GALLAI'S PATH DECOMPOSITION CONJECTURE FOR GRAPHS WITH MAXIMUM E-DEGREE AT MOST 3

F. BOTLER and M. SAMBINELLI

Abstract

A path decomposition of a graph G is a collection of edge-disjoint paths of G that covers the edge set of G. Gallai (1968) conjectured that every connected graph on n vertices admits a path decomposition of cardinality at most $\lfloor(n+1) / 2\rfloor$. Seminal results toward its verification consider the graph obtained from G by removing its vertices with odd degree, which is called the E-subgraph of G. Lovász (1968) verified Gallai's Conjecture for graphs whose E-subgraphs consist of at most one vertex, and Pyber (1996) verified it for graphs whose E-subgraphs are forests. In 2005, Fan verified Gallai's Conjecture for graphs whose E-subgraphs are trianglefree and contain only blocks with maximum degree at most 3 . Since then, no result was obtained regarding E-subgraphs. In this paper, we verify Gallai's Conjecture for graphs whose E-subgraphs have maximum degree at most 3 .

1. Introduction

In this paper, all graphs considered are finite and simple, i.e., contain a finite number of vertices and edges and have neither loops nor multiple edges. The terminology and notation used in this paper are standard (see, e.g. [3]). We say that a vertex is even (resp. odd) if it has even (resp. odd) degree. A path decomposition \mathcal{D} of a graph G is a collection of edge-disjoint paths of G that covers all the edges of G. A path decomposition \mathcal{D} of a graph G is minimum if for every path decomposition \mathcal{D}^{\prime} of G we have $|\mathcal{D}| \leq\left|\mathcal{D}^{\prime}\right|$, and the cardinality of such a minimum path decomposition, denoted by $\mathrm{pn}(G)$, is called the path number of G. In 1968, Gallai proposed the following conjecture (see [2, 11]).

Conjecture 1 (Gallai, 1968). If G is a connected graph, then $\operatorname{pn}(G) \leq\left\lceil\frac{|V(G)|}{2}\right\rceil$.
Lovász [11] verified Conjecture 1 for graphs that have at most one even vertex. Pyber [12] extended Lovász's result by proving that Conjecture 1 holds for graphs in which each cycle contains at least one odd vertex. In 2005, Fan [7] extended these results by extending Lovász's technique, and exploring the following special structure. Given a graph G, the E-subgraph of G, denoted by $E V(G)$, is the graph

[^0]obtained from G by removing its odd vertices, or, equivalently, the subgraph of G induced by its even vertices. Thus, the results above may be restated as follows.

Theorem 2 (Lovász, 1968; Pyber, 1996; Fan, 2005). Let G be a connected graph on n vertices. Then, the following hold.
(a) If $E V(G)$ contains at most one vertex, then $\operatorname{pn}(G) \leq\lfloor n / 2\rfloor$;
(b) If $E V(G)$ is a forest, then $\operatorname{pn}(G) \leq\lfloor n / 2\rfloor$; and
(c) If each block of $E V(G)$ is triangle-free and has maximum degree at most 3, then $\operatorname{pn}(G) \leq\lfloor n / 2\rfloor$.
Given an even vertex v in G, the E-degree of v is the degree of v in $E V(G)$. Let \mathcal{G}_{3} denote the set of connected graphs in which its even vertices have E-degree at most 3, i.e., $\mathcal{G}_{3}=\{G$ is a connected graph such that $\Delta(E V(G)) \leq 3\}$. In this paper we give a step further toward strengthening the result in $[\mathbf{7}]$, by presenting a strategy to deal with triangles of the E-subgraph, and verifying Conjecture 1 for graphs in \mathcal{G}_{3}. Due to space limitations, we present only a sketch of the proof.

Theorem 3. If $G \in \mathcal{G}_{3}$, then $\operatorname{pn}(G) \leq\lceil|V(G)| / 2\rceil$.
Conjecture 1 has been deeply explored, and the literature indicating its correctness include results for Eulerian graphs with maximum degree at most 4 [8]; a family of regular graphs [5]; a family of triangle-free graphs [10]; and maximal outerplanar graphs and 2-connected outerplanar graphs [9]. Recent results were obtained by Bonamy and Perrett [1] who verified Conjecture 1 for graphs with maximum degree at most 5 .

Note that the results in Theorem 2 give a bound of $\lfloor n / 2\rfloor$ for the graphs studied, which is slightly different from the bound of $\lceil n / 2\rceil$ proposed by Gallai. A trivial condition for a graph on n vertices not to admit the former bound is to have sufficiently many edges. More precisely, if $|E(G)|>\lfloor n / 2\rfloor(n-1)$, then we have $\operatorname{pn}(G) \geq\lceil n / 2\rceil$. In this case, n must be an odd integer. Such graphs are known as odd semi-cliques $[\mathbf{1}]$. This motivates the following strengthening of Conjecture 1.

