GALLAI'S PATH DECOMPOSITION CONJECTURE FOR GRAPHS WITH MAXIMUM *E*-DEGREE AT MOST 3

F. BOTLER AND M. SAMBINELLI

ABSTRACT. A path decomposition of a graph G is a collection of edge-disjoint paths of G that covers the edge set of G. Gallai (1968) conjectured that every connected graph on n vertices admits a path decomposition of cardinality at most $\lfloor (n+1)/2 \rfloor$. Seminal results toward its verification consider the graph obtained from G by removing its vertices with odd degree, which is called the *E-subgraph* of G. Lovász (1968) verified Gallai's Conjecture for graphs whose *E-subgraph* of at most one vertex, and Pyber (1996) verified it for graphs whose *E-subgraphs* are forests. In 2005, Fan verified Gallai's Conjecture for graphs whose *E-subgraphs* are trianglefree and contain only blocks with maximum degree at most 3. Since then, no result was obtained regarding *E-subgraphs*. In this paper, we verify Gallai's Conjecture for graphs whose *E-subgraphs* have maximum degree at most 3.

1. INTRODUCTION

In this paper, all graphs considered are finite and simple, i.e., contain a finite number of vertices and edges and have neither loops nor multiple edges. The terminology and notation used in this paper are standard (see, e.g. [3]). We say that a vertex is *even* (resp. *odd*) if it has even (resp. *odd*) degree. A *path decomposition* \mathcal{D} of a graph G is a collection of edge-disjoint paths of G that covers all the edges of G. A path decomposition \mathcal{D} of a graph G is *minimum* if for every path decomposition \mathcal{D}' of G we have $|\mathcal{D}| \leq |\mathcal{D}'|$, and the cardinality of such a minimum path decomposition, denoted by pn(G), is called the *path* number of G. In 1968, Gallai proposed the following conjecture (see [2, 11]).

Conjecture 1 (Gallai, 1968). If G is a connected graph, then $pn(G) \leq \left\lceil \frac{|V(G)|}{2} \right\rceil$.

Lovász [11] verified Conjecture 1 for graphs that have at most one even vertex. Pyber [12] extended Lovász's result by proving that Conjecture 1 holds for graphs in which each cycle contains at least one odd vertex. In 2005, Fan [7] extended these results by extending Lovász's technique, and exploring the following special structure. Given a graph G, the *E-subgraph* of G, denoted by EV(G), is the graph

Received May 23, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C70, 05C38.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

M. Sambinelli is supported by FAPESP (Proc. 2017/23623-4).

obtained from G by removing its odd vertices, or, equivalently, the subgraph of G induced by its even vertices. Thus, the results above may be restated as follows.

Theorem 2 (Lovász, 1968; Pyber, 1996; Fan, 2005). Let G be a connected graph on n vertices. Then, the following hold.

- (a) If EV(G) contains at most one vertex, then $pn(G) \leq \lfloor n/2 \rfloor$;
- (b) If EV(G) is a forest, then $pn(G) \leq \lfloor n/2 \rfloor$; and
- (c) If each block of EV(G) is triangle-free and has maximum degree at most 3, then pn(G) ≤ ⌊n/2⌋.

Given an even vertex v in G, the *E*-degree of v is the degree of v in EV(G). Let \mathcal{G}_3 denote the set of connected graphs in which its even vertices have *E*-degree at most 3, i.e., $\mathcal{G}_3 = \{G \text{ is a connected graph such that } \Delta(EV(G)) \leq 3\}$. In this paper we give a step further toward strengthening the result in [7], by presenting a strategy to deal with triangles of the E-subgraph, and verifying Conjecture 1 for graphs in \mathcal{G}_3 . Due to space limitations, we present only a sketch of the proof.

Theorem 3. If $G \in \mathcal{G}_3$, then $pn(G) \leq \lfloor |V(G)|/2 \rfloor$.

Conjecture 1 has been deeply explored, and the literature indicating its correctness include results for Eulerian graphs with maximum degree at most 4 [8]; a family of regular graphs [5]; a family of triangle-free graphs [10]; and maximal outerplanar graphs and 2-connected outerplanar graphs [9]. Recent results were obtained by Bonamy and Perrett [1] who verified Conjecture 1 for graphs with maximum degree at most 5.

