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RESILIENCE WITH RESPECT TO HAMILTONICITY

IN RANDOM GRAPHS

P. CONDON, A. ESPUNY DÍAZ, A. GIRÃO, J. KIM, D. KÜHN and D. OSTHUS

Abstract. The local resilience of a graph G with respect to a property P measures

how much one has to change G locally in order to destroy P. We prove ‘resilience’
versions of several classical results about Hamiltonicity for the graph models Gn,p

and Gn,d.
In the setting of random regular graphs, we prove a resilience version of Dirac’s

theorem. More precisely, we show that, whenever d is sufficiently large compared

to ε > 0, a.a.s. the following holds. Let G′ be any subgraph of the random n-ver-
tex d-regular graph Gn,d with minimum degree at least (1/2 + ε)d. Then G′ is
Hamiltonian. This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov.

For the binomial random graph Gn,p, we prove a resilience version of Pósa’s
Hamiltonicity condition, and show that a natural guess for a resilience version of
Chvátal’s theorem fails to be true.

1. Introduction

The study of Hamiltonicity has been at the core of graph theory for the past few
decades. A graph G is said to be Hamiltonian if it contains a cycle which covers
all the vertices of G, and this is called a Hamilton cycle. It is well-known that the
problem of determining whether a graph is Hamiltonian is NP-complete, and thus
most results about Hamiltonicity deal with sufficient conditions which guarantee
this property, particularly in the form of degree conditions.

1.1. Degree conditions for Hamiltonicity

The most well-known degree condition for Hamiltonicity is due to Dirac, who
proved that every graph G on n ≥ 3 vertices with minimum degree at least n/2 is
Hamiltonian. Pósa strengthened this result by proving that a graph G with degree
sequence d1 ≤ · · · ≤ dn such that di ≥ i+ 1 for all i < n/2 is Hamiltonian. This is
best possible in the sense that the condition di ≥ i+ 1 cannot be reduced for any i.
Chvátal generalised this further by essentially characterising all degree sequences
which guarantee Hamiltonicity: a graph with degree sequence d1 ≤ · · · ≤ dn is
Hamiltonian if for all i < n/2 we have di ≥ i+ 1 or dn−i ≥ n− i.
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1.2. Hamilton cycles in random graphs

The search for Hamilton cycles in various models of random graphs has also
been a driving force in the development of this theory. The traditional binomial
model Gn,p, in which each possible edge is added to an n-vertex graph with
probability p independently of the other edges, has seen many results in this
direction. Pósa proved that Gn,p with p � log n/n is a.a.s. Hamiltonian, and
Komlós and Szemerédi determined the exact threshold for p. Furthermore, these
results can be strengthened to obtain the following hitting time result. Consider
a random graph process as follows: given a set of n vertices, add each of the(
n
2

)
possible edges, one by one, by choosing the next edge uniformly at random

among those that have not been added yet. In this setting, Ajtai, Komlós and
Szemerédi [1] and Bollobás [4] independently proved that a.a.s. the resulting graph
becomes Hamiltonian as soon as its minimum degree is at least 2.

The search for Hamilton cycles in other random graph models has proven more
difficult. Here we will deal with random regular graphs: given n, d ∈ N such that
d < n and nd is even, Gn,d is chosen uniformly at random from the set of all
d-regular graphs on n vertices. The study of this model is often more challenging
than that of Gn,p due to the fact that the presence and absence of edges in Gn,d

are correlated. Several different techniques have been developed to deal with this
model, such as the configuration model or edge-switching techniques. Robinson
and Wormald [13] proved that Gn,3 is a.a.s. Hamiltonian, and later extended this
result to Gn,d for any fixed d ≥ 3 [14]. This is in contrast to Gn,p, where the
average degree must be logarithmic in n to ensure Hamiltonicity. These results
were later generalised by Cooper, Frieze and Reed [7] and Krivelevich, Sudakov, Vu
and Wormald [9] for the case when d is allowed to grow with n, up to d ≤ n− 1.

1.3. Local resilience

More recently, several extremal results have been translated to random graphs via
the concept of local resilience. The local resilience of a graph G with respect to
some property P is the maximum number r ∈ N such that, for all H ⊆ G with
∆(H) < r, the graph GrH satisfies P. We say that G is r-resilient with respect
to a property P if the local resilience of G is greater than r. The systematic study
of local resilience was initiated by Sudakov and Vu [15], and the subject has seen a
lot of research since. While there are many different properties for which the study
of resilience has been considered, here we concentrate on resilience with respect to
Hamiltonicity.

Note that Dirac’s theorem can be restated in this terminology to say that
the local resilience of the complete graph Kn with respect to Hamiltonicity is
bn/2c. This concept of local resilience then naturally suggests a generalisation
of Dirac’s theorem to random graphs. In the binomial model, Lee and Sudakov
[10] showed that, for any constant ε > 0, if p ≥ C log n/n and C is sufficiently
large, then a.a.s. Gn,p is (1/2 − ε)np-resilient. This improved on earlier bounds
[2, 3, 8, 15]. Very recently, Montgomery [11] and independently Nenadov, Steger
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and Trujić [12] proved a hitting time result for the local resilience of Gn,p with
respect to Hamiltonicity.

