
Acta Math. Univ. Comenianae
Vol. LXXXVIII, 3 (2019), pp. 619–623

619

EDGE COLORINGS AVOIDING PATTERNS

M. DĘBSKI

Abstract. We say that a pattern is a graph together with an edge coloring, and
a pattern P = (H, c) occurs in some edge coloring c′ of G if c′, restricted to some
subgraph of G isomorphic to H, is equal to c up to renaming the colors. Inspired
by Matoušek’s visibility blocking problem, we study edge colorings of cliques that
avoid certain patterns.

We show that for every pattern P , such that the number of edges in P is at least
the number of vertices in P plus the number of colors minus 2, there is an edge
coloring of Kn that avoids P and uses linear number of colors; the same also holds
for finite sets of such patterns.

1. Introduction

This paper is a result an unsuccessful attempt to solve the visibility blocking
problem formulated by Matoušek [10], that itself originated from considerations
on the big-line-big-clique conjecture [8]. Consider a set V ⊆ R2 of finite order n,
such that no three points from V are collinear. A visibility-blocking set for V is
a set C disjoint from V such that every segment with endpoints in V contains at
least one point from C. By b(V ) we denote the minimum cardinality of a visibility-
blocking set for V and b(n) denotes the minimum of b(V ) over all sets V ⊂ R2 of
order n such that no three points in V are collinear.

We know that b(n) is at least
(
25
8 − o(1)

)
n [3]. On the other hand, the best

known upper bound is nec
√
logn for some constant c – it follows from a result

regarding a related problem, where the blocking points are required to be middle
points of the segments [11].

Is b(n) linear or superlinear? Some clues seem to suggest the latter. If we add
an extra constraint that points in V should be in a convex position, then the lower
bound increases to Θ (n log n) [9, 10]. The answer is also superlinear in the middle
points variant [11].

We look at this problem as edge-coloring of a complete graph. Let V be a finite
subset of R2 of order n and C a visibility-blocking set for V . We define an edge
coloring of Kn in the following way. Suppose that vertices of Kn are identified
with points from V . A color of an edge uv is a point from C that lies on the
segment with endpoints u and v (if there are many such points from C, we pick
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one arbitrarily). Any edge-coloring of a clique that can be obtained in this way
will be called a visibility-blocking coloring. Note that b(n) is the minimum number
of colors in a visibility-blocking coloring of Kn.

Ideally, we would like to work on a combinatorial characterization of visibility-
blocking colorings, but we do not have it. However, we can name a few properties,
starting with the simplest one: a visibility-blocking coloring is proper (note that if
there were edges uv and uw of the same color c, then the line containing points u
and c would also contain v and w, which contradicts the assumption that no three
points from V are collinear). Clearly χ′ (Kn) ≥ n−1, which implies a rather weak
result that b(n) ≥ n− 1.

Visibility-blocking colorings also do not contain 2-colored 4-cycles, i.e. vertices
u, v, w, x such that pairs of edges (uv,wx) and (ux, vw) that share a color. Indeed,
if c(uw) = c(vx), then points v and x are on different sides on the line containing
u and w, so intervals ux and vw can not intersect, hence c(ux) 6= c(vw). Even
more restrictive colorings have already been studied and are called acyclic edge
colorings (they are proper edge colorings with no 2-colored cycles). it is possible to
find an acyclic edge-coloring of a graph of maximum degree ∆ with the number of
colors linear in ∆ – Alon, McDiarmid and Reed proved an upper bound 64∆ [1],
but later it was improved to 4∆− 4 [5] and it is even conjectured that the correct
value should be ∆ + 2 [2, 6] – therefore, obtaining a meaningful lower bound on
b(n) would require much more than just forbidding 2-colored 4-cycles.