Conjecture 4. If G is a connected graph, then either $\operatorname{pn}(G) \leq\lfloor|V(G)| / 2\rfloor$ or G is an odd semi-clique.

Botler, Coelho, Lee, and Sambinelli [4] verified Conjecture 4 for graphs with treewidth at most 3 by proving that a partial 3 -tree with n vertices either has path number at most $\lfloor n / 2\rfloor$, which are called Gallai graphs, or is one of the two odd semi-cliques that are partial 3 -trees (K_{3} and $K_{5}-e$). They also prove [4] an analogous result for graphs with maximum degree at most 4. More recently, Botler, Jiménez, and Sambinelli [6] verified Conjecture 4 for triangle-free planar graphs by proving that every such graph is a Gallai graph.

Finally, we note that the results obtained so far deal with classes of graphs that contain only a finite number of odd semi-cliques. This is not the case of \mathcal{G}_{3}, since $K_{2 k+1} \backslash M_{k-1}$, the graph obtained from a complete graph with $2 k+1$ vertices by removing a matching M_{k-1} of size $k-1$, is an odd semi-clique and belongs to \mathcal{G}_{3}, for any $k \in \mathbb{N}$.

2. Technical Lemmas

In this section we present some technical results used in our proof. We use two lemmas presented by Fan [7, Lemma 3.4 and Lemma 3.6]. Given a path decomposition \mathcal{D}, we denote by $\mathcal{D}(v)$ the number of paths in \mathcal{D} having the vertex v as an end vertex. Following the strategy presented by Fan, our technique is based in the following definition.

Definition 1. Let a be a vertex in a graph G and let B be a set of edges incident to a. Let $G^{\prime}=G \backslash B$, and let \mathcal{D}^{\prime} be a path decomposition of G^{\prime}. We say that a subset $A=\left\{a x_{i}: 1 \leq i \leq k\right\}$ of B is addible at a with respect to \mathcal{D}^{\prime} if $G^{\prime}+A$ has a path decomposition \mathcal{D} such that $|\mathcal{D}|=\left|\mathcal{D}^{\prime}\right|$ and
(a) $\mathcal{D}(a)=\mathcal{D}^{\prime}(a)+|A|$ and $D\left(x_{i}\right)=D^{\prime}\left(x_{i}\right)-1$, for $1 \leq i \leq k$; and
(b) $D(v)=D^{\prime}(v)$ for each $v \in V(G) \backslash\left\{a, x_{1}, \ldots, x_{k}\right\}$.

Moreover, we say that \mathcal{D} is a transformation of \mathcal{D}^{\prime} by adding A at a. When $k=1$, we simply say that $a x_{1}$ is addible at a with respect to \mathcal{D}^{\prime}.

The next lemma present conditions for an edge (or a set of edges) to be addible.
Lemma 5 (Fan, 2005).
(a) Let G be a graph and $a b \in E(G)$. Suppose that \mathcal{D}^{\prime} is a path decomposition of $G^{\prime}=G \backslash a b$. If $\mathcal{D}^{\prime}(b)>\left|\left\{v \in N_{G^{\prime}}(a): \mathcal{D}^{\prime}(v)=0\right\}\right|$, then ab is addible at a with respect to \mathcal{D}^{\prime}.
(b) Let a be a vertex in a graph G and let $G^{\prime}=G \backslash\left\{a x_{1}, \ldots, a x_{h}\right\}$, where $x_{i} \in$ $N_{G}\left(\right.$ a). Suppose that \mathcal{D}^{\prime} is a path decomposition of G^{\prime} with $\mathcal{D}^{\prime}(v) \geq 1$ for every $v \in N_{G}(a)$. Then, for any $x \in\left\{x_{1}, \ldots, x_{h}\right\}$, there is $B \subseteq\left\{a x_{1}, \ldots, a x_{h}\right\}$ such that ax $\in B,|B| \geq\left\lceil\frac{h}{2}\right\rceil$, and B is addible at a with respect to \mathcal{D}^{\prime}.

3. Main theorem

We say that a graph G is a single even triangle graph (SET graph) if $E V(G) \cong K_{3}$, and every odd vertex of G has at least two even neighbors. Note that every SET graph has an odd number of vertices. We can obtain a decomposition \mathcal{D} of a SET graph G such that $|\mathcal{D}| \leq(|V(G)|+1) / 2$ as follows. Let $e \in E(E V(G))$ and $G^{\prime}=G \backslash e$, and let \mathcal{D}^{\prime} be a minimum path decomposition of G^{\prime}. By Theorem 2(b), $\left|\mathcal{D}^{\prime}\right| \leq(|V(G)|-1) / 2$, and hence $\mathcal{D}^{\prime} \cup\{e\}$ is the desired decomposition.

