
Acta Math. Univ. Comenianae
Vol. LXXXVIII, 3 (2019), pp. 897–901

897

RAMSEY UPPER DENSITY OF INFINITE GRAPHS

A. LAMAISON

Abstract. Let H be an infinite graph. In a two-coloring of the edges of the com-

plete graph on the natural numbers, what is the densest monochromatic subgraph

isomorphic to H that we are guaranteed to find? We measure the density of a sub-
graph by the upper density of its vertex set. This question, in the particular case

of the infinite path, was introduced by Erdős and Galvin. Following a recent result

for the infinite path, we present bounds on the maximum density for other choices
of H, including exact values for a wide class of bipartite graphs.

Let H be a graph on a countably infinite vertex set, and let KN denote the
complete graph on the natural numbers. A well-known result by Ramsey [7]
states that every red-blue coloring of the edges of KN contains a monochromatic
infinite clique, and thus in particular there exists a monochromatic subgraph H ′ ⊆
KN which is isomorphic to H. However, there are colorings of KN in which the
monochromatic infinite cliques are arbitrarily sparse. In fact, the monochromatic
cliques can all have zero density, according to the following definition:

Definition 1. Let S ⊂ N be a set. We define its upper density as

ρ(S) = lim sup
n→∞

|S ∩ [n]|
n

.

We want to find such a monochromatic subgraph H ′ in which V (H ′) is as dense
as possible. The extremal question would be what is the maximum density that
we can always find. We define the parameter ρ(H) accordingly:

Definition 2. Let H be a graph on a countably infinite vertex set. We define
its Ramsey upper density ρ(H) as the supremum of the values λ satisfying that,
in every two-coloring of KN, there exists a monochromatic H ′ ⊆ KN isomorphic
to H in which ρ(V (H ′)) ≥ λ.

The study of this parameter was introduced by Erdős and Galvin [5] for the
case of the one-way infinite path P , where they showed that 2/3 ≤ ρ(P ) ≤ 8/9.
After some improvements in [3] and [6], Corsten, DeBiasio, Lang and the author

determined in [2] the exact value of ρ(P ), which is (12 +
√

8)/17 ≈ 0.87226. The
case for general H was introduced by DeBiasio and McKenney in [3].
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Here we will generalize the techniques of [2] to determine or bound ρ(H) for
more general choices of H. We will consider that all the graphs H are countably
infinite and locally finite (every vertex has finite degree).

We begin with an upper bound, which is obtained by analyzing the maximum
upper density of monochromatic copies of H in a particular explicit coloring of
KN. This (somewhat complicated) coloring is similar to the one described in [2],
and depends on a real parameter q > 1. If we take the value of q that produces
the minimum density of the copy H ′, we observe that the density depends on the
parameter µ(H,n) that we now define.

Given a set S ⊆ V (H), we define N(S) to be the union of the neighborhoods of
the elements of H. For any positive integer n, let µ(H,n) be the minimum value
of |N(I)|, where I is an independent set of size n.

Theorem 1. Let H be a graph. Then

ρ(H) ≤ lim sup
n→∞

f

(
µ(H,n)

n

)
,

where

(1) f(x) =


2x2 + 3x+ 7 + 2

√
x+ 1

4x2 + 4x+ 9
for 0 ≤ x < 3,

x+ 1

2x
for x ≥ 3.

For example, in the case of P = v1v2v3 . . . , the independent set of size n with
the smallest neighborhood is {v1, v3, . . . , v2n−1}, whose neighborhood has size n.

This produces the bound ρ(P ) ≤ f(1) = (12 +
√

8)/17, the same as the bound
in [2].

If lim sup µ(H,n)
n < 3, the value of f(x) comes from a particular choice of the

parameter q. However, if lim sup µ(H,n)
n ≥ 3, then the following construction,

which can be seen as the limit of the previous one when q tends to 1, is considered
instead. Color the edge ij ∈ KN red if min{i, j} is odd, and blue if it is even.
If H ′ ⊂ KN is a monochromatic (say red) copy of H, then observe that the even
vertices of H ′ form an independent set, and that the neighborhood in H ′ of any
set S ⊆ V (H ′)∩{2, 4, . . . , 2t} has size at most t. From this, a simple computation
gives the bound of Theorem 1.

