n, k) is stated in Theorem 1.1. Our first main result completely
determines the girth of GP(n, k).

Theorem 1.2.
9(GP(n,k)) = min (8,

n n n
_ — 2,(14+k) -] — 2.
scd(n, k) AR RIS

Then, we determine all possible cycle lengths of GP(n, k) for k € {2,3}, in the
two theorems below.

Jk+3,n—(k—-1)]

Theorem 1.3. The possible lengths of cycles in GP(n,2) are as follows.

(1) All GP(n,2) contain l-cycles for 1 =5 and 8 <1< 2n —2;

(2) A GP(n,2) contains 2n-cycles (i.e., Hamiltonian cycles) iff n # 5 (mod 6);
(3) A GP(n,2) contains (2n — 1)-cycles iff n 4 (mod 6);

(4) A GP(n,2) contains T-cycles iff n € {6,7,8,9,14};

(5) A GP(n,2) contains 6-cycles iff n € {5,6,7,12};

(6) A GP(n,2) contains 4-cycles iff n = 8;

(7) A GP(n,2) contains 3-cycles iff n = 6.

Theorem 1.4. The possible lengths of cycles in GP(n,3) are as follows.

(1) When n is even, GP(n, k) is bipartite, and is weakly even pancyclic;

(2) When n is odd, GP(n,k) contains cycles of every even length between its
girth and circumference, cycles of every odd length between L”T*lj + 3 and
2n — 1, and cycles of length 3 if n is a multiple of k.

For the general cases, we obtain some results on cycles in GP(n, k) where k
is odd, summarized in the theorem below, of which Theorem 1.4 is actually a
special case. These results indicate that GP(n, k) contains a wide range of cycle
lengths. In particular, when n is even and sufficiently large, GP(n, k) is bipartite
and weakly even pancyclic.

Theorem 1.5. When k is odd, we can find cycles of the following lengths in
GP(n,k).

(1) GP(n,k) contains cycles of every even length between 4k and 2n + 2 — k.

(2) If n > k? + %k — 4, then GP(n,k) contains cycles of every even length
between g(GP(n,k)) to c(GP(n,k)) = 2n. Particularly, if n is even, then
GP(n, k) is bipartite and is weakly even pancyclic.

(3) Only when n is odd, GP(n,k) contains cycles of odd lengths. Let n' be the
remainder when n is divided by k, and let h(n') be defined as below:

6, ifn' =0,
3 ifn' =1
N o ) )
(1) h’(n)_ 6+’I’L/, Zf2 S n/ < k—2‘4-17

; k+1
E+7—n', ifn > 3=,

GP(n,k) contains cycle of every odd length between |[%] + h(n') and
2n + 2 — k. Furthermore if n’ > 1, then GP(n, k) contains cycle of length
| 2] +h(n') —4, and if n' =0, then GP(n, k) contains cycle of length | % ].
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Figure 1. A convex sector and a concave sector.

We conclude the section with some definitions and notations. In a GP(n,k),
the vertices in U are called the outer vertices, and the cycle they span is called
the outer cycle. The vertices in V are called the inner vertices. Inner vertices may
span one cycle or a set of independent cycles, called the inner cycles. Inner and
outer cycles are both called trivial cycles, and all other cycles are called nontrivial
cycles. Furthermore, we call an edge on the outer cycle an outer edge, an edge
on an inner cycle an inner edge, and an edge between U and V' a spoke. A cycle
of length [ is called an l-cycle. We use ged(a,b) to denote the greatest common
divisor of a and b.

2. OUR TOOLS AND METHODS

2.1. Sector

The main tool we use is sector, a concept that we newly introduce. Since trivial
cycles are only of length either n or m, we rely on nontrivial cycles for more
lengths. While a nontrivial cycle contains at least two spokes, We cut it along
spokes into small parts called sectors, defined as below.

