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OPERATIONAL RESULTS ON

BI-ORTHOGONAL HERMITE FUNCTIONS

C. CESARANO, C. FORNARO and L. VAZQUEZ

Abstract. By starting from the concept of the orthogonality property related to
the ordinary and generalized two-variable Hermite polynomials, we present some

interesting results on the class of bi-orthogonal Hermite functions.

The structure of these bi-orthogonal functions is based on the family of the
two-index, two-variable Hermite polynomials of type Hm,n(x, y) and their adjoint

Gm,n(x, y).
Many of the results presented in the first two sections are well known in literature,

but the scheme used is functional to the presentation of the bi-orthogonal Hermite

functions discussed in section III. The exposition of the properties satisfied by the
functions Hm,n(x, y) and Gm,n(x, y) is arranged in a non-ordinary way: in fact, we

deduce many relations by using the structure of the two-index, two-variable Hermite

polynomials, comparing them with the known properties of the ordinary Hermite.
We also discuss a differential representation of the operators acting on the above

bi-orthogonal Hermite functions and we derive some operational identities to better

clarify the role of these Hermite functions.

I. Orthogonal Hermite functions of one variable

In this first section, we present some noted relations involving Hermite polynomials
of one-variable and we describe their orthogonal properties to introduce the related
Hermite functions. The presented identities are well known in literature and also
the techniques used to prove many of the results that we remind in the following
were described in the past as we cite in bibliography. So that, in this section, we
remind the tools to introduce the generalizations in the following sections.

It is well known that the one-variable ordinary Hermite polynomials Hem(x)
have the following explicit form (see [1, 2])

Hem(x) = m!

[m
2 ]∑

r=0

(−1)rxn−2r

r!(n− 2r)!2r
.(1)
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It is also worth to remind that the generating function of the Hermite polyno-
mials Hem(x) reads (see [3, 1, 4])

exp
(
xt− t2

)
=

+∞∑
n=0

tn

n!
Hen(x)(2)

since polynomials solve the following differential difference equation

d

dx
Dn(x) = nDn−1(x),

Dn(0) =
n!(−1)

n
2(

n
2

)
!2

n
2

,
(3)

where n is even.
A characteristic property satisfied by the ordinary Hermite polynomials is the

orthogonality. By using this important aspect, it is possible to introduce the
related Hermite functions to derive many other relations involving the Hermite
polynomials of the type Hem(x). We start to prove an important identity for the
ordinary Hermite polynomials.

Proposition I.1. The ordinary Hermite polynomials Hem(x) satisfy the fol-
lowing Rodrigues formula (see [3])

Hen(x) = (−1)ne
x2

2

(
d

dx

)n (
e−

x2

2

)
.

Proof. By starting from the generating function relation, presented above, we
can manipulate the argument of the exponential to obtain

e−
x2

2 +xt− t2

2 e
x2

2 =

+∞∑
n=0

tn

n!
Hen(x)(4)

and then,

e−
1
2 (x−t)2 = e−

x2

2

+∞∑
n=0

tn

n!
Hen(x).(5)

The shift operator for a function f(x), which is analytic in a neighborhood of
the origin, acts in the following way

eλ
d
dx f(x) =

+∞∑
n=0

λn

n!

dn

dxn
f(x) =

+∞∑
n=0

λn

n!
f (n)(x) = f(x+ λ),(6)

where λ is a real number and f(x) is also analytic in x + λ without any other
restrictions.

After the above considerations, we can recast the l.h.s. of the relation (5) in
the form

e−
1
2 (x−t)2 = e−t

d
dx

(
e−

x2

2

)
(7)
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and then, we have

e
x2

2 e−t
d
dx

(
e−

x2

2

)
=

+∞∑
n=0

tn

n!
Hen(x).(8)

The exponential operator in the previous equation can be exploited to obtain

e
x2

2

[
+∞∑
n=0

(−1)
n
tn

n!

(
d

dx

)n](
e−

x2

2

)
=

+∞∑
n=0

tn

n!
Hen(x).(9)

At this point, we note that the terms acting on the exponential function e−
x2

2

give only an operational contribute except for the term
(

d
dx

)n
; we can rewrite the

previous equation in the following more convenient form

e
x2

2

+∞∑
n=0

(−1)
n
tn

n!

(
d

dx

)n (
e−

x2

2

)
=

+∞∑
n=0

tn

n!
Hen(x)(10)

and by equating the terms of the same power of n, we immediately obtain the
thesis of the proposition, that is the Rodrigues formula. �

Since the orthogonal polynomials are defined through a weight function and
determined to less than a constant, we can now investigate the properties and
the related relations of the Hermite polynomials under the point of view of their
orthogonality.

Proposition I.2. The ordinary Hermite polynomials are orthogonal on the
interval (−∞,+∞) with respect to the weight function

e−
x2

2 ,(11)

that is
+∞∫
−∞

e−
x2

2 Hen(x) Hem(x)(x)dx = n!
√

2πδn,m.(12)

Proof. By using the Rodrigues Formula, we can recast the integral of the state-
ment in the form

+∞∫
−∞

e−
x2

2 Hen(x) Hem(x)(x)dx = (−1)n
+∞∫
−∞

( d

dx

)n (
e−

x2

2

)
Hem(x)(x)dx.(13)

By solving the integral on the r.h.s. of the above equation and using the method
by parts, we get

(14)

(−1)n
+∞∫
−∞

( d

dx

)(
e−

x2

2

)
Hem(x)dx

= (−1)n
{[( d

dx

)(
e−

x2

2

)
Hem(x)−

+∞∫
−∞

( d

dx

)(
e−

x2

2

) d

dx
Hem(x)dx

]+∞

−∞

}



46 C. CESARANO, C. FORNARO and L. VAZQUEZ

and then,

(−1)n
+∞∫
−∞

( d

dx

)n (
e−

x2

2

)
Hem(x)dx

= (−1)n
{

lim
a→−∞
b→+∞

[( d

dx

)n−1 (
e−

x2

2

)
Hem(x)

]b
a

− (−1)

[
−

+∞∫
−∞

( d

dx

)n−1 (
e−

x2

2

) d

dx
Hem(x)dx

]}
.

(15)

By noting that the limit in the r.h.s. of the previous relation gives zero and using
the recurrence relation satisfied by the ordinary Hermite polynomials (see[2, 5])

d

dx
Hen(x) = nHen−1(x)(16)

we can obtain the expression

(17)

+∞∫
−∞

e−
x2

2 Hen(x) Hem(x)(x)dx = (−1)n+1m!

+∞∫
−∞

( d

dx

)n−m (
e−

x2

2

)
dx.

Regarding the integral on the r.h.s. of the above relation, we note that

+∞∫
−∞

( d

dx

)s (
e−

x2

2

)
dx = 0(18)

after setting n−m = s, assuming n 6= m. In case n = m, we have

+∞∫
−∞

e−
x2

2 dx =
√

2π(19)

and then, the proposition is completely proved. The orthogonality property sat-
isfied by the Hermite polynomials Hem(x) suggests us to introduce a family of
functions, based on the Hermite polynomials themselves in such a way as similar
properties are derived. �

Definition I.1. Let the ordinary Hermite polynomials be of the type Hem(x),
we call one-variable Hermite function, the function defined by the following relation

hen(x) =

(
1√

2πn!

