# RAMSEY UPPER DENSITY OF INFINITE GRAPHS

## A. LAMAISON

ABSTRACT. Let H be an infinite graph. In a two-coloring of the edges of the complete graph on the natural numbers, what is the densest monochromatic subgraph isomorphic to H that we are guaranteed to find? We measure the density of a subgraph by the upper density of its vertex set. This question, in the particular case of the infinite path, was introduced by Erdős and Galvin. Following a recent result for the infinite path, we present bounds on the maximum density for other choices of H, including exact values for a wide class of bipartite graphs.

Let H be a graph on a countably infinite vertex set, and let  $K_{\mathbb{N}}$  denote the complete graph on the natural numbers. A well-known result by Ramsey [7] states that every red-blue coloring of the edges of  $K_{\mathbb{N}}$  contains a monochromatic infinite clique, and thus in particular there exists a monochromatic subgraph  $H' \subseteq K_{\mathbb{N}}$  which is isomorphic to H. However, there are colorings of  $K_{\mathbb{N}}$  in which the monochromatic infinite cliques are arbitrarily sparse. In fact, the monochromatic cliques can all have zero density, according to the following definition:

**Definition 1.** Let  $S \subset \mathbb{N}$  be a set. We define its upper density as

$$p(S) = \limsup_{n \to \infty} \frac{|S \cap [n]|}{n}.$$

We want to find such a monochromatic subgraph H' in which V(H') is as dense as possible. The extremal question would be what is the maximum density that we can always find. We define the parameter  $\rho(H)$  accordingly:

**Definition 2.** Let H be a graph on a countably infinite vertex set. We define its Ramsey upper density  $\rho(H)$  as the supremum of the values  $\lambda$  satisfying that, in every two-coloring of  $K_{\mathbb{N}}$ , there exists a monochromatic  $H' \subseteq K_{\mathbb{N}}$  isomorphic to H in which  $\rho(V(H')) \geq \lambda$ .

The study of this parameter was introduced by Erdős and Galvin [5] for the case of the one-way infinite path P, where they showed that  $2/3 \le \rho(P) \le 8/9$ . After some improvements in [3] and [6], Corsten, DeBiasio, Lang and the author determined in [2] the exact value of  $\rho(P)$ , which is  $(12 + \sqrt{8})/17 \approx 0.87226$ . The case for general H was introduced by DeBiasio and McKenney in [3].

Received May 23, 2019.

<sup>2010</sup> Mathematics Subject Classification. Primary 05D10, 05C63.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).

A. LAMAISON

Here we will generalize the techniques of [2] to determine or bound  $\rho(H)$  for more general choices of H. We will consider that all the graphs H are countably infinite and locally finite (every vertex has finite degree).

We begin with an upper bound, which is obtained by analyzing the maximum upper density of monochromatic copies of H in a particular explicit coloring of  $K_{\mathbb{N}}$ . This (somewhat complicated) coloring is similar to the one described in [2], and depends on a real parameter q > 1. If we take the value of q that produces the minimum density of the copy H', we observe that the density depends on the parameter  $\mu(H, n)$  that we now define.

Given a set  $S \subseteq V(H)$ , we define N(S) to be the union of the neighborhoods of the elements of H. For any positive integer n, let  $\mu(H, n)$  be the minimum value of |N(I)|, where I is an independent set of size n.

Theorem 1. Let H be a graph. Then

$$\rho(H) \leq \limsup_{n \to \infty} f\left(\frac{\mu(H, n)}{n}\right),$$

where

(1) 
$$f(x) = \begin{cases} \frac{2x^2 + 3x + 7 + 2\sqrt{x+1}}{4x^2 + 4x + 9} & \text{for } 0 \le x < 3\\ \frac{x+1}{2x} & \text{for } x \ge 3. \end{cases}$$

For example, in the case of  $P = v_1 v_2 v_3 \ldots$ , the independent set of size n with the smallest neighborhood is  $\{v_1, v_3, \ldots, v_{2n-1}\}$ , whose neighborhood has size n. This produces the bound  $\rho(P) \leq f(1) = (12 + \sqrt{8})/17$ , the same as the bound in [2].

If  $\limsup \frac{\mu(H,n)}{n} < 3$ , the value of f(x) comes from a particular choice of the parameter q. However, if  $\limsup \frac{\mu(H,n)}{n} \geq 3$ , then the following construction, which can be seen as the limit of the previous one when q tends to 1, is considered instead. Color the edge  $ij \in K_{\mathbb{N}}$  red if  $\min\{i, j\}$  is odd, and blue if it is even. If  $H' \subset K_{\mathbb{N}}$  is a monochromatic (say red) copy of H, then observe that the even vertices of H' form an independent set, and that the neighborhood in H' of any set  $S \subseteq V(H') \cap \{2, 4, \ldots, 2t\}$  has size at most t. From this, a simple computation gives the bound of Theorem 1.

For bipartite graphs H, we can similarly find a lower bound based on the sizes of neighborhoods of independent sets. Unlike in Theorem 1, we need infinitely many equally-sized independent sets in order to use this bound.