For bipartite graphs H, we can similarly find a lower bound based on the sizes
of neighborhoods of independent sets. Unlike in Theorem 1, we need infinitely
many equally-sized independent sets in order to use this bound.

Theorem 2. For every bipartite graph H we have ρ(H) ≥ 1/2. Moreover, let
n be a positive integer, and λ be a positive real number. Suppose that there exist
infinitely many pairwise disjoint non-empty independent sets Ii, each of size at
most n, such that |N(Ii)| ≤ λ|Ii|. Then ρ(H) ≥ f(λ), where f is the function
in (1).
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For the case of P , for a fixed value of n, we can take infinitely many pairwise
disjoint independent sets, each of the form {vk, vk+2, . . . , vk+2(n−1)}, whose neigh-

borhoods have size at most n + 1. Therefore, taking λn = n+1
n , Theorem 2 gives

ρ(P ) ≥ f(λn). As this holds for every n, we have ρ(P ) ≥ f(1), the same as in [2].
P is far from the only graph for which the supremum of the lower bounds that

can be obtained from Theorem 2 equals the upper bound from Theorem 1.

Corollary 1. The bound from Theorem 1 is tight in the following cases:

• if H is a forest.
• if H is a bipartite graph in which every orbit of the automorphism group

acting on the vertex set is infinite.

In particular, given a finite graph F , denote by ω ·F the disjoint union of countably
infinitely many copies of F . If F is bipartite, then

ρ(ω · F ) = f

(
min

Ø6=I⊆V (F )
I indep.

|N(I)|
|I|

)
.

For example, if F = C2r, the independent sets that minimize |N(I)|
|I| are the

two color classes in the bipartition of F , which satisfy |N(I)| = r = |I|, hence
f(ω · C2r) = f(1).

In the case of non-bipartite graphs, there are more factors that play a role in
the value of ρ(H), such as the chromatic number and the number of components
of H in which the ‘good’ independent sets are located. For example, consider the
graph P +K3, the disjoint union of an infinite path and a triangle. Consider the
coloring of KN in which ij is red if and only if i+ j is odd. The red edges form a
bipartite graph, so any monochromatic copy of P +K3 must be blue. But the blue
graph consists of two components, each with upper density 1/2, and the infinite
path must be contained in one of them (the triangle does not contribute to the
upper density). This means that ρ(P +K3) ≤ 1/2, despite having essentially the
same independent sets as P . For two infinite paths and a triangle, however, we
will show that ρ(2 · P +K3) = f(1).

We say that a set I ⊆ V (H) is doubly independent if both I and N(I) are
independent. The following theorem gives a lower bound for some graphs in terms
of their doubly independent sets:

Theorem 3. Let H be a graph, n, k be positive integers and λ be a positive
real number. Let χ : V (H)→ [k] be a proper coloring. Suppose that, whenever we
remove at most k − 2 components from H, there are still infinitely many pairwise
disjoint non-empty doubly independent sets Ii, each of size at most n, such that
|N(Ii)| ≤ λ|Ii| and N(Ii) is monochromatic in χ. Then ρ(H) ≥ f(λ), where f is
the function in (1).