) 1
2

Hen(x)e−
x2

4 .(20)

Proposition I.3. The one-variable Hermite functions of the type hem(x) are
orthonormal on the interval (−∞,+∞), that is

+∞∫
−∞

hen(x) hem(x)dx = δn,m(21)
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Proof. By substituting the explicit form of the Hermite functions hem(x) in the
integral, we get

+∞∫
−∞

hen(x) hem(x)dx =

+∞∫
−∞

( 1√
2πn!

)( 1√
2πm!

)
e−

x2

4 e−
x2

4 Hen(x) Hem(x)dx

=
( 1

2πn!m!

) 1
2

+∞∫
−∞

eHen(x) Hem(x)dx.(22)

Since the Hermite polynomials Hem(x) are orthogonal on the interval (−∞,+∞)

with the weight function e−
x2

2 (see Proposition I.2), we obtain

+∞∫
−∞

hen(x) hem(x)dx =
( 1

n!m!

) 1
2 1√

2π
n!
√

2πδn,m =

√
n!

m!
δn,m(23)

and then, the thesis follows immediately. �

Proposition I.4. The one-variable orthogonal Hermite functions hem(x) sat-
isfy the following recurrence relations

2
d

dx
hen(x) =

√
n hen−1(x)−

√
n+ 1 hen+1(x),(24)

xhen(x) =
√
n hen−1(x) +

√
n+ 1 hen+1(x).(25)

Proof. By deriving both sides of definition I.1 with respect to x, we have

d

dx
hen(x) =

( 1√
2πn!

) 1
2 d

dx

(
Hen(x)e−

x2

4

)
(26)

and using the recurrence relation (16) showed in Proposition I.2, we can write the
above equation in the form

d

dx
hen(x) =

( 1√
2πn!

) 1
2
[
nHen−1(x)e−

x2

4 − x

2
Hen(x)e−

x2

4

]
.(27)

It is easy to prove that the ordinary Hermite polynomial Hem(x) satisfies the
further relation

Hen(x) =
1

x
[nHen−1(x) + Hen+1(x)](28)

and then, we can obtain

d

dx
hen(x)

=
( 1√

2πn!

) 1
2
[
nHen−1(x)e−

x2

4 −
(1

2
e−

x2

4

(
nHen−1(x) + Hen+1(x)

))]
.

(29)
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By substituting the expression of Hermite polynomials Hen−1(x) and Hen+1(x)
in terms of the orthogonal Hermite functions hem(x) (see Definition I.1), we get

d

dx
hen(x) =

( 1√
2πn!

) 1
2
[
ne−

x2

4

(√
2π(n− 1)!

) 1
2

e
x2

4 hen−1(x)

− 1

2
e−

x2

4 n
(√

2π(n− 1)!
) 1

2

e
x2

4 hen−1(x)

− 1

2
e−

x2

4

(√
2π(n+ 1)!

) 1
2

e
x2

4 hen+1(x)
](30)

and then,

d

dx
hen(x) =

n[(n− 1)!]
1
2

(n!)
1
2

hen−1(x)

− 1

2

n[(n− 1)!]
1
2

(n!)
1
2

hen−1(x)− 1

2

n[(n+ 1)!]
1
2

(n!)
1
2

hen+1(x),

(31)

which proves the first relation of the statement. To prove the proposition com-
pletely, we start with a note that the recurrence relation (28) verified from the
Hermite polynomials Hem(x) can be recast in the form

xHen(x) = Hen+1(x) + nHen−1(x).(32)

By substituting the expressions of the ordinary Hermite polynomials in terms of
the related Hermite functions, we immediately obtain

x
[(√

2πn!
) 1

2

e
x2

4 hen(x)
]
,

=
(√

2π(n+ 1)!
) 1

2

e
x2

4 hen+1(x) + n
(√

2π(n− 1)!
) 1

2

e
x2

4 hen−1(x),

(33)

which finally proves the second recurrence relations. �

II. Differential relations involving orthogonal Hermite functions

In this section, we follow the same approach of the previous section to present some
interesting relations involved the generalized two-variable Hermite polynomials
and we also present the related Hermite functions.

By using the concept and related formalism of the shift operators regarding
the ordinary Hermite polynomials (see [6, 7]), we can explore the differential
characteristics involving the orthogonal Hermite functions of type hem(x).

It is easy to note that( d

dx
+
x

2

)
hen(x) =

√
nhen−1(x)(34) (

− d

dx
+
x

2

)
hen(x) =

√
n+ 1 hen+1(x)(35)
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which show the action on the Hermite function. Then, by setting

â− =
(

d
dx + x

2

)
, â+ =

(
− d

dx
+
x

2

)
,(36)

we can express and rewritethe previous relations in the formal way

â− hen(x) =
√
n hen−1(x),

â+ hen(x) =
√
n+ 1 hen+1(x).

(37)

The shift operators related to Hermite polynomials are dependent on discrete
parameters while the above operators keep the same expression, that is they do
not change with the index function. It is worth to note that the following relation
holds

â+â− hen(x) = nhen(x),(38)

which can be used to state the result.

Theorem II.1. The one-variable orthogonal Hermite functions hem(x) solve
the following ordinary differential equations[ d2

dx2
− x2

4
+
(
n+

1

2

)]
hen(x) = 0.(39)

Proof. By using the operatorial relation (38), we have(
− d

dx
+
x

2

)( d

dx
+
x

2

)
hen(x) = n hen(x)(40)

and then, (
− d2

dx2
− x

2

d

dx
− 1

2
+
x

2

d

dx
+
x2

4

)
hen(x) = nhen(x),(41)

and finally, (
− d2

dx2
+
x2

4
− 1

2
− n

)
hen(x) = 0,(42)

which completely proves the statement of theorem. �

At the beginning of this paper, we have presented the generating function of
the Hermite polynomial Hem(x) and in Definition I.1, we have introduced the or-
thogonal Hermite function hem(x) based on the ordinary Hermite polynomials. It
is now possible to derive the generating function for this type of Hermite functions
by manipulating relations (2) and (20). In fact, we have

exp

(
xt− t2

2

)
=

+∞∑
n=0

tn

n!

(√
2πn!

