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ON THE LARGEST COMPONENT

OF THE CRITICAL RANDOM DIGRAPH

M. COULSON

Abstract. We consider the largest component of the random digraph D(n, p) in-

side the critical window p = n−1 + λn−4/3. We show that the largest component
C1 has size of order n1/3 in this range. In particular we give explicit bounds on the
probabilities that |C1|n−1/3 is very large or very small that are analogous to those
given by Nachmias and Peres for G(n, p).

1. Introduction

Consider the random digraph model D(n, p) where each of the n(n − 1) possibe
edges is included with probability p independently of all others. This is analogous
to the Erdős-Renyi random graph G(n, p) in which each edge is again present with
probabilty p independently of all others. Perhaps unsurprisingly the two models
share a number of similar features. McDiarmid [10] showed that it is often possible
to couple G(n, p) and D(n, p) to compare the probabilities of certain properties.
In this paper we will study the size of the largest strongly connected component
of D(n, p) within the critical window. This is a setting in which one cannot apply
the result of McDiarmid to deduce anything from the behavior of G(n, p).

In the random graph G(n, p) the component structure is well understood. In
their seminal paper [3], Erdős and Rényi proved that for p = c/n the largest
component of G(n, p) has size O(log(n)) if c < 1, is of order Θ(n2/3) if c = 1
and has linear size when c > 1. This threshold behavior is known as the double
jump. Zooming in further around the critical point, p = 1/n and considering
p = (1 + ε)/n such that ε → 0 and |ε|3n → ∞, Bollobás [1] proved the following
theorem for |ε| > (2 log(n))1/2n−1/3 which was later extended to the whole range
described above by  Luczak [6].

Theorem 1.1. Let np = 1 + ε, such that ε = ε(n) → 0 but n|ε|3 → ∞, and
k0 = 2ε−2 log(n|ε|3).

i) If nε3 → −∞ then a.a.s. G(n, p) contains no component of size greater than
k0.

ii) If nε3 → ∞ then a.a.s. G(n, p) contains a unique component of size greater
than k0. This component has size 2εn(1 + o(1)).

Received May 21, 2019.
2010 Mathematics Subject Classification. Primary 05C80; Secondary 05C20, 60C05.



568 M. COULSON

Within the critical window itself i.e. p = n−1 + λn−4/3 with λ fixed, the size of
the largest component is not tightly concentrated as it is for larger p. Instead, there
exists a random variable X = X(λ) such that |C1|n−2/3 → X as n→∞ where C1
is the largest component of G(n, p). Much is known about the distribution of X,
for example Nachmias and Peres [11] proved the following (similar results can be
found in [13, 14]).

Theorem 1.2. Suppose 0 < δ < 1/10, A > 8 and n suitably large with respect
to A, δ. Then if C1 is the largest component of G(n, 1/n), we have

i) P(|C1| < bδn2/3c) ≤ 15δ3/5

ii) P(|C1| > An2/3) ≤ 4
Ae−

A2(A−4)
32

Note we have only stated the theorem with p = n−1 for clarity.
One finds that analogues of many of the above theorems for strongly connected

components are true in D(n, p). Also, the weak component structure of D(n, p) is
precisely the component structure of G(n, 2p− p2) and so is not very interesting.
For p = c/n, Karp [5] and  Luckzak [7] independently showed that for c < 1 all
strongly connected components are of size O(1) and when c > 1 there is a unique
complex component of linear order and every other component is of size O(1) (a
component is complex if it has more edges than vertices). The range p = (1+ε)/n
was studied by  Luczak and Seierstad [8] who proved the following result which
can be viewed as a version of Theorem 1.1 for D(n, p),

Theorem 1.3. Let np = 1 + ε, such that ε = ε(n)→ 0.

i) If nε3 → −∞ then a.a.s. every component of D(n, p) is an isolated vertex or
a cycle of length O(1/|ε|).

ii) If nε3 →∞ then a.a.s. D(n, p) contains a unique complex component of size
4ε2n(1 + o(1)) and every other component is an isolated vertex or cycle of
length O(1/ε).

Our main result gives us information about the size of the largest component in
the critical window, p = n−1 + λn−4/3 for constant λ ∈ R. In particular we show
that the size of the largest component of D(n, p) is Θ(n1/3) and furthermore, we
give bounds on the probabilities that it is very large or very small which resemble
those of Nachmias and Peres for G(n, p).