The resilience of random regular graphs with respect to Hamiltonicity is less
understood. Ben-Shimon, Krivelevich and Sudakov [2] proved that, for large (but
constant) d, a.a.s. Gn,d is (1− ε)d/6-resilient with respect to Hamiltonicity. They
conjectured that the true value should be closer to d/2.

Conjecture 1.1 (Ben-Shimon, Krivelevich and Sudakov [2]). For every ε > 0
there exists an integer D = D(ε) > 0 such that, for every fixed integer d > D,
the local resilience of Gn,d with respect to Hamiltonicity a.a.s. lies in the interval
((1/2− ε)d, (1/2 + ε)d).

They also suggested to study the same problem when d is allowed to grow with
n. In this direction, it is already known that for d � log n the random graph
Gn,d is a.a.s. (1/2− ε)d-resilient with respect to Hamiltonicity, and this follows by
combining several results of different authors (details can be found in [5]).

2. Results

2.1. Binomial random graphs

In the setting of the binomial random graph, recall that Lee and Sudakov [10]
proved an analogue of Dirac’s theorem for Gn,p. Indeed, their result can be stated
as follows:

For every ε > 0 there exists C > 0 such that, for p ≥ C log n/n,
a.a.s. every subgraph G of Gn,p with δ(G) ≥ (1/2+ε)np is Hamiltonian.

Lee and Sudakov [10] also asked for a characterisation of the degree sequences for
which the random graph Gn,p is resilient with respect to Hamiltonicity, for p close
to log n/n. We partially answer this question by extending Pósa’s theorem to the
setting of random graphs.

Theorem 2.1 ([6]). For every ε > 0, there exists C > 0 such that, for p ≥
C log n/n, a.a.s. every subgraph G of the random graph Gn,p with degree sequence
d1 ≤ · · · ≤ dn satisfying di ≥ (i+ εn)p for all i < n/2 is Hamiltonian.

In a similar way, Chvátal’s generalisation of Dirac’s theorem suggests a similar
generalisation in the setting of local resilience of random graphs. However, we
prove that random graphs do not satisfy this, in a strong way.

Theorem 2.2 ([6]). For every 0 < ε < 10−6 there exists C > 0 such that, for
C log n/n ≤ p ≤ 1/20, a.a.s. the following holds: not every subgraph G of Gn,p with
degree sequence d1 ≤ · · · ≤ dn satisfying that di ≥ (i+ εn)p or dn−i ≥ (n− i+ εn)p
for all i < n/2 contains an bn/2c-matching.

Indeed, we can construct many subgraphs of a typical instance of Gn,p with
the right degree sequence which do not contain an bn/2c-matching (and hence are
not Hamiltonian). The construction of these subgraphs, however, suggests that
a resilience version of Chvátal’s theorem may be possible if the degree sequence
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is ‘shifted’. As evidence that this is true, we provide the following result about
perfect matchings.

Theorem 2.3 ([6]). For every ε > 0, there exists C > 0 such that, for p ≥
C log n/n, a.a.s. every subgraph G of the random graph Gn,p with degree sequence
d1 ≤ · · · ≤ dn satisfying that di ≥ (i + εn)p or dn−i−εn ≥ (n − i + εn)p for all
i < n/2 contains a perfect matching if n is even.

We conjecture that every subgraph of Gn,p satisfying the conditions in The-
orem 2.3 should be Hamiltonian as well.

2.2. Random regular graphs

In the setting of random regular graphs, we completely resolve Conjecture 1.1, as
well as its extension to d growing slowly with n (recall that the case when d� log n
is covered by earlier results). This can be seen as a version of Dirac’s theorem for
random regular graphs. Our main result gives the lower bound in Conjecture 1.1.

Theorem 2.4 ([5]). For every ε > 0 there exists D such that, for every
D < d ≤ log2 n, the random graph Gn,d is a.a.s. (1/2− ε)d-resilient with respect
to Hamiltonicity.

The upper bound in Conjecture 1.1 is well-known and follows from edge dis-
tribution properties of random regular graphs. While we do not try to optimise
the dependency of D on ε, we remark that D in Theorem 2.4 can be taken to be
polynomial in ε−1. This is essentially best possible in the sense that Theorem 2.4
fails if d ≤ (2ε)−1.

Theorem 2.5 ([5]). For any odd d > 2, the random graph Gn,d is not a.a.s.
(d− 1)/2-resilient with respect to Hamiltonicity.

Our proof also shows that Gn,d is not a.a.s. (d− 1)/2-resilient with respect to
the containment of a perfect matching. It would be interesting to obtain bounds
on the resilience for small values of d.
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D. Kühn, School of Mathematics, University of Birmingham, Edgbaston, Birmingham, UK,

e-mail : d.kuhn@bham.ac.uk

D. Osthus, School of Mathematics, University of Birmingham, Edgbaston, Birmingham, UK,

e-mail : d.osthus@bham.ac.uk