) 1
2

e
x2

4 hen(x)(43)

which immediately gives the link between the Hermite function hem(x) and its
generating function, that is

1(√
2π
) 1

2

exp

(
−1

2
(x− t)2 − x2

4

)
=

+∞∑
n=0

tn

(n!)
1
2

hen(x)e−
x2

2 .(44)
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In the same way we can derive the analogous Rodrigues formula for the orthogonal
Hermite functions. In fact, by substituting in the Rodrigues formula, related to
the ordinary Hermite polynomials Hem(x) stated in Proposition I.1, we get the
expression of the polynomials Hem(x) in terms of the functions hem(x)(√

2πn!
) 1

2

e
x2

4 hen(x) = (−1)ne
x2

2

( d

dx

)n (
e−

x2

2

)
(45)

and by rearranging the terms, we end up with the expression

hen(x) =
1(√
2π
) 1

2

(−1)n
1

(n!)
1
2

e
x2

4

( d

dx

)n (
e−

x2

2

)
(46)

that represents the Rodrigues formula for the orthogonal Hermite functions hem(x).
We can now generalize the above results obtained by using the ordinary one-

variable Hermite polynomials and applying them to the two-variable Hermite poly-
nomials family. We remind that the explicit forms of the generalized Hermite
polynomials of type Hm(x, y) and Hem(x) read (see [1])

Hm(x, y) =

[m
2 ]∑

n=0

m!

n!(m− 2n)!
ynxm−2n(47)

and

Hem(x, y) =

[m
2 ]∑

n=0

m!

n!(m− 2n)!
(−y)n(2x)m−2n.(48)

Since we have introduced the orthogonal Hermite functions of one-variable by using
the structure and the properties of the ordinary Hermite polynomials Hem(x), we
expect that it is also possible to define analogous Hermite functions of two variables
that are orthogonal by using the expression of the generalized two-variable Hermite
polynomials. This is obviously possible, but we face the question starting directly
by the definition of the one-variable Hermite functions hem(x).

Definition II.1. Let x and y be two real variables and hem(x) be the one-
variable Hermite function. We define the two-variable Hermite function hem(x, y)
given by the expression

hen(x, y) =

[n/2]∑
r=0

√
n!

(n− 2r)!r!
hen−2r(x) her(y).(49)

Theorem II.2. The two-variable Hermite functions hem(x, y) are orthogonal
functions on the interval (−∞,+∞)× (−∞,+∞).

Proof. We have to prove that the following integral

+∞∫
−∞

dy

+∞∫
−∞

hen(x, y) hem(x, y)dx(50)
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is a finite number. By substituting the explicit expression of the two-variable
Hermite functions hem(x, y) given in Definition II.1, we get

+∞∫
−∞

dy

+∞∫
−∞

hen(x, y) hem(x, y)dx =

[n/2]∑
r=0

[m/2]∑
s=0

√
n!m!

(n− 2r)!(m− 2s)!r!s!

×
+∞∫
−∞

hen−2r(x) hem−2s(x)dx

+∞∫
−∞

her(y) hem−2s(y)dy.

(51)

Since the one-variable Hermite functions are orthonormal on the interval (−∞,+∞)
(see eq. (21)), we have

+∞∫
−∞

dy

+∞∫
−∞

hen(x, y) hem(x, y)dx

=

[n/2]∑
r=0

[m/2]∑
s=0

√
n!m!

(n− 2r)!(m− 2s)!r!s!

+∞∫
−∞

hen−2r(x) hem−2s(x)dxδr,s.

(52)

We note that in the above summations, all the addends are zero except r = s.
Then we can rewrite the previous relation in the form

+∞∫
−∞

dy

+∞∫
−∞

hen(x, y) hem(x, y)dx

=

[n/2]∑
r=0

[m/2]∑
r=0

√
n!m!

((n− 2r)!)
2
(r!)

2

+∞∫
−∞

hen−2r(x) hem−2r(x)dx

(53)

and by applying again the orthonormal property of the one-variable Hermite func-
tions hem(x), we similarly obtain

+∞∫
−∞

dy

+∞∫
−∞

hen(x, y) hem(x, y)dx =

[n/2]∑
r=0

[m/2]∑
r=0

√
n!m!

((n− 2r)!)
2
(r!)

2 δn,m.(54)

Also in this case, the only not zero value is obtained for n = m, so we can conclude

+∞∫
−∞

dy

+∞∫
−∞

hen(x, y) hem(x, y)dx =

[n/2]∑
r=0

n!

(n− 2r)!r!
,(55)

which proves the orthogonality of the two-variable Hermite functions hem(x, y). It
could be useful to observe that the term obtained in the proof of Theorem II.2 can
be read as a special case of the two-variable Hermite polynomials of the typeHm(x,y)

Hn

(1

2
,−1

)
=

[n/2]∑
r=0

n!

(n− 2r)!r!
.(56)
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We can derive the generating function for the two-variable orthogonal Hermite
functions hem(x, y) by using the structure and the identities of the Hermite poly-
nomials. It is known that the generating function of the two-variable Hermite
polynomials of type Hem(x, y) can be written in the form (see [6, 2])

H(m)
n (x, y) = ey

∂m

∂xm xn.(57)

By manipulating the argument of the exponential, we obtain

exp

(
xt− t2

2
+ yt2 − t4

2

)
= exp

(
xt− t2

2

)
exp

(
yt2 − t4

2

)
=

+∞∑
m=0

tm

m!
Hem(x)(x)

+∞∑
r=0

t2r

r!
Her(y).

(58)

By setting m+ 2r = n after rearranging the indices in the above summations, we
end up with

Hen(x, y) = n!

[n/2]∑
r=0

1

(n− 2r)!r!
Hen−2r(x) Her(y)(59)

which gives an expression of the two-variable Hermite polynomials Hem(x, y) in
terms of the ordinary one-variable Hermite polynomials. Further we use the rela-
tion showed above to state the link between the two-variable orthogonal Hermite
functions hem(x, y) and their generating function.

In the definition of the functions hem(x, y) (see equation (49)) we start to sub-
stitute the expression of the one-variable orthogonal Hermite functions hem(x)
given in Definition I.1

hen(x, y) =

[n/2]∑
r=0

√
n!

(n− 2r)!r!

(
1√

2π(n− 2r)!

) 1
2
(

1√
2πr!

) 1
2

× e−
x2

4 e−
y2

4 Hen−2r(x) Her(y)

(60)

which gives

hen(x, y) = e−
x2

4 e−
y2

4
1√
2π

√
n!

[n/2]∑
r=0

1

(n− 2r)!r!
Hen−2r(x) Her(y).(61)

By substituting the expression stated above, we have

hen(x, y) =

√
n!√
2π

e−
x2

4 e−
y2

4
Hen(x, y)

n!
.(62)

By expressing the two-variable Hermite polynomials Hem(x, y) in terms of the
Hermite functions hem(x, y), the previous equation reads

Hen(x, y) =
n!√
n!

√
2πe

x2+y2

4 hen(x, y).(63)
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By inserting in expression (58), we get

exp
(
xt− t2

2
+ yt2 − t4

2

)
=

+∞∑
n=0

tn

n!

[ n!√
n!

√
2πe

x2+y2

4 hem(x, y)
]

(64)

and then, we can finally state the expression of the generating function of the
two-variable Hermite functions hem(x, y)

1√
2π

e−
1
2 (x−t)− 1

2 (y−t2) e
x2+y

4 =

+∞∑
n=0

tn√
n!

hen(x, y).(65)

The two-variable Hermite polynomials satisfy many interesting identities (see [5,
6]) that allow to derive similar relations for the two-variable Hermite functions
hem(x, y). The starting point is the link between the polynomials Hem(x, y) and
the functions hem(x, y) showed above.

