ON THE LARGEST COMPONENT OF THE CRITICAL RANDOM DIGRAPH

M. COULSON

ABSTRACT. We consider the largest component of the random digraph $D(n, p)$ inside the critical window $p = n^{-1} + \lambda n^{-4/3}$. We show that the largest component C_1 has size of order $n^{1/3}$ in this range. In particular we give explicit bounds on the probabilities that $|\mathcal{C}_1|n^{-1/3}$ is very large or very small that are analogous to those given by Nachmias and Peres for $G(n, p)$.

1. INTRODUCTION

Consider the random digraph model $D(n, p)$ where each of the $n(n - 1)$ possibe edges is included with probability p independently of all others. This is analogous to the Erdős-Renyi random graph $G(n, p)$ in which each edge is again present with probabilty p independently of all others. Perhaps unsurprisingly the two models share a number of similar features. McDiarmid [[10](#page-5-1)] showed that it is often possible to couple $G(n, p)$ and $D(n, p)$ to compare the probabilities of certain properties. In this paper we will study the size of the largest strongly connected component of $D(n, p)$ within the critical window. This is a setting in which one cannot apply the result of McDiarmid to deduce anything from the behavior of $G(n, p)$.

In the random graph $G(n, p)$ the component structure is well understood. In their seminal paper [[3](#page-5-2)], Erdős and Rényi proved that for $p = c/n$ the largest component of $G(n, p)$ has size $O(\log(n))$ if $c < 1$, is of order $\Theta(n^{2/3})$ if $c = 1$ and has linear size when $c > 1$. This threshold behavior is known as the double jump. Zooming in further around the critical point, $p = 1/n$ and considering $p = (1 + \varepsilon)/n$ $p = (1 + \varepsilon)/n$ $p = (1 + \varepsilon)/n$ such that $\varepsilon \to 0$ and $|\varepsilon|^3 n \to \infty$, Bollobás [1] proved the following theorem for $|\varepsilon| > (2 \log(n))^{1/2} n^{-1/3}$ which was later extended to the whole range described above by Luczak [[6](#page-5-4)].

Theorem 1.1. Let $np = 1 + \varepsilon$, such that $\varepsilon = \varepsilon(n) \to 0$ but $n|\varepsilon|^3 \to \infty$, and $k_0 = 2\varepsilon^{-2} \log(n|\varepsilon|^3).$

- i) If $n\varepsilon^3 \to -\infty$ then a.a.s. $G(n, p)$ contains no component of size greater than k_0 .
- ii) If $n\varepsilon^3 \to \infty$ then a.a.s. $G(n, p)$ contains a unique component of size greater than k_0 . This component has size $2\varepsilon n(1+o(1))$.

Received May 21, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C80; Secondary 05C20, 60C05.

568 M. COULSON

Within the critical window itself i.e. $p = n^{-1} + \lambda n^{-4/3}$ with λ fixed, the size of the largest component is not tightly concentrated as it is for larger p . Instead, there exists a random variable $X = X(\lambda)$ such that $|\mathcal{C}_1|n^{-2/3} \to X$ as $n \to \infty$ where \mathcal{C}_1 is the largest component of $G(n, p)$. Much is known about the distribution of X, for example Nachmias and Peres [[11](#page-5-5)] proved the following (similar results can be found in [[13,](#page-5-6) [14](#page-5-7)]).

Theorem 1.2. Suppose $0 < \delta < 1/10$, $A > 8$ and n suitably large with respect to A, δ . Then if C_1 is the largest component of $G(n, 1/n)$, we have

- i) $\mathbb{P}(|C_1| < \lfloor \delta n^{2/3} \rfloor) \leq 15\delta^{3/5}$
- ii) $\mathbb{P}(|\mathcal{C}_1| > An^{2/3}) \leq \frac{4}{A}e^{-\frac{A^2(A-4)}{32}}$

Note we have only stated the theorem with $p = n^{-1}$ for clarity.