Another pattern forbidden in visibility-blocking colorings is two three-colored
triangles joined by two edges of the same color (i.e. vertices v1, . . . , v6 such that
c(v1v2) = c(v4v5), c(v1v3) = c(v4v5), c(v2v3) = c(v5v6) and c(v1v4) = c(v3v5)).
We will demonstrate that this pattern can be also avoided in an edge coloring of
a complete graph using a linear number of colors. In fact, we will show this for
a large class of patterns that includes all patterns forbidden in visibility-blocking
colorings that we were able to think of. In order to formulate this result, we need
to introduce some definitions.

A pattern is a pair (H, c), where H is a connected graph on at least 3 vertices
and c is a coloring of the edges of H. Then, if c′ is an edge-coloring of some graph
G, then an occurrence of a pattern (H, c) in c′ is an injective function f : V (H)→
V (G) such that for every edge uv ∈ E(H) we have f(u)f(v) ∈ E(G) and for every
two edges uv,wx ∈ E(H), if c(uv) = c(wx) then c′(f(u)f(v)) = c′(f(w)f(x)). We
say that an edge-coloring c′ avoids a pattern P if P does not occur in c′; also, c′
avoids a set of patterns S if it avoid every patterns in S. For a pattern P = (H, c),
by v(P ) we denote the number of vertices in H, by e(P ) – the number of edges in
H and by c(P ) – the number of colors that are used at least once by c. Our main
result is the following.

Theorem 1. Let S be a finite set of patterns, such that every pattern P in S
satisfies e(P ) ≥ v(P ) + c(P ) − 2. Then, there exists a constant C = C(S) such
that for every n there is an edge-coloring of Kn that avoids S and uses at most
Cn colors.
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2. Proof of the Main Theorem

We remark that it is relatively easy to obtain a weaker version of Theorem 1, where
the condition of patterns in relaxed to e(P ) ≥ v(P ) + c(P ) – it suffices to consider
a random edge coloring of Kn with Cn colors and note that the expected number
of pattern occurrences is less than one for an appropriate choice of C. This idea,
however, does not yield a linear upper bound for forbidden patterns mentioned
above and does not even work for proper edge colorings.

In fact, we will prove a stronger version of Theorem 1, that works for every
graph and gives an upper bound linear in the maximum degree. In our proof
we use the entropy compression method, that has originated from [7], and is
becoming a standard alternative to the Lovász Local Lemma. We give a sketch of
the reasoning, leaving rigorous proofs of the two final claims to the reader.

Theorem 2. Let S be a finite set of patterns, such that every pattern P in S
satisfies e(P ) ≥ v(P ) + c(P ) − 2. Then, there exists a constant C = C(S) such
that for every graph G with maximum degree ∆ there is an edge-coloring of G that
avoids S and uses at most C∆ colors.

Sketch of the proof. Take s = |S| and suppose that S = {P1, P2, . . . , Ps}. Let C
be a constant such that 2emax

Cv(Pj)−2 <
1

2semax for every j, where emax is the maximum
number of edges in a pattern from S. Take any graph G of maximum degree ∆
and let M = M(G) be a sufficiently large integer.

The main idea of the proof is as follows: we suppose that no edge coloring of
G that uses C∆ colors avoids S. Then, we use it to construct a procedure that
uniquely encodes every sequence of length M over the set of Cn colors. Finally,
we show that the number of possible encodings is less than (Cn)M , which is a
contradiction and shows that some edge coloring of G with Cn must avoid S.

The procedure takes as an input a sequence c1, c2, . . . , cM over the set of C∆
colors and produces the following output.
• A sequence D = d1, d2, . . . of numbers from 0 to s
• A sequence E = e1, e2, . . . of numbers from 1 to 2emax, where emax is the

maximum number of edges in a pattern from S
• A sequence N = n1, n2, . . . of numbers from 1 to ∆
• A sequence X = x1, x2, . . . over the set of C∆ colors
• A partial edge coloring K of G

In what follows, we will assume that all the orderings that will be used are fixed.
Now we present the encoding procedure.