By deriving with respect to x in relation (62), we have

∂

∂x
hen(x, y) =

1√
2πn!

e−
y2

4

[
− x

2
e−

x2

4 Hen(x, y) + e−
x2

4
∂

∂x
Hen(x, y)

]
(66)

and then,

∂

∂x
hen(x, y)=− 1√

2πn!

x

2
e−

x2+y2

4 Hen(x, y)+
1√

2πn!
e−

x2+y2

4 nHen−1(x, y).(67)

By applying the identities in equation (63), we can easily conclude with the
following generalization

∂

∂x
hen(x, y) = −x

2
hen(x, y) +

√
n hen−1(x, y).(68)

In the same way it is possible to state an analogous recurrence relation satisfied
by the Hermite functions hem(x, y). In fact, by deriving with respect to y in
equation (62), we obtain

∂

∂y
hen(x, y) =

1√
2πn!

e−
x2

4

[
−y

2
e−

x2

4 Hen(x, y) + e−
y2

4
∂

∂y
Hen(x, y)

]
(69)

and by using the properties of two-variable Hermite polynomials, we can rewrite
the above expression in the form

∂

∂y
hen(x, y) = − 1√

2πn!

y

2
e−

x2+y2

4 Hen(x, y)

+
1√

2πn!
e−

x2+y2

4 n(n− 1) Hen−2(x, y).

(70)

By using again the identity in equation (63), we can finally state the second gen-
eralized recurrence relation for the two-variable Hermite function hem(x, y)

∂

∂y
hen(x, y) = −y

2
hen(x, y) +

√
n(n− 1) hen−2(x, y).(71)

A further recurrence relation involving the Hermite functions hem(x, y) can be
deduced by operating directly in the equation linking the generalized Hermite
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polynomials of the type Hem(x, y) and its generating function. We remind the
reader that the generating function of the polynomials Hem(x, y) has the expression

exp
(
xt− t2

2
+ yt2 − t4

2

)
=

+∞∑
n=0

tn

n!
Hen(x, y)(72)

and by deriving both sides with respect to t, we obtain

(x− t+ 2yt− 2t3)

+∞∑
n=0

tn

n!
Hen(x, y) =

+∞∑
n=0

n
tn−1

n!
Hen(x, y).(73)

By exploiting the terms in the above relation, we can write

x

+∞∑
n=0

tn

n!
Hen(x, y)−

+∞∑
n=0

tn+1

n!
Hen(x, y)

+ 2y

+∞∑
n=0

tn+1

n!
Hen(x, y)− 2

+∞∑
n=0

tn+3

n!
Hen(x, y) =

+∞∑
n=0

n
tn−1

n!
Hen(x, y).

(74)

By equating the terms of the same power of n, we have

x
Hen(x, y)

n!
+ (2y − 1)

Hen−1(x, y)

(n− 1)!

− 2
Hen−3(x, y)

(n− 3)!
=

n+ 1

(n+ 1)!
Hen+1(x, y),

(75)

which gives the important recurrence relation for the generalized Hermite polyno-
mials Hem(x, y)

xHen(x, y) + (2y − 1)nHen−1(x, y)

− 2 [n(n− 1)(n− 2)] Hen−3(x, y) = Hen+1(x, y).
(76)

We can use the relation stated above to derive the analogous identity for the
two-variable Hermite functions hem(x, y). In fact, by substituting the expression
of the Hermite polynomials Hem(x, y) in terms of the Hermite functions hem(x, y)
given by equation (63), we have

x
√
n!
√

2πe
x2+y2

4 hen(x, y) + (2y − 1)n
√

(n− 1)!
√

2πe
x2+y2

4 hen−1(x, y)

− 2 [n(n− 1)(n− 2)]
√

(n− 3)!
√

2πe
x2+y2

4 hen−3(x, y)

=
√

(n+ 1)!
√

2πe
x2+y2

4 hen+1(x, y).

(77)

We can finally conclude

xhen(x, y) + (2y − 1)
√
nhen−1(x, y)

− 2
√
n(n− 1)(n− 2) hen−3(x, y) =

√
n+ 1 hen+1(x, y).

(78)

�
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III. Bi-Orthogonal Hermite functions

In a previous paper (see [8]), we presented the two-index, two-variable Hermite
polynomials of the type Hm,n(x, y) and defined their associate Gm,n(x, y), by deriv-
ing many properties and interesting identities for both type of generalized vectorial
polynomials. It is now interesting to explore the possibility to find similar Hermite
functions as those defined in the previous sections of the present article, in order
to obtain an extension of the concepts and the related identities satisfied from
the Hermite polynomials Hm,n(x, y) and their associate Gm,n(x, y). The structure
of the vectorial extension Hermite polynomials is based on the fact that a vector
index acts on a vector variable or, that is the same, a couple of indexes act on a
couple of variables. We see that many of the properties satisfied by this family
of Hermite polynomials could be referred to the analogous ones satisfied by the
ordinary Hermite polynomials of type Hem(x) and their generalizations, but the
cited properties, relevant to the polynomials Hm,n(x, y) and Gm,n(x, y), are de-
duced without making use of Hem(x) properties, this means that they could not be
obtained as natural extensions of those relevant to one-index Hermite polynomials.

This suggests that we can not expect the same relation linking the two-index,
two-variable Hermite polynomials Hm,n(x, y) and Gm,n(x, y), and the related Her-
mite functions we are going to define (see [9, 10]). We also see that the concept
of orthogonality is not the same as the existing one for the one-index Hermite
polynomials of type Hem(x) and Hem(x, y). In particular, we will prove that the
bi-orthogonal Hermite functions solve a partial differential equations by using the
formalism and the related concepts of the shift operators which will be introduced
in the description of the structure of the discussed bi-orthogonal functions.

We start indeed from this last point. We will prove that the vectorial Hermite
polynomials of the type Hm,n(x, y) and their associate Gm,n(x, y) satisfy a bi-
orthogonality condition instead the orthogonality condition, in the sense that the
polynomials Hm,n(x, y) are orthogonal with respect to the associate polynomials
Gm,n(x, y).

