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GALLAI’S PATH DECOMPOSITION CONJECTURE

FOR GRAPHS WITH MAXIMUM E-DEGREE AT MOST 3

F. BOTLER and M. SAMBINELLI

Abstract. A path decomposition of a graph G is a collection of edge-disjoint paths

of G that covers the edge set of G. Gallai (1968) conjectured that every connected

graph on n vertices admits a path decomposition of cardinality at most b(n+1)/2c.
Seminal results toward its verification consider the graph obtained from G by re-

moving its vertices with odd degree, which is called the E-subgraph of G. Lovász

(1968) verified Gallai’s Conjecture for graphs whose E-subgraphs consist of at most
one vertex, and Pyber (1996) verified it for graphs whose E-subgraphs are forests.

In 2005, Fan verified Gallai’s Conjecture for graphs whose E-subgraphs are triangle-

free and contain only blocks with maximum degree at most 3. Since then, no result
was obtained regarding E-subgraphs. In this paper, we verify Gallai’s Conjecture

for graphs whose E-subgraphs have maximum degree at most 3.

1. Introduction

In this paper, all graphs considered are finite and simple, i.e., contain a finite
number of vertices and edges and have neither loops nor multiple edges. The
terminology and notation used in this paper are standard (see, e.g. [3]). We
say that a vertex is even (resp. odd) if it has even (resp. odd) degree. A path
decomposition D of a graph G is a collection of edge-disjoint paths of G that
covers all the edges of G. A path decomposition D of a graph G is minimum if for
every path decomposition D′ of G we have |D| ≤ |D′|, and the cardinality of such
a minimum path decomposition, denoted by pn(G), is called the path number of
G. In 1968, Gallai proposed the following conjecture (see [2, 11]).

Conjecture 1 (Gallai, 1968). If G is a connected graph, then pn(G) ≤
⌈
|V (G)|

2

⌉
.

Lovász [11] verified Conjecture 1 for graphs that have at most one even vertex.
Pyber [12] extended Lovász’s result by proving that Conjecture 1 holds for graphs
in which each cycle contains at least one odd vertex. In 2005, Fan [7] extended
these results by extending Lovász’s technique, and exploring the following special
structure. Given a graph G, the E-subgraph of G, denoted by EV (G), is the graph
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obtained from G by removing its odd vertices, or, equivalently, the subgraph of G
induced by its even vertices. Thus, the results above may be restated as follows.

Theorem 2 (Lovász, 1968; Pyber, 1996; Fan, 2005). Let G be a connected
graph on n vertices. Then, the following hold.

(a) If EV (G) contains at most one vertex, then pn(G) ≤ bn/2c;
(b) If EV (G) is a forest, then pn(G) ≤ bn/2c; and
(c) If each block of EV (G) is triangle-free and has maximum degree at most 3,

then pn(G) ≤ bn/2c.

Given an even vertex v in G, the E-degree of v is the degree of v in EV (G).
Let G3 denote the set of connected graphs in which its even vertices have E-degree
at most 3, i.e., G3 =

{
G is a connected graph such that ∆

(
EV (G)

)
≤ 3
}

. In this
paper we give a step further toward strengthening the result in [7], by presenting
a strategy to deal with triangles of the E-subgraph, and verifying Conjecture 1 for
graphs in G3. Due to space limitations, we present only a sketch of the proof.

Theorem 3. If G ∈ G3, then pn(G) ≤
⌈
|V (G)|/2

⌉
.

Conjecture 1 has been deeply explored, and the literature indicating its cor-
rectness include results for Eulerian graphs with maximum degree at most 4 [8];
a family of regular graphs [5]; a family of triangle-free graphs [10]; and maximal
outerplanar graphs and 2-connected outerplanar graphs [9]. Recent results were
obtained by Bonamy and Perrett [1] who verified Conjecture 1 for graphs with
maximum degree at most 5.

Note that the results in Theorem 2 give a bound of bn/2c for the graphs studied,
which is slightly different from the bound of dn/2e proposed by Gallai. A trivial
condition for a graph on n vertices not to admit the former bound is to have
sufficiently many edges. More precisely, if |E(G)| > bn/2c(n − 1), then we have
pn(G) ≥ dn/2e. In this case, n must be an odd integer. Such graphs are known as
odd semi-cliques [1]. This motivates the following strengthening of Conjecture 1.