For the case H = 2 ·P +K3, we can color the triangle in colors {1, 2, 3} and the
paths with colors {1, 2} to obtain a proper coloring of H. Then in both paths the
neighborhood of each independent set {vk, vk+2, . . . , vk+2(n−1)} is monochromatic.
As in the case of P , this leads to ρ(2 · P +K3) ≥ f(1), which matches the upper
bound ρ(2 · P +K3) ≤ f(1) that we obtain from Theorem 1
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While there are non-bipartite F for which Theorems 1 and 3 give the same
bound for ρ(ω · F ), namely those in which an independent set that minimizes
|N(I)|
|I| is doubly independent (see figure), this is not usually the case. However,

this result is useful for the asymptotic behavior of some families of graphs. For
example, by Corollary 1 we have ρ(ω ·C2r) = f(1) for every r ≥ 2. For odd cycles,
the Ramsey density approaches f(1):

Figure 1. Four non-bipartite graphs F for which Theorems 1 and 3 give the same bound on
ρ(ω · F ), with their doubly independent sets indicated.

Corollary 2.

lim
r→∞

ρ(ω · C2r+1) = f(1)

The coloring used to prove the lower bound of Corollary 2 uses three colors.
Every cycle v1v2 . . . v2r+1 has v2r+1 in color 3 and the rest of the cycle alternates
colors 1 and 2. The set I = {v2, v4, . . . , v2r−2} is doubly independent, its neigh-

borhood is monochromatic and |N(I)|
|I| = r

r−1 .

If every vertex of H is contained in a triangle, then the neighborhood of every
vertex contains an edge, so no non-empy doubly independent set exists, and thus
no lower bound on ρ(H) can be deduced from Theorem 3. For example, this
happens in ω · K3, or in powers of P . In order to study these graphs we need
approaches different to those from the previous results.

For graphs of the form ω · F , we can use the Ramsey number of k · F . Let
r(n · F ) denote the two-color Ramsey number of k · F , that is, the minimum n
such that in every two-coloring of Kn there are k disjoint monochromatic copies
of F , all in the same color. The asymptotic behavior of r(k · n) was determined
by Burr, Erdős and Spencer [1].

Theorem 4. Let F be a finite graph. Then

ρ(ω · F ) ≥ lim
k→∞

k|V (F )|
r(k · F )

=
|V (F )|

2|V (F )| − α(F )
.

For ω · K3, Theorem 4 gives best known lower bound, which is ρ(ω · K3) ≥
3/5. In contrast the best known upper bound comes from Theorem 1, and gives
ρ(ω ·K3) ≤ f(2) ≈ 0.74133.

Another approach is to use a decomposition of Elekes, D. Soukup, L. Soukup
and Szentmiklóssy [4]. Given a coloring of KN, we say that a set S ⊆ N is k-red-
staged if there exist sets S1, S2, . . . , Sk ⊆ N, not necessarily different, such that
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S1 = S and, for every 1 ≤ t ≤ k − 1 and every finite subset T ⊆ ∪ti=1Si, the
intersection of the red neighborhoods of the vertices of T in St+1 is infinite.

The k-th power of a graph G is a graph Gk on the same vertex set, where two
vertices are adjacent in Gk if and only if they are at distance at most k in G. [4]
proves that KN can be partitioned into at most 22k−1 sets, each of which is k-red-
staged or k-blue-staged, and then uses the partition to show that in any red-blue
coloring of KN the vertex set can be partitioned into at most 22k−1 monochromatic
copies of P k and a finite set. As noted in [3], this implies ρ(P k) ≥ 21−2k.

DeBiasio and McKenney conjectured in [3] that for every positive integer k
there exists ε > 0 such that ρ(H) > ε for every graph H with maximum degree at
most k. Our next result proves this conjecture, and improves the bound on ρ(P k):

Theorem 5. Let H be a graph with chromatic number k in which, whenever
we remove at most t− 1 components, infinitely many vertices remain. Then

ρ(H) ≥ min

{
t

2k − 2
,

1

2

}
.

Furthermore, if t components can be removed in such a way that only finitely many
vertices remain then

ρ(H) ≤ min

{
t

k − 1
, 1

}
.

Any graph H with maximum degree k has chromatic number at most k + 1,
so by Theorem 5 with t = 1 we have ρ(H) ≥ 1

2k . The chromatic number of P k

is k + 1, so again setting t = 1 we obtain ρ(P k) ≥ 1
2k , which is much larger than

21−2k.
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