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ORDERED GRAPHS AND LARGE BI-CLIQUES

IN INTERSECTION GRAPHS OF CURVES

J. PACH and I. TOMON

Abstract. An ordered graph G< is a graph with a total ordering < on its vertex
set. A monotone path of length k is a sequence of vertices v1 < v2 < · · · < vk such

that vivj is an edge of G< if and only if |j − i| = 1. A bi-clique of size m is a

complete bipartite graph whose vertex classes are of size m.
We prove that for every positive integer k, there exists a constant ck > 0

such that every ordered graph on n vertices that does not contain a monotone

path of length k as an induced subgraph has a vertex of degree at least ckn, or
its complement has a bi-clique of size at least ckn/ logn. A similar result holds

for ordered graphs containing no induced ordered subgraph isomorphic to a fixed
ordered matching.

As a consequence, we give a short combinatorial proof of the following theorem

of Fox and Pach. There exists a constant c > 0 such the intersection graph G of
any collection of n x-monotone curves in the plane has a bi-clique of size at least

cn/ logn or its complement contains a bi-clique of size at least cn. (A curve is called

x-monotone if every vertical line intersects it in at most one point.) We also prove

that if G has at most
(
1
4
− ε

) (n
2

)
edges for some ε > 0, then G contains a linear

sized bi-clique. We show that this statement does not remain true if we replace 1
4

by any larger constants.

1. Ordered graphs

There are a growing number of examples showing that ordered structures can be
useful for solving geometric and topological problems that appear to be hard to
analyze by traditional combinatorial methods. The aim of the present note is
to provide an example concerning intersection patterns of curves, where one can
apply ordered graphs.

An ordered graph G< is a graph G with a total ordering < on its vertex set. If
the ordering < is clear from the context, we write G instead of G<. An ordered
graph H<′ is an induced subgraph of the ordered graph G<, if there exists an
embedding φ : V (H) → V (G) such that for every u, v ∈ V (H), if u <′ v then
φ(u) < φ(v), and uv ∈ E(H) if and only if φ(u)φ(v) ∈ E(G).

A monotone path Pk of length k is an ordered graph with k vertices v1 < v2 <
· · · < vk in which vivj is an edge if and only if |j−i| = 1. A bi-clique in an (ordered
or unordered) graph G consists of a pair of disjoint subsets of the vertices (A,B)
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such that |A| = |B| and for every a ∈ A and b ∈ B, there is an edge between a
and b. The size of a bi-clique (A,B) is |A|. A comparability graph is a graph G
for which there exists a partial ordering on V (G) such that two vertices are joined
by an edge of G if and only if they are comparable by this partial ordering. An
incomparability graph is the complement of a comparability graph. The maximum
degree of the vertices of G is denoted by ∆(G).

Our first theorem states that if a Pk-free ordered graph is not too dense, then
its complement contains a large bi-clique.

Theorem 1. For every integer k ≥ 2, there exists a constant c = c(k) > 0 such
that the following statement is true. Let G< be an ordered graph on n vertices which
satisfies ∆(G<) < cn and does not have any induced ordered subgraph isomorphic
to the monotone path Pk of length k.

Then the complement of G< contains a bi-clique of size at least cn/ log n.

For the conclusion to hold, we need some upper bound on the degrees of the
vertices (or on the number of edges) of the graph. To see this, consider the graph
G on the naturally ordered vertex set {1, . . . , n}, in which A = {1, . . . , bn/2c}
and B = {bn/2c + 1, . . . , n} induce complete subgraphs, and any pair of vertices
a ∈ A, b ∈ B are joined by an edge randomly, independently with a very small
probability p > 0. This ordered graph has no induced monotone path of length
5, its maximum degree satisfies ∆(G) < (1/2 + p)n, but the maximum size of a
bi-clique in its complement is Op(log n). Consequently, for the constant appearing
in Theorem 1, we have c5 ≤ 1/2.

The assumption that G< contains no induced P3 is equivalent to the property
that G< is a comparability graph. In this special case (that is, for k = 3),
Theorem 1 was established by Fox, Pach, and Tóth [7], and in a weaker form
by Fox [5]. Apart from the value of the constant c, the bound is best possible for
k = 3 and, hence, for every k ≥ 3.

An ordered matching is an ordered graph on 2k vertices which consists of k
edges, no two of which share an endpoint. Our next result is an analogue of
Theorem 1 for ordered graphs that contain no induced subgraph isomorphic to a
fixed ordered matching.

Theorem 2. For every ordered matching M , there exists a constant c =
c(M) > 0 such the following statement is true. Let G< be an ordered graph
on n vertices which satisfies ∆(G<) < cn and does not have any induced ordered
subgraph isomorphic to M .