Note that the results in Theorem 2 give a bound of $\lfloor n/2 \rfloor$ for the graphs studied, which is slightly different from the bound of $\lceil n/2 \rceil$ proposed by Gallai. A trivial condition for a graph on *n* vertices not to admit the former bound is to have sufficiently many edges. More precisely, if $|E(G)| > \lfloor n/2 \rfloor (n-1)$, then we have $pn(G) \ge \lceil n/2 \rceil$. In this case, *n* must be an odd integer. Such graphs are known as odd semi-cliques [1]. This motivates the following strengthening of Conjecture 1.

Conjecture 4. If G is a connected graph, then either $pn(G) \leq \lfloor |V(G)|/2 \rfloor$ or G is an odd semi-clique.

Botler, Coelho, Lee, and Sambinelli [4] verified Conjecture 4 for graphs with treewidth at most 3 by proving that a partial 3-tree with n vertices either has path number at most $\lfloor n/2 \rfloor$, which are called *Gallai graphs*, or is one of the two odd semi-cliques that are partial 3-trees (K_3 and $K_5 - e$). They also prove [4] an analogous result for graphs with maximum degree at most 4. More recently, Botler, Jiménez, and Sambinelli [6] verified Conjecture 4 for triangle-free planar graphs by proving that every such graph is a Gallai graph.

Finally, we note that the results obtained so far deal with classes of graphs that contain only a finite number of odd semi-cliques. This is not the case of \mathcal{G}_3 , since $K_{2k+1} \smallsetminus M_{k-1}$, the graph obtained from a complete graph with 2k + 1 vertices by removing a matching M_{k-1} of size k-1, is an odd semi-clique and belongs to \mathcal{G}_3 , for any $k \in \mathbb{N}$.

502

2. Technical Lemmas

In this section we present some technical results used in our proof. We use two lemmas presented by Fan [7, Lemma 3.4 and Lemma 3.6]. Given a path decomposition \mathcal{D} , we denote by $\mathcal{D}(v)$ the number of paths in \mathcal{D} having the vertex v as an end vertex. Following the strategy presented by Fan, our technique is based in the following definition.

Definition 1. Let *a* be a vertex in a graph *G* and let *B* be a set of edges incident to *a*. Let $G' = G \setminus B$, and let \mathcal{D}' be a path decomposition of G'. We say that a subset $A = \{ax_i : 1 \leq i \leq k\}$ of *B* is addible at a with respect to \mathcal{D}' if G' + A has a path decomposition \mathcal{D} such that $|\mathcal{D}| = |\mathcal{D}'|$ and

- (a) $\mathcal{D}(a) = \mathcal{D}'(a) + |A|$ and $D(x_i) = D'(x_i) 1$, for $1 \le i \le k$; and
- (b) D(v) = D'(v) for each $v \in V(G) \setminus \{a, x_1, \dots, x_k\}$.

Moreover, we say that \mathcal{D} is a transformation of \mathcal{D}' by adding A at a. When k = 1, we simply say that ax_1 is addible at a with respect to \mathcal{D}' .

The next lemma present conditions for an edge (or a set of edges) to be addible.

Lemma 5 (Fan, 2005).

- (a) Let G be a graph and $ab \in E(G)$. Suppose that \mathcal{D}' is a path decomposition of $G' = G \setminus ab$. If $\mathcal{D}'(b) > |\{v \in N_{G'}(a) : \mathcal{D}'(v) = 0\}|$, then ab is addible at a with respect to \mathcal{D}' .
- (b) Let a be a vertex in a graph G and let $G' = G \setminus \{ax_1, \ldots, ax_h\}$, where $x_i \in N_G(a)$. Suppose that \mathcal{D}' is a path decomposition of G' with $\mathcal{D}'(v) \ge 1$ for every $v \in N_G(a)$. Then, for any $x \in \{x_1, \ldots, x_h\}$, there is $B \subseteq \{ax_1, \ldots, ax_h\}$ such that $ax \in B$, $|B| \ge \left\lceil \frac{h}{2} \right\rceil$, and B is addible at a with respect to \mathcal{D}' .