One finds that analogues of many of the above theorems for strongly connected components are true in $D(n, p)$. Also, the weak component structure of $D(n, p)$ is precisely the component structure of $G(n, 2p - p^2)$ and so is not very interesting. For $p = c/n$, Karp [[5](#page-5-8)] and Luckzak [[7](#page-5-9)] independently showed that for $c < 1$ all strongly connected components are of size $O(1)$ and when $c > 1$ there is a unique complex component of linear order and every other component is of size $O(1)$ (a component is complex if it has more edges than vertices). The range $p = (1+\varepsilon)/n$ was studied by Luczak and Seierstad [[8](#page-5-10)] who proved the following result which can be viewed as a version of Theorem [1.1](#page-0-0) for $D(n, p)$,

Theorem 1.3. Let $np = 1 + \varepsilon$, such that $\varepsilon = \varepsilon(n) \to 0$.

- i) If $n\varepsilon^3 \to -\infty$ then a.a.s. every component of $D(n, p)$ is an isolated vertex or a cycle of length $O(1/|\varepsilon|)$.
- ii) If $n\varepsilon^3 \to \infty$ then a.a.s. $D(n, p)$ contains a unique complex component of size $4\varepsilon^2 n(1+o(1))$ and every other component is an isolated vertex or cycle of length $O(1/\varepsilon)$.

Our main result gives us information about the size of the largest component in the critical window, $p = n^{-1} + \lambda n^{-4/3}$ for constant $\lambda \in \mathbb{R}$. In particular we show that the size of the largest component of $D(n, p)$ is $\Theta(n^{1/3})$ and furthermore, we give bounds on the probabilities that it is very large or very small which resemble those of Nachmias and Peres for $G(n, p)$.

Theorem 1.4 (Lower Bound). Let C_1 be the largest strongly connected component of $D(n, p)$ and let $0 < \delta < 1/800$, $\lambda \in \mathbb{R}$ and $n \in \mathbb{N}$. Then if n is large enough with respect to δ , λ ,

$$
\mathbb{P}(|\mathcal{C}_1| < \delta n^{1/3}) \le \begin{cases} 2e^{2\lambda \delta^{1/2}} \delta^{\frac{1}{2}e^{\frac{\lambda \delta}{2}}} & \text{if } \lambda \ge 0\\ 2e^{\lambda \delta} \delta^{\frac{1}{2}e^{2\lambda \delta^{1/2}}} & \text{otherwise} \end{cases}
$$

Note that while this theorem does not impose any restrictions upon the relationship between δ and λ , the bound obtained is only non-trivial provided that $|\lambda|$ is suitably small with respect to δ .

Theorem 1.5 (Upper Bound). There exists constants, $\zeta, \eta > 0$ such that for any $A > 0, \lambda \in \mathbb{R}$, if n is sufficiently large with respect to A, λ ,

$$
\mathbb{P}(|\mathcal{C}_1| > An^{1/3}) \le \zeta e^{-\eta A^{3/2} + \lambda^+ A}
$$

Where $\lambda^+ = \max(\lambda, 0)$.

2. Sketch of proofs

We will present sketches of the proofs for the case $\lambda = 0$. When $\lambda \neq 0$ there are small adjustments to be made which are omitted for simplicity. See [[2](#page-5-11)] for full details of the proofs of Theorems [1.4](#page-1-0) and [1.5.](#page-1-1)

2.1. Enumeration of digraphs

A key ingredient in the proofs of Theorems [1.4](#page-1-0) and [1.5](#page-1-1) is a bound on the number of strongly connected digraphs with a given number of vertices and excess, here the excess of a strongly connected digraph D is k if D has k more edges than vertices.

Let $Y(m, k)$ be the number of labelled strongly connected digraphs with m vertices and excess k . A double counting of the number of ear decompositions of such digraphs allows us to conclude the following bound which is valid for any m and k.