Our main theorem is a weaker version of Conjecture 4 in which we replace odd semi-cliques by SET graphs. The proof of our main theorem consists in showing that, for a minimal counterexample G, the graph $E V(G)$ consists of disjoint triangles in which no odd vertex is adjacent to two of these triangles. Then, we remove the edges of a special subgraph joining two of these triangles, yielding a suitable proper subgraph of G from which we obtain a good decomposition of G.

Theorem 6. If $G \in \mathcal{G}_{3}$, then G is either a Gallai graph or a SET graph.
Sketch of the proof. Suppose that the statement does not hold, and let $G \in \mathcal{G}_{3}$ be a counterexample minimizing $|E(G)|$. Let $n=|V(G)|$. In what follows, we state
a few claims regarding G. The following claim is obtained by applying Lemma 5 on even vertices.

Claim 1. No vertex of G has exactly one even neighbor, and every component of $E V(G)$ is a triangle or an isolated vertex.

In what follows, if x is an odd vertex and $T \subseteq E V(G)$ is a triangle containing a neighbor of x in G, then we say that T is a triangle neighbor of x. The proof of the next claim consists in extending Fan's techniques for odd vertices.

Claim 2. If v is an odd vertex in G, then v has neighbors in at most one component of $E V(G)$.

Note that Claim 2 implies that two even vertices have a common odd neighbor only if they belong to the same (triangle) component of $E V(G)$. Now, suppose that x is an isolated vertex in $E V(G)$, and let y be a neighbor of x in G. By Claim 2, x is the only even neighbor of y, a contradiction to Claim 1.

Given a vertex v of G that has a triangle neighbor T, we say that v is a full vertex if every vertex of T is a neighbor of v.

Claim 3. Let v be a vertex of G that has a triangle neighbor T. Then,
(a) If v has an odd neighbor that has no even neighbor, then v is a full vertex;
(b) Every odd neighbor of v has an even neighbor; and
(c) If u is an odd neighbor of v with a triangle neighbor different from T, then u and v are full vertices.
First, suppose that $E V(G) \cong K_{3}$. By Claim 3(b), every odd vertex of G has an even neighbor, and hence, by Claim 1, every odd vertex of G has at least two even neighbors. Thus, G is a SET graph. Therefore, we may assume that $E V(G)$ has at least two components. Thus, let P be a shortest path joining vertices of two different components of $E V(G)$. It follows from Claims 1, 2, and 3(b) that P contains precisely two internal vertices, say u and v. Let T_{u} (resp. T_{v}) be the triangle neighbor of u (resp. v).

Let $V\left(T_{u}\right)=\{a, b, c\}$ and $V\left(T_{v}\right)=\{x, y, z\}$. Let $S_{u}=\{u w \in E(G): w \in$ $\left.V\left(T_{u}\right)\right\}, S_{v}=\left\{v w \in E(G): w \in V\left(T_{v}\right)\right\}$, and $G_{0}=G \backslash\left(\{u v\} \cup S_{u} \cup S_{v}\right)$. By Claim 3(c), the vertices u and v are full vertices, i.e., $\left|S_{u}\right|=\left|S_{v}\right|=3$, and hence w is odd in G_{0} for every $w \in V\left(T_{u}\right) \cup V\left(T_{v}\right) \cup\{u, v\}$. Therefore, $G_{0} \in \mathcal{G}_{3}$. Moreover, we can prove that no component of G_{0} is a SET graph, and hence G_{0} is a Gallai graph. Let \mathcal{D}_{0} be a minimum path decomposition of G_{0}. By the minimality of G, we have $\left|\mathcal{D}_{0}\right| \leq\lfloor n / 2\rfloor$. In what follows, we obtain a path decomposition \mathcal{D}_{3} of $G_{3}=G_{0}+u v+S_{u}=G \backslash S_{v}$ such that $\mathcal{D}_{3}(u), \mathcal{D}_{3}(v) \geq 1$.