**Theorem 2.** For every bipartite graph H we have  $\rho(H) \ge 1/2$ . Moreover, let n be a positive integer, and  $\lambda$  be a positive real number. Suppose that there exist infinitely many pairwise disjoint non-empty independent sets  $I_i$ , each of size at most n, such that  $|N(I_i)| \le \lambda |I_i|$ . Then  $\rho(H) \ge f(\lambda)$ , where f is the function in (1).

898

For the case of P, for a fixed value of n, we can take infinitely many pairwise disjoint independent sets, each of the form  $\{v_k, v_{k+2}, \ldots, v_{k+2(n-1)}\}$ , whose neighborhoods have size at most n + 1. Therefore, taking  $\lambda_n = \frac{n+1}{n}$ , Theorem 2 gives  $\rho(P) \ge f(\lambda_n)$ . As this holds for every n, we have  $\rho(P) \ge f(1)$ , the same as in [2].

P is far from the only graph for which the supremum of the lower bounds that can be obtained from Theorem 2 equals the upper bound from Theorem 1.

**Corollary 1.** The bound from Theorem 1 is tight in the following cases:

- *if* H *is* a forest.
- if H is a bipartite graph in which every orbit of the automorphism group acting on the vertex set is infinite.

In particular, given a finite graph F, denote by  $\omega \cdot F$  the disjoint union of countably infinitely many copies of F. If F is bipartite, then

$$\rho(\omega \cdot F) = f\bigg(\min_{\substack{\substack{\emptyset \neq I \subseteq V(F)\\I \text{ indep.}}}} \frac{|N(I)|}{|I|}\bigg).$$

For example, if  $F = C_{2r}$ , the independent sets that minimize  $\frac{|N(I)|}{|I|}$  are the two color classes in the bipartition of F, which satisfy |N(I)| = r = |I|, hence  $f(\omega \cdot C_{2r}) = f(1)$ .

In the case of non-bipartite graphs, there are more factors that play a role in the value of  $\rho(H)$ , such as the chromatic number and the number of components of H in which the 'good' independent sets are located. For example, consider the graph  $P + K_3$ , the disjoint union of an infinite path and a triangle. Consider the coloring of  $K_{\mathbb{N}}$  in which ij is red if and only if i + j is odd. The red edges form a bipartite graph, so any monochromatic copy of  $P + K_3$  must be blue. But the blue graph consists of two components, each with upper density 1/2, and the infinite path must be contained in one of them (the triangle does not contribute to the upper density). This means that  $\rho(P + K_3) \leq 1/2$ , despite having essentially the same independent sets as P. For two infinite paths and a triangle, however, we will show that  $\rho(2 \cdot P + K_3) = f(1)$ .

We say that a set  $I \subseteq V(H)$  is doubly independent if both I and N(I) are independent. The following theorem gives a lower bound for some graphs in terms of their doubly independent sets:

**Theorem 3.** Let H be a graph, n, k be positive integers and  $\lambda$  be a positive real number. Let  $\chi: V(H) \to [k]$  be a proper coloring. Suppose that, whenever we remove at most k-2 components from H, there are still infinitely many pairwise disjoint non-empty doubly independent sets  $I_i$ , each of size at most n, such that  $|N(I_i)| \leq \lambda |I_i|$  and  $N(I_i)$  is monochromatic in  $\chi$ . Then  $\rho(H) \geq f(\lambda)$ , where f is the function in (1).

For the case  $H = 2 \cdot P + K_3$ , we can color the triangle in colors  $\{1, 2, 3\}$  and the paths with colors  $\{1, 2\}$  to obtain a proper coloring of H. Then in both paths the neighborhood of each independent set  $\{v_k, v_{k+2}, \ldots, v_{k+2(n-1)}\}$  is monochromatic. As in the case of P, this leads to  $\rho(2 \cdot P + K_3) \ge f(1)$ , which matches the upper bound  $\rho(2 \cdot P + K_3) \le f(1)$  that we obtain from Theorem 1

### A. LAMAISON

While there are non-bipartite F for which Theorems 1 and 3 give the same bound for  $\rho(\omega \cdot F)$ , namely those in which an independent set that minimizes  $\frac{|N(I)|}{|I|}$  is doubly independent (see figure), this is not usually the case. However, this result is useful for the asymptotic behavior of some families of graphs. For example, by Corollary 1 we have  $\rho(\omega \cdot C_{2r}) = f(1)$  for every  $r \geq 2$ . For odd cycles, the Ramsey density approaches f(1):



Figure 1. Four non-bipartite graphs F for which Theorems 1 and 3 give the same bound on  $\rho(\omega \cdot F)$ , with their doubly independent sets indicated.