Theorem III.1. The two-index, two-variable Hermite polynomials Hm,n(x, y)
and their related associate Gm,n(x, y) satisfy the following bi-orthogonality condi-
tion

+∞∫
−∞

dy

+∞∫
−∞

dx Hm,n(x, y)Gr,s(x, y)e−
1
2 z

tM̂z =
2π√
∆
m!n!δm,rδn,s,(79)

where z =
(
x
y

)
is a vector of space R2, and M̂ =

(
a b
b c

)
is the matrix associated to

the positive definite quadratic form

q(x, y) = ax2 + 2bxy + cy2, a, c > 0, ∆ = ac− b2 > 0(80)

with a, b, c real numbers.
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Proof. We know that the generating function of Hermite polynomials Hm,n(x, y)
reads (see [8])

ez
tM̂w− 1

2w
tM̂w =

+∞∑
m=0

+∞∑
n=0

tm

m!

un

n!
Hm,n(x, y),(81)

where z =
(
x
y

)
and w =

(
t
u

)
are two vectors of space R2. It is possible to recast

the above equation in a more convenient form. By acting on the argument of the
exponential, we have indeed

e−
1
2 [(z−w)tM̂(z−w)] = e−

1
2 [ztM̂z]

+∞∑
m=0

+∞∑
n=0

tm

m!

un

n!
Hm,n(x, y)(82)

which better outlines the analogy between the structure of the generating func-
tions related to the ordinary Hermite polynomials Hem(x) and the two-index,
two-variable Hermite polynomials Hm,n(x, y). This aspect allows us to obtain a
generalization of Rodrigues formula showed for the ordinary Hermite polynomi-
als. In fact, by acting directly on the statement contained in Proposition I.2, we
immediately have

Hm,n(x, y) = (−1)
m+n

e
1
2 (ztM̂z) ∂m+n

∂xm∂yn

[
e−

1
2 (ztM̂z)

]
Hm,n(x, y)

= (−1)
m+n

e
1
2 (ztM̂z) ∂m+n

∂xm∂yn

[
e−

1
2 (ztM̂z)

](83)

representing the Rodrigues formula related to the Hermite polynomials Hm,n(x, y).
The above identity could be recast in the form

e−
1
2 (ztM̂z)Hm,n(x, y) = (−1)

m+n ∂m+n

∂xm∂yn

[
e−

1
2 (ztM̂z)

]
,(84)

which allows us to rewrite the integral in the statement in a operational form

+∞∫
−∞

dx

+∞∫
−∞

dy
[
(−1)

m+n ∂m+n

∂xm∂yn

(
e−

1
2 z

tM̂z
)

Gr,s(x, y)
]
.(85)

We first start to evaluate the integral with respect to variable y

(−1)m+n

+∞∫
−∞

[ ∂m+n

∂xm∂yn

(
e−

1
2 z

tM̂z
)

Gr,s(x, y)
]
dy,(86)

which integrating by parties, gives

(−1)m+n

+∞∫
−∞

[ ∂m+n

∂xm∂yn

(
e−

1
2 z

tM̂z
)

Gr,s(x, y)
]
dy

= (−1)m+(n+1)

+∞∫
−∞

[ ∂m+(n−1)

∂xm∂yn−1

(
e−

1
2 z

tM̂z
) ∂

∂y
Gr,s(x, y)

]
dy.

(87)
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By using the techniques of the vectorial derivation (see [8]), we note that

∂

∂y

+∞∑
r=0

+∞∑
s=0

km

r!

hn

s!
Gr,s(x, y) =

+∞∑
m=0

+∞∑
n=0

km

r!

hn

s!

∂

∂y
Gr,s(x, y),(88)

that is

sGr,s−1(x, y) =
∂

∂y
Gr,s(x, y).(89)

By substituting this last expression into the integral, we have the relation

(−1)m+n

+∞∫
−∞

[ ∂m+n

∂xm∂yn

(
e−

1
2 z

tM̂z
)

Gr,s(x, y)
]
dy

= (−1)m+(n+1)s

+∞∫
−∞

[ ∂m+(n−1)

∂xm∂yn−1

(
e−

1
2 z

tM̂z
)

Gr,s−1(x, y)
]
dy.

(90)

Without prejudicing the generality, we can suppose that n ≥ s, and then, iterating
the process on the index s, we finally obtain

(−1)m+n

+∞∫
−∞

[ ∂m+n

∂xm∂yn

(
e−

1
2 z

tM̂z
)

Gr,s(x, y)
]
dy

= (−1)m+(n+s)s!

+∞∫
−∞

[ ∂m+(n−s)

∂xm∂yn−s

(
e−

1
2 z

tM̂z
)

Gr,0(x, y)
]
dy

(91)

which is not zero if and only if n = s.
Let n = s, the double integral in the statement becomes

+∞∫
−∞

dy

+∞∫
−∞

dxHm,n(x, y)Gr,s(x, y)e−
1
2 z

tM̂z

= (−1)m+(n−s)n!

+∞∫
−∞

dx

+∞∫
−∞

dy
[ ∂m
∂xm

(
e−

1
2 z

tM̂z
)

Gr,0(x, y)
]
.

(92)

which once integrated by parties with respect to the variable x, gives

(−1)m+(n+s)n!

{ +∞∫
−∞

[
lim

a→−∞
b→+∞

( ∂m−1

∂xm−1

(
e−

1
2 z

tM̂z
)

Gr,0(x, y)
)]b

a

− (−1)

[
−

+∞∫
−∞

∂m−1

∂xm−1

(
e−

1
2 z

tM̂z
) ∂

∂x
Gr,0(x, y)

]
dy

}
.

(93)
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By operating in the same way as above, regarding the partial derivative acts on
the polynomial Gr,0(x, y), we have

∂

∂x
Gr,0(x, y) = r!Gr−1,0(x, y),(94)

which after substitued in the integral, gives

(−1)(m+1)+(n+s)n!r!

[ +∞∫
−∞

( +∞∫
−∞

∂m−1

∂xm−1

(
e−

1
2 z

tM̂z
)

Gr−1,0(x, y)dx

)
dy

]
.(95)

We can suppose m ≥ r and by iterating the process, it leads to the expression

(−1)(m+r)+(n+s)n!r!

[ +∞∫
−∞

( +∞∫
−∞

∂m−r

∂xm−r

(
e−

1
2 z

tM̂z
)

G0,0(x, y)dx

)
dy

]
,(96)

where it is easy to observe that the integral provides a zero result when m is not
equal to r. By assuming m = r, we can conclude with

(−1)2m+2nn!m!

+∞∫
−∞

( +∞∫
−∞

e−
1
2 z

tM̂zdx

)
dy.(97)

By noting that the term

(−1)2m+2n = (−1)2(m+n)(98)

is positive whatever the value of n and m is, and by the fact that

+∞∫
−∞

( +∞∫
−∞

e−
1
2 z

tM̂zdx
)

dy =

+∞∫
−∞

( +∞∫
−∞

e−
1
2 (ax2+2abxy+cy2)dx

)
dy = 2π

1√
∆
,(99)

we finally obtain

(−1)2m+2nn!m!

+∞∫
−∞

( +∞∫
−∞

e−
1
2 z

tM̂zdx
)

dy = n!m!2π
1√
∆
,(100)

that is
+∞∫
−∞

dy

+∞∫
−∞

dxHm,n(x, y)Gr,s(x, y)e−
1
2 z

tM̂z = n!m!2π
1√
∆
,(101)

which proves the theorem. �

In previous sections, we have used the orthogonality property satisfied by the
one-index Hermite polynomials of the type Hem(x) and Hem(x, y), in order to
introduce the Hermite functions of one and two variables hem(x) and hem(x, y).
In the same way we can use the result proved in the above theorem to define
functions based on the two-index, two-variable Hermite polynomials Hm,n(x, y)
and their associate Gm,n(x, y), which can verify the bi-orthogonality property.
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Definition III.1. Let the Hermite polynomials Hm,n(x, y) and Gm,n(x, y) we
call two-index, two-variable Hermite functions, be the functions defined in the
following way

Hm,n (x, y) =
4
√

∆

2π

1√
m!n!