1. Initialize a partial edge coloring K of G where every edge is uncolored
2. For i = 1, 2, . . . ,M

(a) If all edges of G are colored, report failure
(b) Color the first uncolored edge f = uv in G with ci
(c) If no pattern from S occurs, then append 0 to D and continue
(d) Let Pj be a pattern from S that occurs in K (note that the occurrence

contains f)
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(e) Append to D the number j
(f) Append to E the number representing the edge of P that corresponds

to f in the occurrence of P together with one of two orientations (uv
or vu)

(g) Order the vertices of P such that the first vertex corresponds to u in
the occurrence of P , the second corresponds to v, and every other has
a neighbor that appears in the ordering earlier. Then, for every vertex
w of P , except the first two in the ordering, pick some neighbor y of w
in P that appears earlier in the ordering and append to N the number
k, which has a meaning that the vertex of G corresponding to w in the
occurrence of P is the k’th neighbor of the vertex corresponding to y.

(h) Append to X all colors that appeared in the occurrence of P , in an
order determined by the fixed ordering of corresponding colors in P

(i) Uncolor all edges in the occurrence of P
3. Return (D,E,N,X,K)

The above procedure is designed so that resulting sequences D,E and N are
sufficient to determine which edges of G have been colored and uncolored in each
step (starting from the first), and then using X and K (and starting from the end)
it is possible to determine colors used in each step.

Claim 1. The sequence c1, c2, . . . , cM is uniquely determined by the output
(D,E,N,X,K) of the encoding procedure.

Note that a pattern P can be found at step 2(d) once every e(P ) steps, so
each such occurrence corresponds to e(P ) entries in D and clearly there are se(P )

possible values of e(P ) entries ofD. In a similar manner, each occurrence of P gives
one entry in E (2emax possibilities), v(P )− 2 entries in N (∆v(P )−2 possibilities)
and c(P ) entries in X ((C∆)

c(P ) possibilities). On the other hand, each occurrence
of P involves uncoloring e(P ) edges, which corresponds to e(P ) entries of the input
sequence ((C∆)

e(P ) possibilities). However, note that se(P )2e∆v(P )−2 (C∆)
c(P ) is

smaller than (C∆)
e(P ) by the choice of C and an assumption e(P )≥v(P )+c(P )−2.

Similar reasoning for all occurrences of all patterns from S gives the following
claim.

Claim 2. The number of possible outputs (D,E,N,X,K) of the encoding pro-
cedure is less than (C∆)

M , provided that M is sufficiently large.

Note that above claims give an immediate contradiction, which implies that
that the encoding procedure must fail at step 2(a) for some input sequence. Hence,
there exists an edge coloring of G with C∆ colors that avoids S and the proof is
complete. �

3. Final remarks

Theorem 1 does not imply any bound on b(n), but it suggests that b(n) may be
linear. It would imply a linear upper bound on b(n) if we were able to characterize
visibility-blocking colorings by a finite set of forbidden patterns satisfying the
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assumption e(P ) ≥ v(P )+c(P )−2. Although we doubt that such characterization
exists, we failed to find any forbidden pattern P with e(P ) < v(P ) + c(P )− 2, so
it is an open problem.

We also think that avoiding patterns in edge colorings is interesting on its own.
In particular, is there a nice characterization of patterns that can be avoided
using linear number of colors? We suspect that Theorem 1 may be optimal in the
following sense: if P is a pattern such that e(P ) < v(P ) + c(P )− 2, then avoiding
P requires superlinear number of colors (i.e. there is no constant C such that for
all n there is an edge-coloring of Kn avoiding P that uses at most Cn colors).

Our method can be also used to show, that if e(P ) < v(P ) + c(P )− 2, then P
can be avoided using O

(
n

v(P )−2
e(P )−c(P )

)
colors, but it is far from being tight. Proper

edge colorings that avoid 2-edge colored path with 4 edges are known as star edge
colorings, and they require not more than n1+o(1) colors – see Theorems 2.1 and
3.1 from [4].
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