# Corollary 2.

$$\lim_{r \to \infty} \rho(\omega \cdot C_{2r+1}) = f(1)$$

The coloring used to prove the lower bound of Corollary 2 uses three colors. Every cycle  $v_1v_2 \ldots v_{2r+1}$  has  $v_{2r+1}$  in color 3 and the rest of the cycle alternates colors 1 and 2. The set  $I = \{v_2, v_4, \ldots, v_{2r-2}\}$  is doubly independent, its neighborhood is monochromatic and  $\frac{|N(I)|}{|I|} = \frac{r}{r-1}$ . If every vertex of H is contained in a triangle, then the neighborhood of every

If every vertex of H is contained in a triangle, then the neighborhood of every vertex contains an edge, so no non-empt doubly independent set exists, and thus no lower bound on  $\rho(H)$  can be deduced from Theorem 3. For example, this happens in  $\omega \cdot K_3$ , or in powers of P. In order to study these graphs we need approaches different to those from the previous results.

For graphs of the form  $\omega \cdot F$ , we can use the Ramsey number of  $k \cdot F$ . Let  $r(n \cdot F)$  denote the two-color Ramsey number of  $k \cdot F$ , that is, the minimum n such that in every two-coloring of  $K_n$  there are k disjoint monochromatic copies of F, all in the same color. The asymptotic behavior of  $r(k \cdot n)$  was determined by Burr, Erdős and Spencer [1].

**Theorem 4.** Let F be a finite graph. Then

$$\rho(\omega \cdot F) \ge \lim_{k \to \infty} \frac{k|V(F)|}{r(k \cdot F)} = \frac{|V(F)|}{2|V(F)| - \alpha(F)}.$$

For  $\omega \cdot K_3$ , Theorem 4 gives best known lower bound, which is  $\rho(\omega \cdot K_3) \ge 3/5$ . In contrast the best known upper bound comes from Theorem 1, and gives  $\rho(\omega \cdot K_3) \le f(2) \approx 0.74133$ .

Another approach is to use a decomposition of Elekes, D. Soukup, L. Soukup and Szentmiklóssy [4]. Given a coloring of  $K_{\mathbb{N}}$ , we say that a set  $S \subseteq \mathbb{N}$  is k-redstaged if there exist sets  $S_1, S_2, \ldots, S_k \subseteq \mathbb{N}$ , not necessarily different, such that

900

 $S_1 = S$  and, for every  $1 \le t \le k - 1$  and every finite subset  $T \subseteq \bigcup_{i=1}^t S_i$ , the intersection of the red neighborhoods of the vertices of T in  $S_{t+1}$  is infinite.

The k-th power of a graph G is a graph  $G^k$  on the same vertex set, where two vertices are adjacent in  $G^k$  if and only if they are at distance at most k in G. [4] proves that  $K_{\mathbb{N}}$  can be partitioned into at most  $2^{2k-1}$  sets, each of which is k-red-staged or k-blue-staged, and then uses the partition to show that in any red-blue coloring of  $K_{\mathbb{N}}$  the vertex set can be partitioned into at most  $2^{2k-1}$  monochromatic copies of  $P^k$  and a finite set. As noted in [3], this implies  $\rho(P^k) \geq 2^{1-2k}$ .

DeBiasio and McKenney conjectured in [3] that for every positive integer k there exists  $\epsilon > 0$  such that  $\rho(H) > \epsilon$  for every graph H with maximum degree at most k. Our next result proves this conjecture, and improves the bound on  $\rho(P^k)$ :

**Theorem 5.** Let H be a graph with chromatic number k in which, whenever we remove at most t-1 components, infinitely many vertices remain. Then

$$\rho(H) \ge \min\left\{\frac{t}{2k-2}, \frac{1}{2}\right\}.$$

Furthermore, if t components can be removed in such a way that only finitely many vertices remain then

$$\rho(H) \le \min\left\{\frac{t}{k-1}, 1\right\}.$$

Any graph H with maximum degree k has chromatic number at most k + 1, so by Theorem 5 with t = 1 we have  $\rho(H) \ge \frac{1}{2k}$ . The chromatic number of  $P^k$  is k + 1, so again setting t = 1 we obtain  $\rho(P^k) \ge \frac{1}{2k}$ , which is much larger than  $2^{1-2k}$ .

#### References

- Burr S. A., Erdős P. and Spencer J. H., Ramsey theorems for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975), 87–99.
- Corsten J., DeBiasio L., Lamaison A. and Lang R., Upper density of monochromatic infinite paths, arXiv:1808-03006.
- DeBiasio L. and McKenney P., Density of monochromatic infinite subgraphs, arXiv:1611.05423.
- Elekes M., Soukup D. T., Soukup L. and Szentmiklóssy Z., Decompositions of edge-colored infinite complete graphs into monochromatic paths, Discrete Math. 339 (2016), 1970–1977.
   Erdős P. and Galvin F., Monochromatic infinite paths, Discrete Math. 113 (1993), 59–70.
- Endos F. and Carvin F., Monochromatic infinite paths, Discrete Math. 116 (1995), 69–10.
   Lo A., Sanhueza-Matamala N. and Wang G., Density of monochromatic infinite paths, Electron. J. Combin. 25 (2018), #P4.29.
- 7. Ramsey F. P., On a problem of formal logic, Proc. Lond. Math. Soc. 2 (1930), 264-286.

A. Lamaison, Institut für Mathematik, Freie Universität Berlin, Berlin, Germany, *e-mail*: lamaison@math.fu-berlin.de