3. Main theorem

We say that a graph G is a single even triangle graph (SET graph) if $EV(G) \cong K_3$, and every odd vertex of G has at least two even neighbors. Note that every SET graph has an odd number of vertices. We can obtain a decomposition \mathcal{D} of a SET graph G such that $|\mathcal{D}| \leq (|V(G)| + 1)/2$ as follows. Let $e \in E(EV(G))$ and $G' = G \setminus e$, and let \mathcal{D}' be a minimum path decomposition of G'. By Theorem 2(b), $|\mathcal{D}'| \leq (|V(G)| - 1)/2$, and hence $\mathcal{D}' \cup \{e\}$ is the desired decomposition.

Our main theorem is a weaker version of Conjecture 4 in which we replace odd semi-cliques by SET graphs. The proof of our main theorem consists in showing that, for a minimal counterexample G, the graph EV(G) consists of disjoint triangles in which no odd vertex is adjacent to two of these triangles. Then, we remove the edges of a special subgraph joining two of these triangles, yielding a suitable proper subgraph of G from which we obtain a good decomposition of G.

Theorem 6. If $G \in \mathcal{G}_3$, then G is either a Gallai graph or a SET graph.

Sketch of the proof. Suppose that the statement does not hold, and let $G \in \mathcal{G}_3$ be a counterexample minimizing |E(G)|. Let n = |V(G)|. In what follows, we state

a few claims regarding G. The following claim is obtained by applying Lemma 5 on even vertices.

Claim 1. No vertex of G has exactly one even neighbor, and every component of EV(G) is a triangle or an isolated vertex.

In what follows, if x is an odd vertex and $T \subseteq EV(G)$ is a triangle containing a neighbor of x in G, then we say that T is a *triangle neighbor* of x. The proof of the next claim consists in extending Fan's techniques for odd vertices.

Claim 2. If v is an odd vertex in G, then v has neighbors in at most one component of EV(G).

Note that Claim 2 implies that two even vertices have a common odd neighbor only if they belong to the same (triangle) component of EV(G). Now, suppose that x is an isolated vertex in EV(G), and let y be a neighbor of x in G. By Claim 2, x is the only even neighbor of y, a contradiction to Claim 1.

Given a vertex v of G that has a triangle neighbor T, we say that v is a *full* vertex if every vertex of T is a neighbor of v.

Claim 3. Let v be a vertex of G that has a triangle neighbor T. Then,

- (a) If v has an odd neighbor that has no even neighbor, then v is a full vertex;
- (b) Every odd neighbor of v has an even neighbor; and
- (c) If u is an odd neighbor of v with a triangle neighbor different from T, then u and v are full vertices.

First, suppose that $EV(G) \cong K_3$. By Claim 3(b), every odd vertex of G has an even neighbor, and hence, by Claim 1, every odd vertex of G has at least two even neighbors. Thus, G is a SET graph. Therefore, we may assume that EV(G) has at least two components. Thus, let P be a shortest path joining vertices of two different components of EV(G). It follows from Claims 1, 2, and 3(b) that P contains precisely two internal vertices, say u and v. Let T_u (resp. T_v) be the triangle neighbor of u (resp. v).

Let $V(T_u) = \{a, b, c\}$ and $V(T_v) = \{x, y, z\}$. Let $S_u = \{uw \in E(G) : w \in V(T_u)\}$, $S_v = \{vw \in E(G) : w \in V(T_v)\}$, and $G_0 = G \setminus (\{uv\} \cup S_u \cup S_v)$. By Claim 3(c), the vertices u and v are full vertices, i.e., $|S_u| = |S_v| = 3$, and hence wis odd in G_0 for every $w \in V(T_u) \cup V(T_v) \cup \{u, v\}$. Therefore, $G_0 \in \mathcal{G}_3$. Moreover, we can prove that no component of G_0 is a SET graph, and hence G_0 is a Gallai graph. Let \mathcal{D}_0 be a minimum path decomposition of G_0 . By the minimality of G, we have $|\mathcal{D}_0| \leq \lfloor n/2 \rfloor$. In what follows, we obtain a path decomposition \mathcal{D}_3 of $G_3 = G_0 + uv + S_u = G \setminus S_v$ such that $\mathcal{D}_3(u), \mathcal{D}_3(v) \geq 1$.