Lemma 2.1.

(1)
$$
Y(m,k) \le \frac{(m+k)^k m^{2k} (m-1)!}{k!}
$$

When the excess is small we need a better bound than this. Pérez-Giminéz and Wormald [[12](#page-5-12)] asmyptotically determined the value of $Y(m, k)$ for $k = \omega(1)$. An adaptation of their proof gives the following bound which is valid for any small enough k .

Lemma 2.2. There exists a constant $C > 0$ such that for $1 \leq k \leq \sqrt{m}/3$ and $m\gg 1$ we have,

(2)
$$
Y(m,k) \leq C \frac{m! m^{3k-1}}{(2k-1)!}
$$

The proof of this is by showing an upper bound similar to [[12](#page-5-12), Theorem 1.1] holds for any $\lambda > 0$ and then setting $\lambda = 2k/m$ yields the result.

2.2. Lower bounds

The proof of Theorem [1.4](#page-1-0) follows from an application of Janson's inequality in the following form [[4](#page-5-13), Theorem 2.18 (i)],

Theorem 2.3. Let S be a set and $S_p \subseteq S$ chosen by including each element of S in S_p independently with probability p. Suppose that S is a family of subsets of S and for $A \in \mathcal{S}$, we define I_A to be the event $\{A \subseteq S_p\}$. Let X be the number of 570 M. COULSON

events I_A for $A \in \mathcal{S}$ which occur. Define $\mu = \mathbb{E}(X)$ and

$$
\Delta = \frac{1}{2} \sum_{A \neq B, A \cap B \neq \emptyset} \mathbb{E}(I_A I_B)
$$

Then,

$$
\mathbb{P}(X=0) \le e^{-\mu + \Delta}
$$

Let X be the random variable counting the number of directed cycles of length between $\delta n^{1/3}$ and $\delta^{1/2} n^{1/3}$ in $D(n, 1/n)$. X splits into the sum of a number of indicator random variables for the presence of long cycles in $D(n, 1/n)$. Furthermore, we can compute $\mathbb{E}(X) \geq -\log(\delta)/2$.

Directly evaluating Δ is difficult, however the terms $\mathbb{E}(I_A I_B)$ each represent the occurrence of a strongly connected digraph which is the union of two cycles. Thus we use the following auxiliary lemma to simplify the computations.

Lemma 2.4. Each strongly connected digraph, D with excess k may be formed in at most 27^k ways as the union of a pair of directed cycles, C_1 and C_2 .

Applying this lemma yields the bound

(3)
$$
\Delta \leq \frac{1}{2} \sum_{m=\delta n^{1/3}}^{2\delta^{1/2} n^{1/3}} \sum_{k=1}^{\infty} 27^k \mathbb{E}(Z(m,k))
$$

Where $Z(m, k)$ is the random variable counting the number of strongly connected digraphs with m vertices and excess k . One can easily compute these expectations, finding

(4)
$$
\mathbb{E}(Z(m,k)) = {n \choose m} \frac{Y(m,k)}{n^{m+k}}
$$

Replacing $Y(m, k)$ with the bound from equation [\(1\)](#page-2-0) allows us to compute the expression in [\(3\)](#page-3-0) and deduce it is at most log(2) for $\delta \in (0, 1/800)$ thus proving Theorem [1.4](#page-1-0) when $\lambda = 0$.

2.3. Upper bounds

We prove the upper bound by computing the expected number of strongly connected components of size between $An^{1/3}$ and $n^{1/3}$ log log(n) which have excess at most $n^{1/6}$. It is easy to see that the probability of there being any larger components or components of excess at least $n^{1/6}$ is $o_n(1)$ by the result of Luczak and Sierstad [[8](#page-5-10)].

In order to count components, we first look at strongly connected subgraphs of $D \sim D(n, 1/n)$. For each subgraph H we run an out-exploration process starting from $V(H)$ until the process dies. We conclude that H is a strongly connected subgraph of D if there are no edges from the explored out-component of H which return to H .