Then the complement of G< contains a bi-clique of size at least cn.

The conclusion of Theorem 2 is stronger than that of Theorem 1: in this case
we can find a linear-sized bi-clique in the complement of G<.

For unordered graphs without (unordered) induced paths of length k, the size
of the largest bi-clique that can be found in G is larger than what was shown in
Theorem 1: it is linear in n. More precisely, Bousquet, Lagoutte, and Thomassé [1]
proved that for every positive integer k, there exists c(k) > 0 such that, if G is an
unordered graph with n vertices and at most c(k)

(
n
2

)
edges, which does not have
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an induced path of length k, then its complement G contains a bi-clique of size
at least c(k)n. Recently, Chudnovsky, Scott, Seymour, and Spirkl [3] generalized
this result to any forbidden forest, instead of a path. In an upcoming work, we
obtain similar extensions of Theorems 1 and 2 to other ordered forests.

2. Intersection graphs of curves

Given a family of sets, C, the intersection graph of C is the graph, whose vertices
correspond to the elements of C, and two vertices are joined by an edge if and
only if the corresponding sets have a nonempty intersection. A curve is the image
of a continuous function φ : [0, 1] → R2. A curve is said to be x-monotone if
every vertical line intersects it in at most one point. Note that any convex set
can be approximated arbitrarily closely by x-monotone curves, so the notion of
x-monotone curve extends the notion of convex sets. Throughout this paper,
a curve will be called a grounded if one of its endpoints lies on the y-axis (on
the vertical line {x = 0}) and the whole curve is contained in the nonnegative
half-plane {x ≥ 0}. (By slight abuse of notation, we write {x ≥ 0} for the set
{(x, y) ∈ R2 : x ≥ 0}.)

It turns out that ordered graphs without certain forbidden induced ordered
subgraphs capture many interesting properties of intersection graphs of curves.
We will apply Theorems 1 and 2 to give a simple combinatorial proof for the
following Ramsey-type result of Fox and Pach [6], which is related to a celebrated
conjecture of Erdős and Hajnal [4, 2].

Theorem 3 ([6]). There exists an absolute constant c > 0 with the following
property. The intersection graph G of any collection of n x-monotone curves
contains a bi-clique of size at least cn/ log n, or its complement G contains a
bi-clique of size at least cn.

This result is tight, up to the value of c; see [10]. Indeed, Fox [5] proved that
for any ε > 0 there exists a constant c(ε) such that for every n ∈ N, there exists an
incomparability graph G on n vertices such that G does not contain a bi-clique of
size c(ε)n/ log n, and the complement of G does not contain a bi-clique of size nε.
On the other hand, every incomparability graph is isomorphic to the intersection
graph of a collection of x-monotone curves [11, 9, 10].

It was shown in [7] that if the intersection graph of n x-monotone curves has
at most 12−8

(
n
2

)
edges, then the second option holds in Theorem 3: G contains a

bi-clique of size at least cn. Also, the same result (with different constants) follows
from a separator theorem of Lee [8] for string graphs. None of these arguments
leave much room for replacing 12−8 by a decent constant. Tomon [12] applied some
properties of partially ordered sets to establish the upper bound

(
1
16 − o(1)

) (
n
2

)
.

Somewhat surprisingly, using ordered graphs, one can precisely determine the best
constant for which the statement still holds.

Theorem 4. For any ε > 0, there are constants c1 = c1(ε), c2 = c2(ε) > 0,
and an integer n0 = n0(ε) such that the following statements are true. For every
n ≥ n0,
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(1) there exist n x-monotone curves such that their intersection graph G has at
most ( 1

4 + ε)
(
n
2

)
edges, but the complement of G does not contain a bi-clique

of size c1 log n;
(2) for any n x-monotone curves such that their intersection graph G has at

most ( 1
4 − ε)

(
n
2

)
edges, the complement of G contains a bi-clique of size c2n.

It is easy to see that every intersection graph of convex sets in the plane is
also an intersection graph of x-monotone curves. We prove (1) by constructing
n convex sets in the plane whose intersection graphs meets the requirements.
Therefore, 1

4

(
n
2

)
is also a threshold for the emergence of linear sized bi-cliques in

the complements of intersection graphs of convex sets.
In [6], Theorem 3 was established in a more general setting: without assuming

that the curves are x-monotone. It is a serious challenge to extend our proof to
that case. We still believe that Theorem 4 should also generalize to arbitrary
curves.

Conjecture 5. For any ε > 0, there exist c0 = c0(ε) > 0 and n0 = n0(ε) with
the property that for any collection of n ≥ n0 curves whose intersection graph has
at most ( 1

4 − ε)
(
n
2

)
edges, the complement of G contains a bi-clique of size c0n.
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