Theorem 1.4 (Lower Bound). Let C1 be the largest strongly connected com-
ponent of D(n, p) and let 0 < δ < 1/800, λ ∈ R and n ∈ N. Then if n is large
enough with respect to δ, λ,

P(|C1| < δn1/3) ≤

2e2λδ
1/2

δ
1
2 e

λδ
2 if λ ≥ 0

2eλδδ
1
2 e2λδ

1/2

otherwise

Note that while this theorem does not impose any restrictions upon the rela-
tionship between δ and λ, the bound obtained is only non-trivial provided that |λ|
is suitably small with respect to δ.
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Theorem 1.5 (Upper Bound). There exists constants, ζ, η > 0 such that for
any A > 0, λ ∈ R, if n is sufficiently large with respect to A, λ,

P(|C1| > An1/3) ≤ ζe−ηA
3/2+λ+A

Where λ+ = max(λ, 0).

2. Sketch of proofs

We will present sketches of the proofs for the case λ = 0. When λ 6= 0 there are
small adjustments to be made which are omitted for simplicity. See [2] for full
details of the proofs of Theorems 1.4 and 1.5.

2.1. Enumeration of digraphs

A key ingredient in the proofs of Theorems 1.4 and 1.5 is a bound on the number
of strongly connected digraphs with a given number of vertices and excess, here
the excess of a strongly connected digraph D is k if D has k more edges than
vertices.

Let Y (m, k) be the number of labelled strongly connected digraphs with m
vertices and excess k. A double counting of the number of ear decompositions of
such digraphs allows us to conclude the following bound which is valid for any m
and k.

Lemma 2.1.

(1) Y (m, k) ≤ (m+ k)km2k(m− 1)!

k!

When the excess is small we need a better bound than this. Pérez-Giminéz and
Wormald [12] asmyptotically determined the value of Y (m, k) for k = ω(1). An
adaptation of their proof gives the following bound which is valid for any small
enough k.

Lemma 2.2. There exists a constant C > 0 such that for 1 ≤ k ≤
√
m/3 and

m� 1 we have,

(2) Y (m, k) ≤ Cm!m3k−1

(2k − 1)!

The proof of this is by showing an upper bound similar to [12, Theorem 1.1]
holds for any λ > 0 and then setting λ = 2k/m yields the result.

2.2. Lower bounds

The proof of Theorem 1.4 follows from an application of Janson’s inequality in the
following form [4, Theorem 2.18 (i)],

Theorem 2.3. Let S be a set and Sp ⊆ S chosen by including each element of
S in Sp independently with probability p. Suppose that S is a family of subsets of
S and for A ∈ S, we define IA to be the event {A ⊆ Sp}. Let X be the number of
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events IA for A ∈ S which occur. Define µ = E(X) and

∆ =
1

2

∑
A6=B,A∩B 6=∅

E(IAIB)

Then,
P(X = 0) ≤ e−µ+∆

Let X be the random variable counting the number of directed cycles of length
between δn1/3 and δ1/2n1/3 in D(n, 1/n). X splits into the sum of a number of
indicator random variables for the presence of long cycles in D(n, 1/n). Further-
more, we can compute E(X) ≥ − log(δ)/2.

Directly evaluating ∆ is difficult, however the terms E(IAIB) each represent the
occurrence of a strongly connected digraph which is the union of two cycles. Thus
we use the following auxiliary lemma to simplify the computations.

Lemma 2.4. Each strongly connected digraph, D with excess k may be formed
in at most 27k ways as the union of a pair of directed cycles, C1 and C2.

Applying this lemma yields the bound

(3) ∆ ≤ 1

2

2δ1/2n1/3∑
m=δn1/3

∞∑
k=1

27kE(Z(m, k))

Where Z(m, k) is the random variable counting the number of strongly connected
digraphs with m vertices and excess k. One can easily compute these expectations,
finding

(4) E(Z(m, k)) =

(
n

m

)
Y (m, k)

nm+k

Replacing Y (m, k) with the bound from equation (1) allows us to compute the
expression in (3) and deduce it is at most log(2) for δ ∈ (0, 1/800) thus proving
Theorem 1.4 when λ = 0.

2.3. Upper bounds

We prove the upper bound by computing the expected number of strongly con-
nected components of size between An1/3 and n1/3 log log(n) which have excess at
most n1/6. It is easy to see that the probability of there being any larger compo-
nents or components of excess at least n1/6 is on(1) by the result of  Luczak and
Sierstad [8].