Hm,n(x, y)e−
1
4 z

tM̂z,(102)

Gm,n (x, y) =
4
√

∆

2π

1√
m!n!

Gm,n(x, y)e−
1
4 z

tM̂z.(103)

It is evident that the two-index, two-variable Hermite functions are bi-orthogonal
and in particular, bi-orthonormal. In fact, by applying the result of Theorem III.1,
we have

+∞∫
−∞

dx

+∞∫
−∞

dyHm,n (x, y) Gr,s (x, y)

=

√
∆

2π

1√
m!n!

1√
r!s!

+∞∫
−∞

dx

+∞∫
−∞

dyHm,n(x, y)Gr,s(x, y)e−
1
2 z

tM̂z,

(104)

and then,

+∞∫
−∞

dx

+∞∫
−∞

dyHm,n (x, y) Gr,s (x, y)

=

√
∆

2π

1√
m!n!

1√
r!s!

m!n!
2π√
∆
δm,rδn,s = δm,rδn,s.

(105)

The Hermite polynomials of type Hm,n(x, y) and the related associated Gm,n(x, y)
(see [8]) were introduced by operating a dimensional increase on the standard
Hermite polynomials Hem(x) by using a two-dimensional vector index acting on
a two-dimensional vector variable. At the same time the structure used to define
the Hermite polynomials of the form Hm,n(x, y) is based on a quadratic form
and then, on a two-dimensional matrix which is invertible. This last fact has led
to explore the possibility to introduce a slightly different polynomials recognized
as Hermite-type, so that we have defined the associate two-index, two-variable
Hermite polynomials of type Gm,n(x, y). It is evident that many of the properties
deduced for these polynomials belonging to the class of the generalized Hermite
polynomials are a generalization of the same relations presented and discussed for
the ordinary Hermite polynomials Hem(x), and described for both the Hm,n(x, y)
and Gm,n(x, y) Hermite polynomials. In particular, it is known that the following
result holds

∂

∂τ
Sm,n(x, y; τ) = −1

2
(∂x∂y) M̂−1

(
∂x
∂y

)
Sm,n(x, y; τ)(106)
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satisfying the conditions at τ = 0,

Sm,n(x, y; 0) =

{
ξmηn

xmyn,
(107)

respectively.
Since we have defined the two-index, two-variable Hermite functions Hm,n(x, y)

and Gm,n(x, y) by using the related Hermite polynomials Hm,n(x, y) and Gm,n(x, y),
we expect to deduce similar relations which involve the above bi-orthogonal Her-
mite functions and finally to obtain a partial differential equation solved by the
Hermite functions of type Hm,n (x, y) and Gm,n (x, y).

Proposition III.1. The Hermite functions Hm,n (x, y) satisfy the following
recurrence relations[ ∂

∂x
+

1

2
(ax+ by)

]
Hm,n (x, y)

= a
√
mHm−1,n (x, y) + b

√
nHm,n−1 (x, y)

(108)

and [ ∂
∂y

+
1

2
(bx+ cy)

]
Hm,n (x, y)

= b
√
mHm−1,n (x, y) + c

√
nHm,n−1 (x, y) .

(109)

Proof. By deriving with respect to x in the definition of the Hermite function
Hm,n (x, y), we have

∂

∂x
Hm,n (x, y) =

4
√

∆

2π

1√
m!n!

∂

∂x

(
Hm,n(x, y)e−

1
4 z

tM̂z
)
.(110)

Let us study the derivative on the r.h.s. of the above equation obtaining

∂

∂x

(
Hm,n(x, y)e−

1
4 z

tM̂z
)

=

(
∂

∂x
Hm,n(x, y)

)
e−

1
4 z

tM̂z + Hm,n(x, y)
∂

∂x
e−

1
4 z

tM̂z.
(111)

By applying the recurrence relation

∂

∂x
Hm,n(x, y) = amHm−1,n(x, y) + bnHm,n−1(x, y),(112)

we finally have

∂

∂x

(
Hm,n(x, y)e−

1
4 z

tM̂z
)

= (amHm−1,n(x, y) + bnHm,n−1(x, y)) e−
1
4 z

tM̂z

− 1

4
Hm,n(x, y)

[ (
1 0

)( a b
b c

)(
x
y

)
+
(
x y

)( a b
b c

)(
1
0

)]
e−

1
4 z

tM̂z.

(113)
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Note that the two-index, two-variable Hermite polynomials of type Hm,n(x, y)

can be expressed in terms of the Hermite function Hm,n (x, y). By making the
appropriate manipulations, we end up with

∂

∂x

(
Hm,n(x, y)e−

1
4 z

tM̂z
)

= am

√
2π

4
√

∆

√
(m−1)!n!Hm−1,n (x, y) + bn

√
m!(n− 1)! Hm,n−1 (x, y)

− 1

2

√
2π

4
√

∆

√
m!n! Hm,n (x, y) (ax+ by)

(114)

and then,

∂

∂x
Hm,n (x, y)

=
4
√

∆√
2π

1√
m!n!

√
2π

4
√

∆

√
m!n!

×
[
a
√
m Hm−1,n(x, y)+b

√
n Hm,n−1(x, y)− 1

2
Hm,n(x, y) (ax+by)

]
,

(115)

which proves the first recurrence relation in the statement.
To show the second relation, we derive with respect to y again in the definition

of the Hermite functions Hm,n (x, y)

∂

∂y
Hm,n (x, y) =

4
√

∆√
2π

1√
m!n!

∂

∂y

(
Hm,n(x, y)e−

1
4 z

tM̂z
)
.(116)

Following the same procedure used above, we can easily prove the second recur-
rence relations. �

We have introduced the Hermite functions and their adjoint by using he struc-
ture of the Hermite polynomials of type Hm,n(x, y) and Gm,n(x, y). As we have
seen in the above statement, it is possible to derive similar relations for these
Hermite functions of type Hm,n (x, y) by using the techniques and the operational
properties of two-index, two-variable Hermite polynomials.

Proposition III.2. The bi-orthogonal Hermite functions of type Hm,n (x, y)
verify the following relations

√
m+ 1 Hm+1,n (x, y) = (ax+ by)Hm,n (x, y)

− a
√
m Hm−1,n (x, y)− b

√
n Hm,n−1 (x, y)

(117)

√
n+ 1 Hm,n+1 (x, y) = (bx+ cy)Hm,n (x, y)

− b
√
m Hm−1,n (x, y)− c

√
n Hm,n−1 (x, y)

(118)

Proof. We note that the Hermite function of indexes m+ 1, n, reads

Hm+1,n (x, y) =
4
√

∆√
2π

1√
m+ 1

1√
m!n!