The exploration process we consider was initially developed by Martin-Löf $[9]$ $[9]$ $[9]$ and Karp [[5](#page-5-8)]. During this process, vertices will be in one of three classes: active, explored or unexplored. At time $t \in \mathbb{N}$, we let X_t be the number of active vertices.

There will also be t explored vertices at time t. We will start from a set \mathcal{X}_0 of size x_0 and fix an ordering of the vertices, starting with $V(\mathcal{X}_0)$. At time $t = 0$ all vertices of \mathcal{X}_0 are active with all other vertices unexplored, so $X_0 = x_0$. For step $t \geq 1$, if $X_{t-1} > 0$ let w_t be the first active vertex. Otherwise, let w_t be the first unexplored vertex. Define η_t to be the number of unexplored out-neighbours of w_t in $D(n, 1/n)$. Change the class of each of these vertices to active and set w_t to explored. We set $N_t = n - X_t - t - \mathbb{1}(X_t = 0)$. Note that given the history of the process, η_t is distributed as a binomial random variable with parameters N_{t-1} and p. Furthermore, the following recurrence relation holds.

(5)
$$
X_t = \begin{cases} X_{t-1} + \eta_t - 1 & \text{if } Y_{t-1} > 0\\ \eta_t & \text{otherwise} \end{cases}
$$

Let $\tau_1 = \min\{t \geq 1 : X_t = 0\}$. Note that this is a stopping time and at time τ_1 the set of explored vertices is precisely the out-component of \mathcal{X}_0 . Let \mathcal{X}_t be the set of active and explored vertices at time t. If \mathcal{X}_0 spans a strongly connected subdigraph D_0 of $D(n, 1/n)$, then D_0 is a strongly connected component if and only if there are no edges from $\mathcal{X}_{\tau_1} \setminus \mathcal{X}_0$ to X_0 . So, firstly we show that the exploration process is very likely to last a significant length of time,

Lemma 2.5. Let X_t be the exploration process defined above with starting set **Lemma 2.5.** Let X_t be the exploration process defined doove with suppose of vertices X_0 of size m. Suppose $0 < c < \sqrt{2}$ is a fixed constant. Then,

$$
\mathbb{P}(\tau_1 < c m^{1/2} n^{1/2}) \le 2e^{-\frac{(2-c^2)^2}{8c} m^{3/2} n^{-1/2} + O(m^2 n^{-1})}
$$

The proof of this follows by lower bounding the process and using Doob's maximal inequality to deduce a Chernoff type bound. If we start the exploration process with the vertices of a strongly connected subdigraph H of $D(n, 1/n)$, then H is strongly connected component only if there are no edges returning to it from its explored out-component. Computing the probability no such edge is present yields the following lemma,

Lemma 2.6. There exist $\beta, \gamma > 0$ such that if H is any strongly connected subgraph of $D(n, 1/n)$ with m vertices. Then the probability that H is a strongly connected component of $D(n, 1/n)$ is at most $\beta e^{-(1+\gamma)m^{3/2}n^{-1/2}+O(m^2n^{-1})}$.

Using Lemmas [2.5](#page-4-0) and [2.6](#page-4-1) we bound $\mathbb{E}(N(A))$ where $N(A)$ is the random variable which counts the number of strongly connected components of $D(n, 1/n)$ of size between $An^{1/3}$ and $n^{1/3} \log \log(n)$ and excess at most $n^{1/6}$. Let $X_i = |X_i|$ and $Y_i = |E(\mathcal{X}_i \setminus \mathcal{X}_0, \mathcal{X}_0)|$. Then,

(6)
$$
\mathbb{E}(N(A)) = \sum_{m=An^{1/3}}^{n^{1/3} \log^2(n)} \sum_{k=0}^{n^{1/6}} {n \choose m} p^{m+k} Y(m,k) \mathbb{P}(Y_{\tau_1} = 0 | X_0 = m)
$$