In order to count components, we first look at strongly connected subgraphs of
D ∼ D(n, 1/n). For each subgraph H we run an out-exploration process starting
from V (H) until the process dies. We conclude that H is a strongly connected
subgraph of D if there are no edges from the explored out-component of H which
return to H.

The exploration process we consider was initially developed by Martin-Löf [9]
and Karp [5]. During this process, vertices will be in one of three classes: active,
explored or unexplored. At time t ∈ N, we let Xt be the number of active vertices.
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There will also be t explored vertices at time t. We will start from a set X0 of
size x0 and fix an ordering of the vertices, starting with V (X0). At time t = 0 all
vertices of X0 are active with all other vertices unexplored, so X0 = x0. For step
t ≥ 1, if Xt−1 > 0 let wt be the first active vertex. Otherwise, let wt be the first
unexplored vertex. Define ηt to be the number of unexplored out-neighbours of
wt in D(n, 1/n). Change the class of each of these vertices to active and set wt
to explored. We set Nt = n−Xt − t− 1(Xt = 0). Note that given the history of
the process, ηt is distributed as a binomial random variable with parameters Nt−1

and p. Furthermore, the following recurrence relation holds.

(5) Xt =

{
Xt−1 + ηt − 1 if Yt−1 > 0

ηt otherwise

Let τ1 = min{t ≥ 1 : Xt = 0}. Note that this is a stopping time and at time τ1 the
set of explored vertices is precisely the out-component of X0. Let Xt be the set of
active and explored vertices at time t. If X0 spans a strongly connected subdigraph
D0 of D(n, 1/n), then D0 is a strongly connected component if and only if there
are no edges from Xτ1 rX0 to X0. So, firstly we show that the exploration process
is very likely to last a significant length of time,

Lemma 2.5. Let Xt be the exploration process defined above with starting set
of vertices X0 of size m. Suppose 0 < c <

√
2 is a fixed constant. Then,

P(τ1 < cm1/2n1/2) ≤ 2e−
(2−c2)2

8c m3/2n−1/2+O(m2n−1)

The proof of this follows by lower bounding the process and using Doob’s max-
imal inequality to deduce a Chernoff type bound. If we start the exploration
process with the vertices of a strongly connected subdigraph H of D(n, 1/n), then
H is strongly connected component only if there are no edges returning to it from
its explored out-component. Computing the probability no such edge is present
yields the following lemma,

Lemma 2.6. There exist β, γ > 0 such that if H is any strongly connected
subgraph of D(n, 1/n) with m vertices. Then the probability that H is a strongly

connected component of D(n, 1/n) is at most βe−(1+γ)m3/2n−1/2+O(m2n−1).

Using Lemmas 2.5 and 2.6 we bound E(N(A)) where N(A) is the random
variable which counts the number of strongly connected components of D(n, 1/n)
of size between An1/3 and n1/3 log log(n) and excess at most n1/6. Let Xi = |Xi|
and Yi = |E(Xi r X0,X0)|. Then,

(6) E(N(A)) =

n1/3 log2(n)∑
m=An1/3

n1/6∑
k=0

(
n

m

)
pm+kY (m, k)P(Yτ1 = 0|X0 = m)

Using Lemma 2.6 we bound P(Yτ1 = 0|X0 = m) ≤ βe−(1+γ)m3/2n−1/2+O(m2n−1).
Furthermore, by Lemma 2.2,

(7)

n1/6∑
k=0

n−kY (m, k)

(m− 1)!
≤ 1 + C

n1/6∑
k=1

n−km3k

(2k − 1)!
≤ 2Cm3/2n−1/2 sinh(m3/2n−1/2).
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Then, as sinh(x) ≤ ex we get the following bound on E(N(A)),

(8) E(N(A)) ≤
n1/3 log2(n)∑
m=An1/3

1

m

(
2Cm3/2n−1/2em

3/2n−1/2
)

×
(
βe−(1+γ)m3/2n−1/2+O(m2n−1)

)
,

which we can simplify and approximate with the following integral.

(9) E(N(A)) ≤
∫ n1/3 log2(n)+1

m=An1/3

2βCm1/2

n1/2
e−

γ
2m

3/2n−1/2

dm.

Making the substitution t = γm3/2n−1/2/2 in (9) reduces the integral to the
integral of an exponential function which is easy to evaluate. The proof of Theo-
rem 1.5 then follows by an application of Markov’s inequality and a union bound.
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