Hm+1,n(x, y)e−
1
4 z

tM̂z,(119)
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where we can substitute the recurrence relation satisfied by Hermite polynomials
of type Hm,n(x, y):

Hm+1,n(x, y) = (ax+ by) Hm,n(x, y)

− amHm−1,n(x, y)− bnHm,n−1(x, y)
(120)

to obtain

(121)

√
m+ 1 Hm+1,n (x, y) =

4
√

∆√
2π

1√
m!n!

e−
1
4 z

tM̂z
[
(ax+ by)Hm,n(x, y)

− amHm−1,n(x, y)− bnHm,n−1(x, y)
]
.

By using the definition of Hermite function Hm,n (x, y), the above equation can
be write in the form√

m+ 1 Hm+1,n (x, y)

=
4
√

∆√
2π

1√
m!n!

e−
1
4 z

t M̂z
[
(ax+ by)e

1
4 z

tM̂z
√
m!n! Hm,n (x, y)

− am
√

2π
4
√

∆

√
(m− 1)!n!e

1
4 z

tM̂z Hm−1,n (x, y)

− bn
√

2π
4
√

∆

√
m!(n− 1)!e

1
4 z

tM̂z Hm,n−1 (x, y)
]
,

(122)

that is, once recast, the first expression of the present proposition.
In the analogous way it is possible to prove the second recurrence relation by

using again the recurrence relation related to the Hermite polynomials of type
Hm,n(x, y). �

The relations derived in the above propositions can be used to define useful
operators acting on the Hermite functions of type Hm,n (x, y).

By manipulating the first of recurrence relations present in Proposition III.2,
we have

a
√
m Hm−1,n (x, y) = (ax+ by)Hm,n(x, y)

− b
√
n Hm,n−1(x, y)−

√
m+ 1 Hm+1,n(x, y)

(123)

which, once substitute in the first equation of Proposition III.2, gives[
− ∂

∂x
+

1

2
(ax+ by)

]
Hm,n(x, y) =

√
m+ 1 Hm+1,n(x, y).(124)

In the same way by using the second expressions stated in Proposition III.2 and
Proposition III.1, we obtain[1

2
(bx+ cy)− ∂

∂y

]
Hm,n(x, y) =

√
n+ 1 Hm,n+1(x, y).(125)

The recurrence relations stated in the previous two propositions can be also used
to derive further differential expressions regarding the bi-orthogonal Hermite func-
tions. In fact, following the same procedure used above, in particular, alternately
combining the first and the second expression of Proposition III.2 with the second
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and the first of Proposition III.1, it is possible to complete the characterization
with regard to the differential properties satisfied by the Hermite functions of type
Hm,n (x, y). Indeed, we have the following relations[

− 1

∆

(
b
∂

∂x
− a ∂

∂y

)
+

1

2
y
]
Hm,n(x, y) =

√
n Hm,n−1(x, y)(126)

[
− 1

∆

(
c
∂

∂x
− b ∂

∂y

)
+

1

2
x
]
Hm,n(x, y) =

√
m Hm−1,n(x, y)(127)

It is an evident analogy between the four relations presented above and the
expressions regarding the two-index, two-variable Hermite polynomials of type
Hm,n(x, y).

Definition III.2. Given the Hermite functions Hm,n (x, y), we define the re-
lated shift operators by setting

â+,0 =
1

2
(ax+ by)− ∂

∂x
,(128)

â0,+ =
1

2
(bx+ cy)− ∂

∂y
,(129)

and

â−,0 =
1

∆

(
c
∂

∂x
− b ∂

∂y

)
+

1

2
x,(130)

â0,− = − 1

∆

(
b
∂

∂x
− a ∂

∂y

)
+

1

2
y.(131)

The above operators are free from any parameters, not presenting any index
variable in their structure; therefore, different from the shift operators related to
Hermite polynomials of type Hm,n(x, y).

It could be useful to summarize the action of these operators
â+,0Hm,n(x, y) =

√
m+ 1Hm+1,n(x, y),

â0,+Hm,n(x, y) =
√
n+ 1Hm,n+1(x, y),

â−,0Hm,n(x, y) =
√
mHm−1,n(x, y),

â0,−Hm,n(x, y) =
√
nHm,n−1(x, y).

(132)

As mentioned above and by virtue of the relations established above, we can
proceed to state the important result concerning the partial differential equation
solved by the bi-orthogonal Hermite functions Hm,n (x, y) and Gm,n (x, y). We

proceed by presenting the results for the Hermite functions of type Hm,n (x, y)
and later we discuss the case for the related associated Hermite functions.

Theorem III.2. The bi-orthogonal Hermite functions solve the following par-
tial differential equation[

−∂tzM̂−1∂z −
(
m+ n+ 1− 1

4
ztM̂z

)]
Hm,n(x, y) = 0,(133)
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where

∂z =

 ∂

∂x
∂

∂y

 .(134)

Proof. We consider the following operational relations deriving from the above
considerations

â+,0

[
â−,0Hm,n(x, y)

]
= mHm,n(x, y),(135)

â0,+

[
â0,−Hm,n(x, y)

]
= nHm,n(x, y).(136)

which can be explicited to obtain[1

2
(ax+ by)− ∂

∂x

][ 1

∆

(
c
∂

∂x
− b ∂

∂y

)
+

1

2
x
]
Hm,n(x, y) = mHm,n(x, y),(137) [1

2
(bx+ cy)− ∂

∂y

][
− 1

∆

(
b
∂

∂x
− a ∂

∂y

)
+

1

2
y
]
Hm,n(x, y) = nHm,n(x, y).(138)

The operator in the first of the above relations can be recast in the form

1

2∆

[
c(ax+ by)

∂

∂x

]
− 1

2∆

[
b(ax+ by)

∂

∂y

]
+

1

4

(
ax2 + bxy

)
+

1

∆

(
b
∂2

∂x∂y
− c ∂

2

∂x2

)
− 1

2
− 1

2
x
∂

∂x

(139)

and regarding the second equation, we can rewrite the operator as follows:

− 1

2∆

[
b(bx+ cy)

∂

∂x
− a(bx+ cy)

∂

∂y

]
+

1

4
y (bx+ cy)

+
1

∆

(
b
∂2

∂x∂y
− a ∂

2

∂y2

)
− 1

2
− 1

2
y
∂

∂y
.

(140)

After substituting the above expressions in the operational relations and making
a sum of these relations member to member, we obtain{ 1

2∆

[
c(ax+ by)

∂

∂x

]
− 1

2∆

[
b(ax+ by)

∂

∂y

]
+

1

4
(ax2 + bxy)

+
1

∆

(
b
∂2

∂x∂y
− c ∂

2

∂x2

)
− 1

2
− 1

2
x
∂

∂x

− 1

2∆

[
b(bx+ cy)

∂

∂x
− a(bx+ cy)

∂

∂y

]
+

1

4
y (bx+ cy) +

1

∆

(
b
∂2

∂x∂y
− a ∂

2

∂y2

)
− 1

2
− 1

2
y
∂

∂y

}
Hm,n(x, y)

= (m+ n)Hm,n(x, y).