Let 0 < s,t < n — 1, the subgraph of GP(n,k) consisting of the edge sets
{ujwipr 1 s —1 <9 <t}, {vjvj1p : s — k < j <t} and {usvs, wv,} is called a base
(of sectors) between two spokes usvs and uvy. A sector of GP(n,k) is defined
to be a subgraph of a base containing usvs and u;v;, and in which every u; and
every v;, s < i <t, is of degree 0 or 2. It can be deduced from the definition that
a sector does not contain any of the spokes ujv;, t < j < s. Furthermore, in a
sector every u;, t < i < s, must be of degree 2 or 0 at the same time. In the former
case the path ususyi ... u—1us is contained in the sector, we say that the sector
is conver; In the latter case no internal vertex of the path ususyy ... u—1u; is in
the sector, we say that the sector is concave. See Figure 1 for examples of convex
and concave sectors.

Let S be a sector between usvs and uzv;. The length of the sector is defined to
be L(S) =t — s (mod n). Let

1, if vsveqr € E(S)
s) = { 0, otherwise.
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The input of the sector is defined to be

I(S) = (p(s — k), (s =k +1),...,0(s — 1)).
And the output of the sector is defined to be

O(S) = (et +1—k),p(t +2—k),...,0(t)).

The deficiency of the sector, denoted by Q(S), is defined to be the number of
vertices in U UV but not in the sector.

Let © = (x9, 21, ...,2k—1) be a 0-1 k-vector. We define three kinds of functions
on x, which are the identity function

e(z) =z,
the rotating left function
T‘(I) = (1‘1, Loy ... ,.fEk_l,[,Co),

and the inverse function on the i-th component, for 0 <i < k — 1,

’I’Ll(l‘) = (1‘0,1‘1, ey 1-— Liyo-- ;xk—l)-
For general integer i, we further define n;(x) = n, .4 »(¢). Note that r~! is
well-defined and exactly the rotating right function. We have r¥ = r=% = n? = e,

nin; = n;n; and n;r = rn; .
A sector S is determined by I(S), L(S) and its concavity. In particular, the
output of S can be computed as below.

Lemma 2.1. Let S be a sector of GP(n, k), then
O(8) = r*Hnp gyno(1(5)) = n_yrt S+ ng(1(8)).

We can form a cycle by joining sectors. Any two consecutive sectors, say S and
So, on a nontrivial cycle must be of different concavity. Further, their input and
output must satisfy the following equation:

(2) rng(1(S2)) = O(51),

in which case we say that the ordered pair (S1,52) is a compatible pair, where Sp
is called the predecessor and S, is called the successor.

Also, the deficiency of a sector can be calculated from its input, length and
concavity.

Lemma 2.2. Let S be a sector in GP(n,k), and let

(007 O1y..., Om—l) = ’I’no(I(SQ)),
i.e., the output of a predecessor of S on any nontrivial cycle. If S is convex, then
Q(S) = Zfiﬁ)_Q 0;, and if S is concave, then Q(S) = L(S) — 1+ Z]Li“g)_2 05,
where 0; =1 — 0; and o = 0j_pm, forl > m.

Thus, if we form a cycle C' with m sectors, say {So, S1,...,5m—1}, where S;
and S;j41 are consecutive on C', then m must be even, S; must be convex and
concave alternatively, and the output of S; and the input of Sj;; must satisfy (2)
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(0 <j <m—1 and addition modulo m). We define the deficiency of a cycle C' to
be Q(C) = 2n — |C], then Q(C) = S, Q(S)).

Our main method to construct a cycle of a specified length in GP(n, k) is by
joining an appropriate set of sectors {Sp, S1,. .., Sm—1} as mentioned above. How-
ever, the graph obtained this way may be a disjoint union of more than one cycles.
To get over this problem, we introduce a second method to construct cycles. We
start with a cycle C’. By replacing some sectors in C’ with longer sectors while
maintaining the connectedness, we obtain a longer cycle C. We regard such an
operation as expansion of a sector, formally defined in the next section.

2.2. Expansion of sectors and primitive cycles

The p-ezxpansion of a sector S is an operation which increase the length of S by
p, with the input and concavity of S remain the same. If the output of S does
not change after a p-expansion, we say that S is p-expansible. If p < L(S), a
p-contraction is an operation which reduce the length of S by p, with the input
and concavity of S remain the same. If the output of S does not change after a
p-contraction, we say that S is p-contractible. In this work, we consider p-expansion
and p-contraction for p € {1,k} in GP(n, k).
Firstly, we show that k-expansions can be generally applied.