Conjecture 4. If G is a connected graph, then either pn(G) ≤
⌊
|V (G)|/2

⌋
or

G is an odd semi-clique.

Botler, Coelho, Lee, and Sambinelli [4] verified Conjecture 4 for graphs with
treewidth at most 3 by proving that a partial 3-tree with n vertices either has
path number at most bn/2c, which are called Gallai graphs, or is one of the two
odd semi-cliques that are partial 3-trees (K3 and K5 − e). They also prove [4]
an analogous result for graphs with maximum degree at most 4. More recently,
Botler, Jiménez, and Sambinelli [6] verified Conjecture 4 for triangle-free planar
graphs by proving that every such graph is a Gallai graph.

Finally, we note that the results obtained so far deal with classes of graphs that
contain only a finite number of odd semi-cliques. This is not the case of G3, since
K2k+1 rMk−1, the graph obtained from a complete graph with 2k + 1 vertices by
removing a matching Mk−1 of size k− 1, is an odd semi-clique and belongs to G3,
for any k ∈ N.
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2. Technical Lemmas

In this section we present some technical results used in our proof. We use two
lemmas presented by Fan [7, Lemma 3.4 and Lemma 3.6]. Given a path decom-
position D, we denote by D(v) the number of paths in D having the vertex v as
an end vertex. Following the strategy presented by Fan, our technique is based in
the following definition.

Definition 1. Let a be a vertex in a graph G and let B be a set of edges
incident to a. Let G′ = G r B, and let D′ be a path decomposition of G′. We
say that a subset A = {axi : 1 ≤ i ≤ k} of B is addible at a with respect to D′ if
G′ + A has a path decomposition D such that |D| = |D′| and

(a) D(a) = D′(a) + |A| and D(xi) = D′(xi)− 1, for 1 ≤ i ≤ k; and
(b) D(v) = D′(v) for each v ∈ V (G) r {a, x1, . . . , xk}.
Moreover, we say that D is a transformation of D′ by adding A at a. When k = 1,
we simply say that ax1 is addible at a with respect to D′.

The next lemma present conditions for an edge (or a set of edges) to be addible.

Lemma 5 (Fan, 2005). a

(a) Let G be a graph and ab ∈ E(G). Suppose that D′ is a path decomposition of
G′ = G r ab. If D′(b) > |{v ∈ NG′(a) : D′(v) = 0}|, then ab is addible at a
with respect to D′.

(b) Let a be a vertex in a graph G and let G′ = G r {ax1, . . . , axh}, where xi ∈
NG(a). Suppose that D′ is a path decomposition of G′ with D′(v) ≥ 1 for every
v ∈ NG(a). Then, for any x ∈ {x1, . . . , xh}, there is B ⊆ {ax1, . . . , axh} such
that ax ∈ B, |B| ≥

⌈
h
2

⌉
, and B is addible at a with respect to D′.

3. Main theorem

We say that a graph G is a single even triangle graph (SET graph) if EV (G) ∼= K3,
and every odd vertex of G has at least two even neighbors. Note that every SET
graph has an odd number of vertices. We can obtain a decomposition D of a
SET graph G such that |D| ≤

(
|V (G)|+ 1

)
/2 as follows. Let e ∈ E

(
EV (G)

)
and

G′ = Gre, and let D′ be a minimum path decomposition of G′. By Theorem 2(b),
|D′| ≤

(
|V (G)| − 1

)
/2, and hence D′ ∪ {e} is the desired decomposition.

Our main theorem is a weaker version of Conjecture 4 in which we replace odd
semi-cliques by SET graphs. The proof of our main theorem consists in showing
that, for a minimal counterexample G, the graph EV (G) consists of disjoint trian-
gles in which no odd vertex is adjacent to two of these triangles. Then, we remove
the edges of a special subgraph joining two of these triangles, yielding a suitable
proper subgraph of G from which we obtain a good decomposition of G.

Theorem 6. If G ∈ G3, then G is either a Gallai graph or a SET graph.

Sketch of the proof. Suppose that the statement does not hold, and let G ∈ G3
be a counterexample minimizing |E(G)|. Let n = |V (G)|. In what follows, we state
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a few claims regarding G. The following claim is obtained by applying Lemma 5
on even vertices.

Claim 1. No vertex of G has exactly one even neighbor, and every component
of EV (G) is a triangle or an isolated vertex.