(141)

We note that, by using the definition of two-index, two-variable Hermite polyno-
mials Hm,n(x, y), the following relations hold

1

4

(
ax2 + 2bxy + cy2

)
=

1

4
ztM̂z,(142)
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−∂tzM̂−1∂z = − 1

∆

(
c
∂2

∂x2
− 2b

∂2

∂x∂y
+ a

∂2

∂y2

)
(143)

and then, we can recast the operator in the l.h.s of equation (141) in the form[
−∂tzM̂−1∂z +

1

4
ztM̂z − 1

]
Hm,n(x, y) = (m+ n)Hm,n(x, y),(144)

which easily gives the statement of the theorem. �

IV. The adjoint bi-orthogonality of Hermite functions

We can now establish analogous results for the adjoint bi-orthogonal Hermite
functions of type Gm,n (x, y). By considering the link that exists between the two-
index, two-variable Hermite polynomials and their adjoint and moreover, between
the present Hermite functions and the related associated functions, we proceed in
a non-repetitive way acting directly on the operators presented in Definition III.2,
we consider the following vectorial operator

â+ =

(
â+,0

â0,+

)
.(145)

We can easily prove that

â+ =
1

2
M̂z − ∂z.(146)

In fact, the r.h.s. in the above equation can be expressed

1

2
M̂z − ∂z =

1

2

(
a b
b c

)(
x
y

)
−
(
∂/∂x
∂/∂y

)
=

1

2

(
ax+ by
bx+ cy

)
−
(
∂/∂x
∂/∂y

)(147)

and then by the first relation in Definition III.2, we find

1

2
(ax+ by)− ∂

∂x
= â+,0,

1

2
(bx+ cy)− ∂

∂y
= â0,+,

(148)

which proves the statement. In the same way by setting

â− =

(
â−,0
â0,−

)
,(149)

we obtain the further relation

â− = M̂−1∂z +
1

2
z.(150)

Now we use the two-vector operators defined above for the Hermite functions of
type Hm,n (x, y) to determine the corresponding creation and annihilation opera-

tors for the associated Hermite functions Gm,n (x, y). We know that the structural
difference between the two-index, two-variable Hermite polynomials and their as-
sociated is essentially different in the matrix of their quadratic form that defines
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them. Otherwise, the Hermite functions are defined by using the Hermite polyno-
mials of type Hm,n(x, y) and Gm,n(x, y). This aspect leads us to define the cre-
ation and annihilation operators for the bi-orthogonal Hermite functions of type
Gm,n (x, y) by modifying the corresponding operators obtained for the Hermite

functions Hm,n (x, y) directly.
We remind that the adjoint quadratic form of the two-index, two-variable Her-

mite polynomials of type Hm,n(x, y), is expressed by

q (z) = ztM̂−1z(151)

which introduces the vectorial variable v = M̂z, where v =
(
ξ
η

)
, to define the asso-

ciated Hermite polynomials of the form Gm,n(x, y). By using the above relations,

we introduce the operators regarding the associated Hermite functions Gm,n (x, y)
by setting

B̂+ =
1

2
M̂−1v − ∂v(152)

and

B̂− = M̂∂v +
1

2
v.(153)

It is evident that the above expressions refer to the vectorial variable v and
then, we need to express the creation and annihilation operators related to the
associated Hermite functions Gm,n (x, y) in terms of the vectorial variable z. By
using the link between the variables z and v, we immediately get

1

2
M̂−1v − ∂v =

1

2
z
−
−M̂−1∂z,(154)

M̂∂v +
1

2
v = ∂z +

1

2
M̂ z
−

(155)

and then, we can rewrite the creation and annihilation operators in the following
form

B̂+ =
1

2
z
−
−M̂−1∂z,(156)

B̂− = ∂z +
1

2
M̂ z
−
.(157)

It is now possible to obtain an explicit form of the creation and annihilation
operators related to the associated Hermite functions Gm,n (x, y). From the first
expression, we have

B̂+ =
1

2

(
x
y

)
− 1

∆

(
−c b
b −a

)(
∂/∂x
∂/∂y

)
=


1

2
x− 1

∆

(
c
∂

∂x
−b ∂

∂y

)
1

2
y− 1

∆

(
−b ∂

∂x
+a

∂

∂y

)(158)
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and in analogous way for the second operator, we get

B̂− =

(
∂/∂x
∂/∂y

)
+

1

2

(
a b
b c

)(
x
y

)
=


∂

∂x
+

1

2
(ax+ by)

∂

∂y
+

1

2
(bx+ cy)

(159)

Finally we can state the explicit form for the creation and annihilation operators
related to the Hermite functions Gm,n (x, y). For the creation operators, we obtain

B̂+,0 =
1

2
x− 1

∆

(
c
∂

∂x
− b ∂

∂y

)
, and B̂0,+ =

1

2
y − 1

∆

(
−b ∂

∂x
+ a

∂

∂y

)
(160)

and similarly, for the annihilation operators, we get

B̂−,0 =
∂

∂x
+

1

2
(ax+ by) , and B̂0,− =

∂

∂y
+

1

2
(bx+ cy) .(161)

We have defined the above operators by using the concepts and the related for-
malism of the creation and annihilation operators introduced for the Hermite bi-
orthogonal functions of type Hm,n (x, y). We expect that these operators have the

same effect on the associated Hermite functions of the form Gm,n (x, y). In fact,
we immediately obtain the fundamental relations

B̂+,0 Gm,n(x, y) =
√
m+ 1: Gm+1,n(x, y),

B̂0,+ Gm,n(x, y) =
√
n+ 1: Gm,n+1(x, y),

B̂−,0 Gm,n(x, y) =
√
m : Gm−1,n(x, y),

B̂0,−Gm,n(x, y) =
√
n : Gm,n−1(x, y),

(162)

which conclude that the operators related to the adjoint function Gm,n (x, y) act
in symmetric ways as the operators introduced in Definition III.2 for the functions
Hm,n (x, y).

The operational techniques showed in this paper could be generalized for many
families of polynomials, for example, the Laguerre or Legendre polynomials (see
[11, 12]). The property of bi-orthogonality can be used to derive some interesting
results in the field of harmonic oscillator (see [13, 14]) and their represent an
important tool to investigate the properties of annihilation and creation operators.
The techniques showed in the paper represent a powerful tool to investigate the
properties of many families of special functions, as for example generalized Bessel
functions (see [15]).

The above presented polynomials can also be used for more refined numerical
fitting techniques and their applications in electromagnetic problems (see [16, 17,
18, 19]).
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C. Fornaro, Università Telematica Internazionale Uninettuno, C.so Vittorio Emanuele II, 39,

Rome, Italy, e-mail : c.fornaro@uninettunouniversity.net

L. Vazquez, Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Com-

plutense de Madrid, Ciudad Universitaria 28040, Madrid, Spain, e-mail : lvazquez@fdi.ucm.es