Lemma 2.3. In GP(n,k), every sector is k-expansible, and every sector of
length at least k + 1 is k-contractible.

And, a k-expansion on a sector always transform a cycle into a cycle.

Lemma 2.4. Let C be a nontrivial cycle in GP(n,k) and S a sector of C. Let
S’ be the k-expansion of S, and C’ be the subgraph of GP(n + k, k) obtained by
replacing S with S" in C. Then C' is a cycle.

For a specified kind of sectors, we have results similar to Lemma 2.3 and 2.4 for
1-expansion.

Lemma 2.5. Let S be a sector in GP(n,k) and I(S) = (1,0,...,0). Then S
is 1-expansible, and if the length of S is at least 2 then it is 1-contractible.

Lemma 2.6. Let C be a nontrivial cycle in GP(n, k) and S a sector of C with
I(S) = (1,0,...,0). Let S’ be the 1-expansion of S, and C' be the subgraph of
GP(n+ 1,k) obtained by replacing S with S" in C. Then C' is a cycle.

Hence, we have a new way to get cycles we desire by expanding sectors on shorter
cycles. But we need to make clear the change on deficiency after an expansion.
Let S’ be a sector obtained from S by a p-expansion. By Lemma 2.2, and following
its notations as well, if S and S’ are convex, then the deficiency of the sector is
increased by

L(S)+k—2 L(8)—2

k
(3) Yo o- > =) 0,
j=0 j=0

J=0
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and if S and S’ are concave, then the deficiency of the sector is increased by

L(S)+k—2 L(S)—2 k
@ LS +k) -1+ D G- (LS -1+ Y o) =k+)» 7.
j=0 j=0 j=0

Lemma 2.3 and Lemma 2.5 describe two kinds of contractible sectors. Any
cycle containing such kinds of sectors can always be contracted. Thus, we choose
to start our construction from cycles that do not contain these sectors, which we
call primitive cycles.

The problem that follows is how to construct primitive cycles. We notice that
when constructing cycles, some sectors can continuously repeat any number of
times, and by repeating of sectors, we get a class of cycles of similar pattern.
To classify and construct primitive cycles, we introduce a representation of them
called connecting diagram. A connecting diagram for a class of cycles in GP(n, k)
is a digraph in which vertices stands for convex sectors and arcs stands for concave
sectors. As shown in Figure 2, a convex sector is denoted by a box. The length of
the sector is marked down inside the box, while the input and the output of the
sector are written down on two sides of the box, respectively. A concave sector is
denoted by an arc joining two boxes (which can be the same), and the length of the
sector is written down above the arc, or ignored if it is exactly one. Since the input
and output of a concave sector is determined by its predecessor and successor, they
are not explicitly shown in the figure. Figure 2 exhibits a connecting diagram and
the class of cycles in GP(n,2) it represents, in which the sector B can repeat any
number of times. P is a concave sector of length 1 and input (0,1). Z is a concave
sector of input (1,0) and can be of any positive length. It is a “gap” that the
cycle does not covered. Formally speaking, the cycle we form contains none of its
vertices except the endvertices of its spokes. Any closed walk in the connecting
diagram will then represent a primitive cycle. But any cycle can contain at most
one copy of Z, hence it is drawn as a dashed line in Figure 2, and can only be
visited once.

To find an I-cycle in GP(n, k), we consider its deficiency Q = 2n — . We can
expand a primitive cycle with deficiency Qo < @ in GP(ng, k) where ny < n such
that the expansions increase the outer cycle by n—ng and the deficiency by Q—Qo.
These requirements forms two equations we called the expansion equations. The
existence of an l-cycle in GP(n, k) is then depend on whether we could find the
appropriate primitive cycle, the corresponding expansion operations, so that the
expansion equations have integral solution.

3. CONCLUSION

We introduce the concept of sector, expansion and primitive cycles, as well as
the tool of connecting diagram, which are helpful to construct cycles of specify
length in generalized Petersen graphs. Applying these ideas and tools, we find out
all possible lengths of cycles in GP(n, k) for k € {2,3}. For all odd number %,
we obtain a wide range of lengths of cycles, and show that when n is even and
sufficiently large, GP(n, k) is weakly even pancyclic.
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Figure 2. A connected diagram and the class of cycles it represents.
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