In what follows, if x is an odd vertex and T ⊆ EV (G) is a triangle containing
a neighbor of x in G, then we say that T is a triangle neighbor of x. The proof of
the next claim consists in extending Fan’s techniques for odd vertices.

Claim 2. If v is an odd vertex in G, then v has neighbors in at most one
component of EV (G).

Note that Claim 2 implies that two even vertices have a common odd neighbor
only if they belong to the same (triangle) component of EV (G). Now, suppose
that x is an isolated vertex in EV (G), and let y be a neighbor of x in G. By
Claim 2, x is the only even neighbor of y, a contradiction to Claim 1.

Given a vertex v of G that has a triangle neighbor T , we say that v is a full
vertex if every vertex of T is a neighbor of v.

Claim 3. Let v be a vertex of G that has a triangle neighbor T . Then,

(a) If v has an odd neighbor that has no even neighbor, then v is a full vertex;
(b) Every odd neighbor of v has an even neighbor; and
(c) If u is an odd neighbor of v with a triangle neighbor different from T , then u

and v are full vertices.

First, suppose that EV (G) ∼= K3. By Claim 3(b), every odd vertex of G has
an even neighbor, and hence, by Claim 1, every odd vertex of G has at least two
even neighbors. Thus, G is a SET graph. Therefore, we may assume that EV (G)
has at least two components. Thus, let P be a shortest path joining vertices of
two different components of EV (G). It follows from Claims 1, 2, and 3(b) that
P contains precisely two internal vertices, say u and v. Let Tu (resp. Tv) be the
triangle neighbor of u (resp. v).

Let V (Tu) = {a, b, c} and V (Tv) = {x, y, z}. Let Su =
{
uw ∈ E(G) : w ∈

V (Tu)
}

, Sv =
{
vw ∈ E(G) : w ∈ V (Tv)

}
, and G0 = G r

(
{uv} ∪ Su ∪ Sv

)
. By

Claim 3(c), the vertices u and v are full vertices, i.e., |Su| = |Sv| = 3, and hence w
is odd in G0 for every w ∈ V (Tu)∪V (Tv)∪{u, v}. Therefore, G0 ∈ G3. Moreover,
we can prove that no component of G0 is a SET graph, and hence G0 is a Gallai
graph. Let D0 be a minimum path decomposition of G0. By the minimality of
G, we have |D0| ≤ bn/2c. In what follows, we obtain a path decomposition D3 of
G3 = G0 + uv + Su = Gr Sv such that D3(u),D3(v) ≥ 1.

First, we obtain a path decomposition D2 of G2 = G0+Su such that D2(u) ≥ 2.
By Lemma 5 (b), there is a Bu ⊆ Su such that |Bu| ≥ d|Su|/2e and Bu is addible
at u with respect to D0. Let D1 be the transformation of D0 by adding Bu at u.
We have D1(v) ≥ 1 +

⌈
|S|/2

⌉
. Note that Su r Bu contains at most one edge. If

SurBu = ∅, then put D2 = D1 is the desired decomposition. If SurBu 6= ∅, then
suppose uc ∈ Su r Bu and put G1 = G0 + Bu. Note that {x ∈ NG1(c) : D1(x) =
0} ⊆ {a, b}. By Lemma 5(a), uc is addible at c with respect to D1. Then, the
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transformation D2 of D1 by adding uc at c is the desired decomposition. Now,
note that every neighbor of v in G2 = G1 + uc = G0 + Su is odd, and hence, by
Lemma 5(a), uv is addible at v with respect to D2. Then, the transformation D3

of D2 by adding uv at v is a path decomposition of G3 = G0 + uv + Su = Gr Sv

such that D3(u),D3(v) ≥ 1. Analogously, we obtain a transformation D4 of D3 by
adding Sv. Since |D4| ≤ bn/2c, G is a Gallai graph. This concludes the proof. �

4. Future works

The result in this paper may be extended in two natural directions: (1) extending
Theorem 6 to a strengthening of Theorem 2(c) in which we remove the triangle-free
condition, i.e., by verifying (a strengthening of) Conjecture 1 for graphs in which
each block of its E-subgraph has maximum degree at most 3; and (2) Replacing
SET graphs by odd semi-cliques, which verifies Conjecture 4 for graphs in G3.
Further, the techniques used in this paper may be combined with reducing schemes
(see [6]) in order to extend previous results.
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