First, we obtain a path decomposition \mathcal{D}_{2} of $G_{2}=G_{0}+S_{u}$ such that $\mathcal{D}_{2}(u) \geq 2$. By Lemma $5(\mathrm{~b})$, there is a $B_{u} \subseteq S_{u}$ such that $\left|B_{u}\right| \geq\left\lceil\left|S_{u}\right| / 2\right\rceil$ and B_{u} is addible at u with respect to \mathcal{D}_{0}. Let \mathcal{D}_{1} be the transformation of \mathcal{D}_{0} by adding B_{u} at u. We have $\mathcal{D}_{1}(v) \geq 1+\lceil|S| / 2\rceil$. Note that $S_{u} \backslash B_{u}$ contains at most one edge. If $S_{u} \backslash B_{u}=\emptyset$, then put $\mathcal{D}_{2}=\mathcal{D}_{1}$ is the desired decomposition. If $S_{u} \backslash B_{u} \neq \emptyset$, then suppose $u c \in S_{u} \backslash B_{u}$ and put $G_{1}=G_{0}+B_{u}$. Note that $\left\{x \in N_{G_{1}}(c): \mathcal{D}_{1}(x)=\right.$ $0\} \subseteq\{a, b\}$. By Lemma $5(\mathrm{a}), u c$ is addible at c with respect to \mathcal{D}_{1}. Then, the
transformation \mathcal{D}_{2} of \mathcal{D}_{1} by adding $u c$ at c is the desired decomposition. Now, note that every neighbor of v in $G_{2}=G_{1}+u c=G_{0}+S_{u}$ is odd, and hence, by Lemma $5(\mathrm{a}), u v$ is addible at v with respect to \mathcal{D}_{2}. Then, the transformation \mathcal{D}_{3} of \mathcal{D}_{2} by adding $u v$ at v is a path decomposition of $G_{3}=G_{0}+u v+S_{u}=G \backslash S_{v}$ such that $\mathcal{D}_{3}(u), \mathcal{D}_{3}(v) \geq 1$. Analogously, we obtain a transformation \mathcal{D}_{4} of \mathcal{D}_{3} by adding S_{v}. Since $\left|\mathcal{D}_{4}\right| \leq\lfloor n / 2\rfloor, G$ is a Gallai graph. This concludes the proof.

4. Future works

The result in this paper may be extended in two natural directions: (1) extending Theorem 6 to a strengthening of Theorem 2(c) in which we remove the triangle-free condition, i.e., by verifying (a strengthening of) Conjecture 1 for graphs in which each block of its E-subgraph has maximum degree at most 3; and (2) Replacing SET graphs by odd semi-cliques, which verifies Conjecture 4 for graphs in \mathcal{G}_{3}. Further, the techniques used in this paper may be combined with reducing schemes (see [6]) in order to extend previous results.

References

1. Bonamy M. and Perrett T. J., Gallai's path decomposition conjecture for graphs of small maximum degree, Discrete Math. 342 (2019), 1293-1299.
2. Bondy A., Beautiful conjectures in graph theory, European J. Combin. 37 (2014), 4-23.
3. Bondy A. and Murty U. S. R., Graph theory, Grad. Texts in Math., Springer, New York, London, 2008.
4. Botler F., Sambinelli M., Coelho R. S. and Lee O., On Gallai's and Hajós' conjectures for graphs with treewidth at most 3, arXiv:1706.04334.
5. Botler F. and Jiménez A., On path decompositions of $2 k$-regular graphs, Discrete Math. 340 (2017), 1405-1411.
6. Botler F., Jiménez A. and Sambinelli M., Gallai's path decomposition conjecture for trianglefree planar graphs, Discrete Math. 342 (2019), 1403-1414.
7. Fan G., Path decompositions and Gallai's conjecture, J. Combin. Theory Ser. B 93 (2005), 117-125.
8. Favaron O. and Kouider M., Path partitions and cycle partitions of Eulerian graphs of maximum degree 4, Studia Sci. Math. Hungar. 23 (1988), 237-244.
9. Geng X., Fang M. and Li D., Gallai's conjecture for outerplanar graphs, J. Interdiscip. Math. 18 (2015), 593-598.
10. Jiménez A. and Wakabayashi Y., On path-cycle decompositions of triangle-free graphs, Discrete Math. Theor. Comput. Sci. 19 (2017), \#7.
11. Lovász L., On covering of graphs, in: Theory of Graphs, Proc. Colloq., Tihany, 1966, Academic Press, New York, 1968, 231-236.
12. Pyber L., Covering the edges of a connected graph by paths, J. Combin. Theory Ser. B 66 (1996), 152-159.
F. Botler, Programa de Engenharia de Sistemas e Computaçao, Universidade Federal do Rio de Janeiro, Brazil,
e-mail: fbotler@cos.ufrj.br
M. Sambinelli, Instituto de Matemática e Estatística, Universidade de Sao Paulo, Brazil,
e-mail: sambinelli@ime.usp.br

[^0]: Received May 23, 2019.
 2010 Mathematics Subject Classification. Primary 05C70, 05C38.
 This study was financed in part by the Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
 M. Sambinelli is supported by FAPESP (Proc. 2017/23623-4).