Using Lemma [2.6](#page-4-1) we bound $\mathbb{P}(Y_{\tau_1} = 0 | X_0 = m) \leq \beta e^{-(1+\gamma)m^{3/2}n^{-1/2} + O(m^2n^{-1})}$. Furthermore, by Lemma [2.2,](#page-2-1)

(7)
$$
\sum_{k=0}^{n^{1/6}} \frac{n^{-k} Y(m,k)}{(m-1)!} \le 1 + C \sum_{k=1}^{n^{1/6}} \frac{n^{-k} m^{3k}}{(2k-1)!} \le 2C m^{3/2} n^{-1/2} \sinh(m^{3/2} n^{-1/2}).
$$

572 M. COULSON

Then, as $\sinh(x) \le e^x$ we get the following bound on $\mathbb{E}(N(A)),$

$$
(8) \mathbb{E}(N(A)) \le \sum_{m=An^{1/3}}^{n^{1/3} \log^2(n)} \frac{1}{m} \left(2Cm^{3/2} n^{-1/2} e^{m^{3/2} n^{-1/2}} \right) \times \left(\beta e^{-(1+\gamma)m^{3/2} n^{-1/2} + O(m^2 n^{-1})} \right),
$$

which we can simplify and approximate with the following integral.

(9)
$$
\mathbb{E}(N(A)) \leq \int_{m=An^{1/3}}^{n^{1/3} \log^2(n)+1} \frac{2\beta C m^{1/2}}{n^{1/2}} e^{-\frac{\gamma}{2} m^{3/2} n^{-1/2}} dm.
$$

Making the substitution $t = \gamma m^{3/2} n^{-1/2} / 2$ in [\(9\)](#page-5-15) reduces the integral to the integral of an exponential function which is easy to evaluate. The proof of Theorem [1.5](#page-1-1) then follows by an application of Markov's inequality and a union bound.

REFERENCES

- 1. Bollobás B., The evolution of random graphs, Trans. Amer. Math. Soc. 286 (1984), 257-284.
- 2. Coulson M., The critical window in random digraphs, arXiv:1905.00624.
- 3. Erdős P. and Rényi A., On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5 (1960), 17–60.
- 4. Janson S., Luczak T. and Ruciński A., Random Graphs, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Interscience, New York, 2000.
- 5. Karp R. M., The transitive closure of a random digraph, Random Structures Algorithms 1 (1990), 73–93.
- 6. Luczak T., Component behavior near the critical point of the random graph process, Random Structures Algorithms 1 (1990), 287–310.
- 7. Luczak T., The phase transition in the evolution of random digraphs, J. Graph Theory 14 (1990), 217–223.
- 8. Luczak T. and Seierstad T., The critical behavior of random digraphs, Random Structures Algorithms 35 (2009), 271–293.
- 9. Martin-Löf A., Symmetric sampling procedures, general epidemic processes and their theshold limit theorems, J. Appl. Probab. 23 (1986), 265–282.
- 10. McDiarmid C., Clutter percolation and random graphs, Math. Programming Stud. 13 (1980), 17–25.
- 11. Nachmias A. and Peres Y., The critical random graph, with martingales, Israel J. Math. 176 (2010), 29–41.
- 12. Pérez-Giménez X. and Wormald N., Asymptotic enumeration of strongly connected digraphs by vertices and edges, Random Structures Algorithms 43 (2013), 80–114.
- 13. Pittel B., On the largest component of the random graph at a nearcritical stage, J. Combin. Theory Ser. B 82 (2001), 237–269.
- 14. Scott A. D. and Sorkin G. B., Solving sparse random instances of Max Cut and Max 2-CSP in linear expected time, Combin. Probab. Comput. 15 (2006), 281–315.

M. Coulson, School of Mathematics, University of Birmingham, UK, e-mail: mjc685@bham.ac.uk