First, we obtain a path decomposition \mathcal{D}_2 of $G_2 = G_0 + S_u$ such that $\mathcal{D}_2(u) \geq 2$. By Lemma 5 (b), there is a $B_u \subseteq S_u$ such that $|B_u| \geq \lceil |S_u|/2 \rceil$ and B_u is addible at u with respect to \mathcal{D}_0 . Let \mathcal{D}_1 be the transformation of \mathcal{D}_0 by adding B_u at u. We have $\mathcal{D}_1(v) \geq 1 + \lceil |S|/2 \rceil$. Note that $S_u \setminus B_u$ contains at most one edge. If $S_u \setminus B_u = \emptyset$, then put $\mathcal{D}_2 = \mathcal{D}_1$ is the desired decomposition. If $S_u \setminus B_u \neq \emptyset$, then suppose $uc \in S_u \setminus B_u$ and put $G_1 = G_0 + B_u$. Note that $\{x \in N_{G_1}(c) : \mathcal{D}_1(x) = 0\} \subseteq \{a, b\}$. By Lemma 5(a), uc is addible at c with respect to \mathcal{D}_1 . Then, the

504

transformation \mathcal{D}_2 of \mathcal{D}_1 by adding uc at c is the desired decomposition. Now, note that every neighbor of v in $G_2 = G_1 + uc = G_0 + S_u$ is odd, and hence, by Lemma 5(a), uv is addible at v with respect to \mathcal{D}_2 . Then, the transformation \mathcal{D}_3 of \mathcal{D}_2 by adding uv at v is a path decomposition of $G_3 = G_0 + uv + S_u = G \setminus S_v$ such that $\mathcal{D}_3(u), \mathcal{D}_3(v) \geq 1$. Analogously, we obtain a transformation \mathcal{D}_4 of \mathcal{D}_3 by adding S_v . Since $|\mathcal{D}_4| \leq \lfloor n/2 \rfloor$, G is a Gallai graph. This concludes the proof. \Box

4. Future works

The result in this paper may be extended in two natural directions: (1) extending Theorem 6 to a strengthening of Theorem 2(c) in which we remove the triangle-free condition, i.e., by verifying (a strengthening of) Conjecture 1 for graphs in which each block of its E-subgraph has maximum degree at most 3; and (2) Replacing SET graphs by odd semi-cliques, which verifies Conjecture 4 for graphs in \mathcal{G}_3 . Further, the techniques used in this paper may be combined with reducing schemes (see [**6**]) in order to extend previous results.

References

- Bonamy M. and Perrett T. J., Gallai's path decomposition conjecture for graphs of small maximum degree, Discrete Math. 342 (2019), 1293–1299.
- 2. Bondy A., Beautiful conjectures in graph theory, European J. Combin. 37 (2014), 4–23.
- Bondy A. and Murty U. S. R., *Graph theory*, Grad. Texts in Math., Springer, New York, London, 2008.
- Botler F., Sambinelli M., Coelho R. S. and Lee O., On Gallai's and Hajós' conjectures for graphs with treewidth at most 3, arXiv:1706.04334.
- Botler F. and Jiménez A., On path decompositions of 2k-regular graphs, Discrete Math. 340 (2017), 1405–1411.
- Botler F., Jiménez A. and Sambinelli M., Gallai's path decomposition conjecture for trianglefree planar graphs, Discrete Math. 342 (2019), 1403–1414.
- Fan G., Path decompositions and Gallai's conjecture, J. Combin. Theory Ser. B 93 (2005), 117–125.
- Favaron O. and Kouider M., Path partitions and cycle partitions of Eulerian graphs of maximum degree 4, Studia Sci. Math. Hungar. 23 (1988), 237–244.
- Geng X., Fang M. and Li D., Gallai's conjecture for outerplanar graphs, J. Interdiscip. Math. 18 (2015), 593–598.
- Jiménez A. and Wakabayashi Y., On path-cycle decompositions of triangle-free graphs, Discrete Math. Theor. Comput. Sci. 19 (2017), #7.
- Lovász L., On covering of graphs, in: Theory of Graphs, Proc. Colloq., Tihany, 1966, Academic Press, New York, 1968, 231–236.
- Pyber L., Covering the edges of a connected graph by paths, J. Combin. Theory Ser. B 66 (1996), 152–159.

F. Botler, Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Brazil,

e-mail: fbotler@cos.ufrj.br

M. Sambinelli, Instituto de Matemática e Estatística, Universidade de Sao Paulo, Brazil, *e-mail*: sambinelli@ime.usp.br